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Abstract
Deep learning is a subset of machine learning that uses artificial neural networks for extracting high-level features from image 
data. In the present study, a soft sensor is proposed for the prediction of the flotation performance through froth features 
generated by the use of pre-trained convolutional neural networks. Several state-of-the-art convolutional neural networks 
(AlexNet, GoogLeNet, VGGNet, ResNet, and SqueezeNet) pre-trained on the ImageNet database are used to predict the 
metallurgical performance of two flotation systems. The first case study is a batch copper flotation system video-captured over 
a wide range of process conditions. The second case study is an industrial coal flotation column equipped with a continuous 
video recording system. The pre-trained networks are used to extract features from the froth images, and these features are 
subsequently used to predict the flotation conditions and performance. The prediction results by the pre-trained algorithms 
were compared with the traditional image processing algorithms. This demonstrates the ability of the pre-trained structures 
to generalize to images outside the ImageNet database. GoogLeNet outperforms other network architectures and provides 
more accurate predictions of the flotation process behavior and performance.
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1  Introduction

Froth flotation is a well-established beneficiation process 
that is widely used for the separation of the value from the 
unwanted gangue minerals in mineral processing plants [1]. 
Despite extensive research in modeling and simulation of the 
flotation process and recent developments in instrumenta-
tion and process control systems, optimizing control systems 
(model-based controllers and expert systems) has not been 
successfully implemented in flotation plants [2].

Previous studies have shown that the froth visual and 
textural features are closely related to working conditions 

and the performance of the flotation process [3–8]. Hence, 
several soft sensors were developed in the last few decades 
to measure the froth visual and textural characteristics in 
flotation plants. These sensors use machine vision learning 
algorithms and process data for modeling and predicting the 
flotation performance [3, 4, 9–15].

Advances in machine learning and computer systems 
led to the development of deep learning algorithms. Deep 
learning algorithms are capable of capturing relevant fea-
tures from an image at different levels similar to a human 
brain [16, 17]. The convolutional neural network is a class 
of deep neural networks that have been successfully applied 
for image processing of froth flotation [18–22]. In a machine 
vision system for froth flotation, convolutional neural net-
works are typically used to directly and continuously extract 
features from froth images, which often yield better results 
than traditional approaches. The extracted features can be 
used for the classification of froth images or prediction of the 
flotation conditions and performance [18, 22–24].

The predominant advantage of convolutional neural net-
works over traditional fully connected neural networks is 
that they are specifically designed for image input. This is 
mainly due to a series of kernel filters employed to extract 
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fundamental features. The kernels in the first convolutional 
layer are used to extract the low-level features (edges and 
lines), while the kernels in the next layers capture the high-
level features [25]. The classification performance of convo-
lutional neural networks improves by increasing the number 
of network layers, but at the expense of more complexity 
[20].

Another approach is to use convolutional neural networks 
trained on a different image database (ImageNet) for the 
extraction of features from flotation froth images [26]. This 
would be beneficial because the pre-trained model requires 
less training and less effort to build a model of the process. 
Although the pre-trained model may be as accurate as or 
even more accurate than a custom-built convolutional neural 
network, it saves huge efforts and time required to make the 
model [15, 21, 24, 25].

To the author’s knowledge, to date, a few studies have 
been published on using deep convolutional neural networks 
for monitoring and prediction of flotation performance. Horn 
et al. [27] compared the feature extraction quality of plati-
num froth flotation images by convolutional neural networks 
and some traditional feature extraction algorithms. Their 
findings indicated that the performance of convolutional 
neural networks was similar to the other feature extrac-
tion algorithms. Fu and Aldrich [20] used a pre-trained 
convolutional neural network (AlexNet) to extract features 
from froth images. These features were then used in a ran-
dom forest model to predict the flotation performance and 
conditions.

In a study by Wang et al. [28], deep convolutional neu-
ral network algorithms were used for feature extraction and 
classification of froth images of a gold–antimony rougher 
flotation cell to identify the working conditions of the flota-
tion process. Li et al. [29] used a combination of a convolu-
tion neural network (as a feature extractor) and a support 
vector machine (as a predictor) for fault detection and rec-
ognition of flotation conditions. Zarie et al. [22] developed 
a 16-layer deep convolutional neural network for the classifi-
cation of froth images of an industrial coal flotation column. 
The convolutional neural network model achieved an accu-
racy of 93.1% for the classification of froth images in terms 
of concentrate ash content and combustible recovery, which 
was much higher than the artificial neural network model.

