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Abstract
Rockburst prediction is crucial in deep hard rock mines and tunnels to make safer working conditions. Due to the complex 
interaction of many factors involved in rockburst prediction, such as multi-variable and multi-interference factors, three hybrid 
support vector machine (SVM) models optimized by particle swarm optimization (PSO), Harris hawk optimization (HHO), 
and moth flame optimization (MFO) are proposed to predict rockburst hazard level (RHL). The RHL is determined according 
to four kinds of microseismic characteristic parameters including angular frequency ratio, total energy, apparent stress, and 
convexity radius. Then, six types of microseismic characteristic parameters are taken as input variables in 343 sets of data, 
including angular frequency ratio and total energy, etc.. And the RHL is taken as the output target of rockburst prediction. 
The classification performance of PSO-SVM, HHO-SVM, and MFO-SVM hybrid models is evaluated by accuracy (ACC), 
precision (PRE), and kappa coefficient. Findings reveal that the MFO-SVM model performs best in terms of accuracy, with 
ACC, PRE, and kappa coefficients reaching 0.9559, 0.9063, and 0.9094 respectively, while PSO-SVM and HHO-SVM have 
similar performances. However, the PSO-SVM, HHO-SVM, and MFO-SVM all perform better than the unoptimized SVM 
model. This confirms that the three optimization algorithms significantly enhance the rockburst prediction capacity of the 
SVM model to help mine practitioners apply machine learning methods to rockburst prediction problems appropriately.

Keywords  Rockburst · Microseismic monitoring · Support vector machine · Particle swarm optimization · Harris hawk 
optimization · Moth flame optimization

1  Introduction

In the construction process of deep hard rock mines and tun-
nels, rockburst is a common type of geological hazard. Rock-
bursts generally occur because of the accumulation of energy 
within the rock mass due to external factors that cause a sudden 
release of disturbance [51]. A rockburst disaster at the Alten-
berg tin mine in Germany in 1640 caused heavy damage which 
could be the earliest recorded rockburst disaster [38]. Today, 
rockbursts occur extensively in deeper hard rock mines in many 
countries, e.g., South Africa [23], Canada [21], Western Aus-
tralia [15], the USA [7] , and China [57]. In addition, there are 
also rockburst cases in tunnel engineering in Norway [3] and 
China [53]. In deep hard rock mines and tunneling projects, 
rockbursts can lead to varying degrees of impact on equipment, 
and serious rockburst disasters even threaten personnel safety 
[59]. Due to a greater demand for resources, mining and con-
struction activities are going deeper underground compared to 
the past. These increasing geotechnical activities can exacerbate 
rockbursts [62].

Highlights 
• Support vector machine (SVM) with PSO, HHO, and MFO for 
rockburst prediction modeling.
• ACC, PRE, kappa coefficients, and confusion matrix are used to 
compare the effect of hybrid rockburst prediction models.
• MFO-SVM hybrid model has the best effect on rockburst 
prediction.
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Microseismic monitoring (MS) technology is a kind of 
three-dimensional monitoring technology for monitoring 
microseismic events caused by rock cracking, which has been 
used in the field of rockburst monitoring for many years[69]. 
By placing sensors in different directions, microseismic 
waves emitted by rock fractures can be monitored. Further 
analysis of microseismic waves can obtain the location, time, 
intensity, and type of rock fracture [12]. Therefore, rockburst 
hazards can be predicted according to microseismic moni-
toring information. At present, microseismic monitoring has 
become one of the common technical means in deep hard 
rock mines [33]. Mendecki et al. [34] pointed out that seismic 
quantitative analysis becomes a crucial part of the safety of 
gold mining in South Africa. In 1990, AngloGold Mining 
Company of South Africa invented a system named “robot” 
to quantify earthquake disasters which were improved into 
the later Routine Rating of Seismic Hazard (RRoSH). After 
that, this system was widely developed in more than a dozen 
gold mines in South Africa. In 1997, Poplawski [40] applied 
an approach called “departure indexing” to predict rockburst 
hazards. Becka and Brady [4] proposed a “cell evaluation” 
approach based on numerical simulation and analysis to 
conduct a quantitative analysis of earthquake risk. Trifu and 
Suorineni [46] applied a microseismic monitoring system in 
the field of rockburst prediction; Li et al. [24] used microseis-
mic monitoring techniques for rockburst hazard assessment 
in underground engineering. Andrzej and Zbigniew [2] sug-
gested that the characteristics associated with microseismic 
events could be the basis for rockburst risk assessment and 
used this to conduct a risk assessment of the Zabrze-Bielszo-
wice coal mine in Poland. However, the traditional method 
which was used to judge MS monitoring information depends 
on the manual implementation, and it is difficult to achieve 
sufficient speed and accuracy.

In recent years, there has been an increased focus on AI 
technology in the field of geotechnology [8, 18, 70, 43, 48, 
57, 58, 63–67]. Especially in the field of rockburst predic-
tion, a variety of rockburst prediction techniques have been 
developed based on different machine learning methods. 
Zhou and Gu [56] proposed a geographic information sys-
tem based on the artificial neural network (ANN) to evaluate 
rockburst propensity. Su et al. [45] and Zhou et al. [59] used 
the K-nearest neighbor algorithm (KNN) to predict rockburst 
and achieved good results. Adoko et al. [1] attempted to 
combine an ANN with a fuzzy inference system to analyze 
174 rockburst events to predict rockburst. The results show