Zhang et al. [14] built a soft sensor model based on con-
volutional neural network and memory networks for the pre-
diction of concentrate Zn grade in a zinc rougher flotation 
bank. Zhang and Gao [15] established a soft sensor based 
on a hybrid deep neural network for the classification of 
iron tailings froth images. The proposed algorithm achieved 
a classification accuracy of 97%. Wen et l. [24] proposed 
a soft sensor based on convolutional neural networks for 
the prediction of concentrate ash content of an industrial 
coal flotation cell. They used various convolutional neural 

networks for the classification of froth images with different 
concentrate ash content.

In this study, several convolutional neural networks of 
five different architectures (AlexNet, GoogLeNet, VGGNet, 
ResNet, and SqueezeNet) pre-trained on the ImageNet data-
base including over 1.2 million images were used to predict 
the metallurgical performance of two flotation systems. The 
first database was the image and metallurgical data obtained 
from a batch flotation cell operated over a wide range of pro-
cess conditions. The second database was obtained from an 
industrial flotation column in a coal preparation plant. The 
pre-trained networks were used to extract features from the 
images, and these features were used to construct a model 
for predicting the metallurgical parameters associated with 
the froth images.

2 � Convolutional Neural Networks (CNNs)

Artificial neural networks (ANNs) are fast, reliable, and 
robust computational tools for modeling complex non-lin-
ear systems like froth flotation. In recent times, ANNs have 
been used extensively for classification, clustering, pattern 
recognition, and prediction in many applications [6]. A con-
volutional neural network (CNN) is a class of feed-forward 
artificial neural networks that have been successfully applied 
for image analysis [30]. CNN is a deep learning algorithm 
that can extract fundamental features from images. Several 
successive convolutional layers of CNN extract image fea-
tures and finally learn to classify images. CNNs typically 
consist of the input layer, convolutional layers, pooling lay-
ers, and fully connected layers. In addition to these, recti-
fied linear units (ReLU) can be used for faster training and 
convergence of the network. The image data are inputted to 
the first layer. This is followed by a series of convolutional 
layers. The convolutional layers extract high-level features 
from the image. The pooling layers are typically used to 
reduce the dimensions of the feature maps and also to make 
computation faster because of the reduced number of learn-
ing parameters. The extracted features from the previous lay-
ers are finally compiled in the fully connected layers to form 
the final output [20, 21]. A typical architecture of a CNN for 
the classification of froth images is shown in Fig. 1 [22].

3 � Pre‑trained Convolutional Neural 
Networks

The pre-trained CNN algorithms are robust feature extrac-
tors, which have been recently used for the analysis of 
the froth images in the froth flotation systems [20, 21]. 
The pre-trained CNNs can be used as transfer learning 
or feature extraction algorithms to speed up the learning 
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process and eliminate the need to design the network. The 
pre-trained CNN model is regarded as the starting point 
for transfer learning. In this approach, the input image is 
presented to the network, and high- and low-level image 
features are extracted by multiple layers of neurons. The 
first layers extract the low-level features while the last lay-
ers extract high-level features. The deep layer’s parameters 
can be further tuned according to the new image database. 
Fine-tuning of parameters leads to accuracy improvement 
due to the learning of various sets of features. The princi-
pal challenge of this procedure is processing time which is 
greatly increased in the very large image dataset. Feature 
extraction is the next strategy benefiting from the potential 
of pre-trained CNNs. The new database is only passed 
through the pre-trained CNN, and image features are 
extracted based on adjusted parameters of the pre-trained 
CNN. In the froth flotation systems, these features can 
be subsequently used to predict the process conditions or 
performance [31].

The feature maps of the pre-trained networks are 
summarized in Table 1. A brief description of the pre-
trained CNN algorithms utilized to extract features 
from the current froth image database is given in the 
following sections.

3.1 � AlexNet (2012)

AlexNet is a deep CNN architecture designed by Krizhevsky, 
Sutskever [25]. AlexNet contains eight layers. The first five 
layers are convolutional layers, some of them followed by 
max-pooling layers, and the last three are fully connected 
layers. AlexNet uses the dropout technique to effectively 
prevent overfitting while training the network [32, 33].

3.2 � GoogLeNet (2014)

GoogLeNet is a deep CNN algorithm developed by research-
ers at Google. This network has 22 layers deep (27 layers, 
including 5 pooling layers), 9 inception modules, a global 
average pooling (GAP) layer at the end of the last incep-
tion module, and over 7 million parameters. GoogLeNet is 
a variant of the inception architecture. Convolutional layers 
with different sizes along with pooling layers are applied to 
the input in parallel, and then, the resulting output is created 
by staking convolutional and pooling layers. Thus, different 
types of features are extracted in an inception module. A 
dropout layer is also used during training to avoid overfitting 
the network. GoogLeNet showed a relatively lower error rate 
compared with AlexNet in the classification of the ImageNet 

Fig. 1   Typical structure of a CNN for classification of forth images [22]

Table 1   Feature maps of 
pre-trained CNNs and number 
of used features in regression 
models

Pre-trained CNN Feature map No. of extracted 
features

No. of features that 
explain 95% of total 
variance

t = 30s t = 120s

AlexNet Latest fully connected layer 1000 10 10
GoogLeNet Global average pooling layer 1024 14 11
VGGNet-16 Latest fully connected layer 1000 11 10
VGGNet-19 Latest fully connected layer 1000 10 10
ResNet-18 Global average pooling layer 512 15 13
ResNet-50 Global average pooling layer 2048 13 14
ResNet-101 Global average pooling layer 2048 12 14
SqueezeNet Global average pooling layer 1000 6 5
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database [33]. The architecture of GoogleNet is shown in 
Fig. 2.

3.3 � VGGNet (2014)

VGG16 is a deep CNN model proposed by K. Simonyan and 
A. Zisserman at the University of Oxford [19]. It is com-
posed of 13 convolutional layers (with 5 max-pooling layers) 
and 3 fully connected layers. The architecture of VGG16 
is similar to AlexNet, but with a few more multiple 3 × 3 
kernel-sized filters. VGG16 is a relatively large network 
including a total of around 138 million parameters. VGG-
19 architecture is the same as VGG-16 except that it has 3 
more additional convolutional layers. [34].

3.4 � ResNet (2015)

ResNet is a residual neural network developed by He et al. 
[35]. Residual networks (ResNets) were introduced based 
on the key idea of identity connection which can skip one 
or more layers. ResNets use identity shortcut connections 

between layers which turn the network more efficient com-
pared to the widely used feedforward CNNs. Every ResNet 
block contains two (ResNet-18 and ResNet-34) or 3 layers 
deep (ResNet-50, ResNet-101, and ResNet-152). The ResNet 

Fig. 2   The architecture of 
GoogLeNet

Image input (224 × 224 × 3)
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1
st

Pooling (3 × 3)

Normalization

2nd Convolution (1 × 1 × 64)

3
rd

Convolution (3 × 3 × 192)

Normalization

2
nd

Pooling (3 × 3)

Two series inception modules

3
rd

Pooling (3 × 3)

Five series inception modules

4
th

Pooling (3 × 3)

Two series inception modules

5
th

Pooling (7 × 7)

Dropout (probability=0.4)

Fully connected (1000 × 1024)

Soft max

Classification (1000 classes)

GoogleNet structure

Inception modules

ReLU

Concatenation

One layer

Three layers

Three layers

Two layers

Five layers

Nine layers

One layer

One layer

One layer

One layer

* Three convolutional layers of GoogleNet are followed by ReLU layers which are not shown.

Fig. 3   Laboratory flotation cell equipped with a video camera [6]
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model has lower complexity than VGGNet because of fewer 
filters employed. ResNet-18, ResNet-50, and ResNet-101 
architects were used in the current study.

3.5 � SqueezeNet (2016)

SqueezeNet is a deep CNN algorithm that was originally 
introduced by researchers at DeepScale, the University of 
California, Berkeley, and Stanford University in 2016. The 

main goal of the development of the SqueezeNet model 
was to build a smaller neural network with fewer param-
eters without losing network performance. A SqueezeNet 
model is composed of convolution layers, fire modules, and 
pooling layers. The number of connections is significantly 
reduced with the use of fire modules. An important feature 
of SqueezeNet is the lack of fully connected layers, which 
are responsible for extracting high-level features from the 
input images [36, 37].

Fig. 4   Typical froth images of 
laboratory flotation cell at dif-
ferent flotation times

t = 15 s t = 30 s t = 45 s t = 60 s

t = 75 s t = 90 s t = 105 s t = 120 s

Fig. 5   Comparison of pre-
trained CNNs algorithms for 
prediction of concentrate grade 
(up) and copper recovery 
(down) at t = 30s
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Among the pre-trained neural networks, AlexNet, Goog-
LeNet, and SqueezeNet have relatively similar architecture, 
which can be classified into the same category, while VGG-
Net and ResNet have different structures.

4 � Case Studies

The first database was the image and metallurgical data 
obtained from a batch flotation cell operated over a wide 
range of process conditions [6]. The second database was 
obtained from an industrial flotation column in a coal prepa-
ration plant [18].

4.1 � Laboratory Flotation Tests

In the first case study, image and metallurgical data cap-
tured from a batch flotation cell treating a copper sulfide 
ore were considered [6, 38]. The flotation cell was operated 
at different process conditions, and the froth surface was 
continuously filmed using a digital video camera (Fig. 3). 

A video camera and lighting system (a 50-W halogen lamp) 
were mounted at a distance of 20 cm above the froth surface. 
The froth images were captured at a rate of 25 frames per 
second and 3000 frames per test. The concentrate samples 
were collected at time intervals of 0.5, 2, and, 5 min. The 
copper recovery (R) at each time was calculated from the 
following equation:

where f and c are copper content of feed and concentrate 
samples (%), respectively, and F and C are the mass of feed 
and concentrate samples (g), respectively.

The metallurgical parameters and the froth images were 
analyzed in each run. The image and process data collected 
until 2 min were considered at different runs.

At first, each video recording was split into eight 15-s seg-
ments. Typical froth images at different flotation times are 
presented in Fig. 4. Then, features of the froth images were 
extracted using the pre-trained CNNs and the mean values 
of these features were computed for each 15-s segment. The 

(1)R =
C.c

F.f

Table 2   Characteristics of 
developed ANN model

Developed model No. of samples No. of neuron

t = 30s t = 120s

Input Hidden Output Input Hidden Output

Cu grade 79 11 8 1 10 8 1
Cu recovery 10 7 1 9 9 1

Fig. 6   Scatter plots of observed versus model-predicted values of copper recovery and concentrate grade at t = 30 obtained by GoogLeNet-ANN 
(testing data)
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large number of features extracted from the froth images 
were reduced by principal component analysis (PCA) [18]. 
The principal components were subsequently used to build 
a model for the prediction of the metallurgical parameters 
(copper grade and recovery). The generalization capability 
of the regression models was assessed by the leave-one-out 
cross-validation technique. In this method, n data samples are 
divided into n − 1 training and 1 testing data. Each time, the 
model is trained by n − 1 data sample and then validated by 
the remaining 1 testing data. The hold-out process is repeated 
n times to test all the data samples, and then, the error of all 
testing data is computed and used to evaluate the model [39].

4.1.1 � Prediction of Copper Grade and Recovery 
at t = 30s Using Pre‑trained CNNs

The pre-trained CNN algorithms were applied to extract 
the froth features and these features were then used to 
make predictions of the copper recovery and the concen-
trate grade of the first batch run (t = 30 s) of the flotation 
system. Hence, the froth features were captured for the first 
two 15-s segments and the mean values were computed. 
Meanwhile, the copper content of the first-30 s concentrate 
was determined and the concentrate grade and the cop-
per recovery were measured. Afterwards, two fitted linear 

Table 3   Performance of GoogLeNet-ANN algorithms for predicting of the batch flotation performance at t = 30

Metallurgical 
parameters

R(correlation coefficient) RMSE

Training data Validation data Testing data Total data Training data Validation data Testing data Total data

G
Cu

0.96 0.87 0.90 0.93 1.17 2.21 1.69 1.46
R
Cu

0.95 0.67 0.80 0.87 3.08 7.76 8.2 5.1

Fig. 7   Comparison of pre-trained CNNs algorithms for prediction of concentrate grade (left curves) and copper recovery (right curves) at 
t = 120s
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regression models were used to predict the copper recovery 
and the concentrate grade at t = 30s by using the features 
extracted from the first two 15-s segments. The goodness-
of-fit of the developed models was determined by the coef-
ficients of determination ( R2 ), which were calculated from 
the following expression:

where yi and ŷi are the observed and the predicted values of 
the metallurgical parameters, respectively and y is the mean 
value of the observed values. R2 values are between zero and 
unity. R2 = 0 indicates that the regression model does not fit 
to the data points, and R2 = 1 denotes a perfect fit.

Figure  5 shows R2 values of the regression mod-
els obtained from the extracted features of the first 
( t = 0 − 15s ) and the second ( t = 15 − 30s ) batch runs to 
predict the copper recovery and the concentrate grade at 
t = 30s . The results indicate that the froth visual features 
extracted at t = 15 − 30s are more correlated with the met-
allurgical parameters obtained at t = 30s . In other words, 
the prediction accuracy of the algorithms improves as the 

(2)R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)

2

image capturing time approaches that of the froth sam-
pling time.

The accuracy of VGG-19 in predicting the cop-
per recovery and the concentrate grade is superior to 
VGG-16. GoogLeNet significantly outperforms both 
AlexNet and SqueezeNet models. Among ResNet mod-
els, ResNet-101 is the most accurate algorithm for esti-
mating metallurgical performances. Thus, based on the 
experiments and analysis presented in this paper, it was 
concluded that the deeper ResNet algorithms with more 
neural layers exhibit better prediction results compared to 
the shallower networks. Deeper networks are able to learn 
more complex and non-linear functions. A large amount 
of training data involved enables them to more easily 
predict complicated systems. Compared with all tested 
algorithms, GoogLeNet achieved the best performance 
and the highest accuracy on the current dataset.

4.1.2 � Prediction of Copper Grade and Recovery 
at t = 30s Using GoogLeNet‑ANN

Analysis of the first batch run data indicated that GoogLeNet 
was the most efficient algorithm for extracting features from 

Fig. 8   Scatter plots of observed versus model-predicted values of copper recovery and concentrate grade at t = 120 obtained by GoogLeNet-
ANN (testing data)

Table 4   Performance of GoogLeNet-ANN algorithms for predicting of the batch flotation performance at t = 120

Metallurgical 
performances

R RMSE

Training data Validation data Testing data Total data Training data Validation data Testing data Total data

G
Cu

0.95 0.91 0.90 0.94 1.29 1.56 1.34 1.34
R
Cu

0.95 0.90 0.90 0.92 1.97 2.73 3.25 2.33
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the froth images. Furthermore, the image features extracted 
from the second 15-s segment showed a greater correla-
tion with the metallurgical parameters. The froth features 
extracted by the GoogLeNet algorithm at t = 15 − 30s were 
used to build an ANN model for predicting the flotation per-
formance. The large number of features extracted from the 
froth images by the GoogLeNet algorithm was reduced by 
PCA (that explains 90% of total variance). The dataset was 
randomly partitioned into training (70%), validation (1.5%), 
and testing (15%) data. The number of neurons in the hidden 
layers were determined by trial and error. The structure of 
developed ANN models is listed in Table 2.

The correlation coefficient ( R ) and the root mean square 
error ( RMSE ) were used as predictors to explain the per-
formance of the ANN model in predicting the metallurgi-
cal parameters from the image features.

Figure 6 shows scatter plots of the observed versus 
model-predicted values of the copper recovery and the 

(3)R =
cov

�

yi, ŷi
�

√

var(yi) × var(̂yi)

(4)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2

concentrate grade obtained by ANN. The solid lines are 
the best regression lines fitted to the scatter points. The 
results of the performance evaluation of the developed 
ANN for predicting the metallurgical parameters are 
summarized in Table 3. The results demonstrate that the 
developed GoogLeNet-ANN algorithm can successfully 
predict the conditions and performance of the batch flota-
tion system from the froth visual features.

4.1.3 � Prediction of Copper Grade and Recovery 
at t = 120s Using Pre‑trained CNNs

The second concentrate sample was collected at t = 120s 
after start of the run. The froth features were extracted at 
t = 30 − 45s , 45–60 s, 60–75 s, 75–90 s, 90–105 s, and 
105–120 s, and the mean values for each 15-s segment was 
computed. The froth images were fed to the pre-trained 
CNNs algorithms, and the features were extracted. The 
extracted features were used as predictors in a model to 
estimate the copper recovery and the concentrate grade at 
t = 120s . Six linear regression models were fitted to the 
extracted features of each 15-s segment to make prediction 
of the flotation performance at t = 120s.

Figure 7 depicts R2 values of the regression models 
built with the froth features extracted at different flota-
tion times ( t = 45 − 120s ). The R2 values exhibit ascending 

Table 5   Performance of VFE-ANN algorithms for predicting the batch flotation performance [6]

Metallurgical 
performances

R RMSE

Training data Validation data Testing data Total data Training data Validation data Testing data Total data

G
Cu

0.97 0.92 0.92 0.96 1.09 1.39 1.07 1.13
R
Cu

0.90 0.88 0.9 0.89 2.52 2.9 2.9 2.64

Fig. 9   Coal flotation column and machine vision system [18]
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trends over time, indicating again that the last 15-s seg-
ment images are more representative of the flotation per-
formance. The results as shown in Fig. 7 indicate that 
ResNet-110 and GoogLeNet algorithms outperform the 
other architectures in predicting the copper recovery and 
the concentrate grade at t = 120s . In general, it seems that 
the deeper networks with more convolutional layers are 
more successful feature extractors.

4.1.4 � Prediction of Copper Grade and Recovery 
at t = 120s Using GoogLeNet‑ANN

The results presented in the previous section showed that Goog-
LeNet was the best pre-trained CNN algorithm for extraction 

of the visual feature from the froth images. The best results 
belonged to the froth images captured at t = 105 − 120s , which 
were close to the concentrate sampling time ( t = 120s ). An 
ANN was trained on the froth features extracted by GoogLeNet 
algorithm at t = 105 − 1207s to estimate the froth grade and 
recovery at t = 120s . The ANN was designed in the same way 
as the previous one as shown in Table 2.

The predictions of the copper recovery and the concen-
trate grade by the pre-trained CNN (GoogLeNet) and ANN 
models are shown in Fig. 8. The performance indicators of 
the proposed GoogLeNet-ANN algorithm, namely, R and 
RMSE , are summarized in Table 4. The high R and low 
RMSE values imply the good ability of the model to accu-
rately predict the flotation performance.

Fig. 10   Typical froth images of industrial flotation columns at different operating conditions
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In the earlier study, the authors developed visual fea-
ture extraction (VFE) algorithms for extraction of the froth 
visual properties including bubble size distribution, froth 
color, froth velocity, and bubble collapse rate from the froth 
images captured from this laboratory flotation cell. After-
wards, a three-layer feed-forward artificial neural network 
was designed to learn the relationship between the froth 
features and the metallurgical [6]. The results of predictive 
accuracy of the developed neural network are summarized 
in Table 5.

The results presented in Tables 3 and 4 suggest that the 
prediction accuracy of the developed ANN models through 
visual and GoogLeNet features are relatively similar. Thus, 
even though GoogLeNet is a convolutional neural network 
pre-trained on a different image database, it is able to accu-
rately extract features from the froth images. Furthermore, 
there are some challenges facing the image processing algo-
rithms for analysis of the froth images. (i) The designed 
algorithms should be tuned and their parameters should 
be adjusted at each flotation plant. (ii) The image process-
ing algorithms are sensitive to imaging conditions [27]. 
(iii) The time required for processing of images may cause 
some delays in the process control system. However, the 
pre-trained CNN algorithms are less sensitive to changes 
in imaging conditions and can be applied to extract features 
from froth images of different flotation systems. These 
results suggest that the pre-trained CNN algorithms such as 
GoogLeNet can lead to significant improvements in analysis 
of froth images.

4.2 � Industrial Flotation Tests

The second case study is based on image and process data 
collected from an industrial flotation column in flotation 
circuit of a coal preparation plant in Iran [18]. The cam-
era equipped with a lighting system (a 50-W LED lamp) 
was installed at a distance of 40 cm above the froth surface 
(Fig. 9). The camera and lighting systems was placed in a 
hood to protect them from the ambient light interference. 
The feed, concentrate, and tailings of the flotation column 
were sampled simultaneously over a period of 2 h (at 15-min 
intervals), and their ash content were determined for each 
test. The combustible recovery (CR) at different experiments 
was calculated from the following expression [15]:

where f, c, and t are the ash content of feed, concentrate and 
tailings samples (%), respectively. At the time of sampling, 
continuous video sampling and analysis of the froth surface 
was performed at a rate of 30 frames per second. Typical 
froth images of industrial flotation columns at different oper-
ating conditions are shown in Fig. 10.

4.2.1 � Prediction of Combustible Recovery and Concentrate 
Ash Content Using Pre‑trained CNNs

The pre-trained networks as deep learning models were used 
to extract features from the froth images taken from the flota-
tion column at different operating conditions, and the mean 
values of all the measured features were reported. The froth 
features extracted by the algorithms were reduced using 
PCA, which afterward used in a linear regression model to 
predict the metallurgical performance of the flotation col-
umn (combustible recovery and concentrate ash content). 
The predictive ability of the regression model was quantified 
by the leave-one-out cross-validation technique.

Table 6 shows the predictive accuracy of the regression 
models with different froth features (as predictors) extracted 
by the pre-trained CNNs. GoogleNet achieved the highest 
accuracy (R2 ) and the lowest prediction error (RMSE) val-
ues. As a result, GoogleNet is the best pre-trained algorithm 
for extraction of features from the froth images of the coal 
flotation column.

4.2.2 � Prediction of Combustible Recovery and Concentrate 
Ash Content Using GoogLeNet‑ANN

The previous results revealed that GoogLeNet algorithm can 
extract the optimal features from the froth images of the coal 
flotation column. The extracted features by GoogLeNet were 
subsequently reduced using PCA (just two components) and 

(5)

CR =
C(100 − c)

F(100 − f )
× 100 =

(

t − f

t − c

)

×

(

100 − c

100 − f

)

× 100

Table 6   Performance of pre-trained CNNs for predicting the coal flo-
tation column performance

Pre-trained CNN Combustible recovery Concentrate ash 
content

R
2 RMSE R

2 RMSE

GoogLeNet 0.64 0.082 0.57 0.061
ResNet-18 0.65 0.081 0.49 0.066
AlexNet 0.60 0.086 0.46 0.067
SqueezeNet 0.52 0.092 0.38 0.071
ResNet-50 0.49 0.094 0.38 0.072
VGG-16 0.45 0.097 0.50 0.065
ResNet-101 0.21 0.11 0.44 0.068
VGG-19 0.18 0.116 0.27 0.077

Table 7   Characteristics of developed ANN models

Developed model No. of samples No. of neuron

Input Hidden Output

Cu grade 20 2 8 1
Cu recovery 2 7 1
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then used to train an ANN in order to make predictions of 
the combustible recovery and the concentrate ash content of 
the coal flotation column at different operating conditions. 
k-fold cross-validation technique was used to evaluate the 
proposed ANN model because of the limited data sample. 
In this method, the dataset is split into k groups. Then, each 
of the k groups are used as a testing set, while the remain-
ing groups are considered as the training sets. The ANN is 
trained on the training sets and evaluated on the testing set. 
This process is repeated for the k groups. Thus, k different 

neural network models are trained and validated. In this 
approach, each sample has the opportunity to be used one 
time for testing and k − 1 times for training. To avoid overfit-
ting, a term including sum of the squared weights ( 

∑n

j=1
wj

2) 
was added to the cost function as follows [18]:

where yi and ŷi are the observed and model-predicted values, 
m is the number of training data, n is the number of weights, 
and � is the regularization parameter ( � = 0 − 1). The struc-
ture of developed ANN models is shown in Table 7.

The results of prediction of the flotation column perfor-
mance by use of a combination of GoogLeNet and ANN 
algorithms are summarized in Table 8. The results suggest 
that GoogLeNet is an efficient CNN algorithm that can be 
used in conjunction with different ANNs for predicting the 
metallurgical performance of flotation systems.

In the previous study, the authors proposed visual and 
textural feature extraction (VTFE) algorithms for measuring 

(6)J(w) = (1 − �)
1

m

m
∑

i=1

(yi − ŷi)
2
+ (�)

1

n

n
∑

j=1

wj
2

Table 8   Comparison of predictive capacity of GoogLeNet-ANN and 
VTFE-BRANN algorithms for predicting the coal flotation column 
performance

Algorithm Combustible recovery Concentrate ash 
content

R RMSE R RMSE

VTFE-BRANN 0.92 0.045 0.86 0.041
GoogLeNet-ANN 0.90 0.055 0.83 0.047

Fig. 11   Scatter plots of 
observed versus model-pre-
dicted values of combustible 
recovery by GoogLeNet-ANN 
(top figure) and VTFE-BRANN 
(bottom figure) algorithms
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of the froth properties (bubble size, froth velocity, red color, 
green color, intensity, energy, entropy, contrast, homoge-
neity, and correlation) of the tested flotation column [18]. 
The extracted visual and textural features were subsequently 
used by different intelligent algorithms (BRANNs,1 ANFIS,2 
and SVM3) to estimate the metallurgical performance of the 
flotation column. BRANN was found to be the best suited 
model for predicting the combustible recovery and the 
concentrate ash content. The results presented in Table 6 
show that the both VTFE-BRANN and GoogLeNet-ANN 
algorithms are capable of providing accurate predictions 
of the flotation column performance at different operating 
conditions.

Figures 11 and 12 show scatter plots of the observed versus 
model-predicted values of the combustible recovery and the 
concentrate ash content obtained by GoogLeNet-ANN and 
VTFE-BRANN algorithms. The results show that the visual 

and textural features are more reliable predictors of the flota-
tion conditions than the extracted features by GoogLeNet. It 
can be concluded that the pre-trained networks such as Goog-
leNet can be applied to extract features from froth images and 
the extracted features may be used to predict working condi-
tions and performance of flotation process.

Transfer learning can be used to improve the performance 
of pre-trained networks for analysis of industrial datasets. 
This can be done by tuning the structure of considered pre-
trained neural network corresponding to froth image data 
base. Afterwards, adjusted network can be retrained on a 
large dataset. In other words, the pre-trained networks can be 
fine-tuned using the flotation plant datasets to learn higher-
level features from the actual froth images [23, 28, 40].

Despite several advantages, deep learning algorithms 
have some drawbacks. The main practical limitations of 
deep learning algorithms include a large amount of labeled 
data required as well as a long training time. The problem 
of massive data required can be overcome by using active 
learning, core sets, and data augmentation. The computing 
time can be reduced by training the network with reduced 
data and using compact models.

Fig. 12   Scatter plots of 
observed versus model-pre-
dicted values of concentrate ash 
content by GoogLeNet-ANN 
(top figure) and VTFE-BRANN 
(bottom figure) algorithms

1  Bayesian regularized artificial neural networks.
2  Adaptive network-based fuzzy inference system.
3  Support vector machine.
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5 � Conclusion

In this investigation, a soft sensor based on pre-trained con-
volutional neural networks was developed for prediction of 
the metallurgical performance of the flotation systems. The 
following conclusions can be drawn from this research study.

•	 The pre-trained networks were effectively used to extract 
features from the flotation froth images in spite of their 
different training source (ImageNet). This would be ben-
eficial because the pre-trained algorithms require less 
training and less effort to build a model of the process.

•	 The metallurgical parameters of a batch flotation system 
and an industrial flotation column were accurately predicted 
from the features generated by the pre-trained structures. 
The predictions were comparative to the previous results 
by image processing algorithms developed by the authors 
for extraction of visual and textural features of the froth 
images. In addition, pre-trained neural networks are more 
robust against several challenges which is often occurred 
in feature extraction by image processing algorithms.

•	 The difference between the froth sampling and the 
image capturing rates is the main challenge of froth 
image analysis in a batch flotation system. The sam-
pling rate of froth images is much higher than the met-
allurgical data, which leads to several unlabeled froth 
images. The prediction accuracy of the pre-trained 
algorithms improves as the image capturing time 
approaches that of the froth sampling time.

•	 GoogleNet architecture outperformed all the other pre-
trained networks and achieved more accurate estima-
tions of the process conditions and performance on 
these particular databases.

•	 The promising results demonstrate that deep learning algo-
rithms have great potential to be used as feature extractors 
in froth image analysis. Longer computation time because 
of massive amounts of labeled data is the main demerit of 
deep learning algorithms for practical applications.
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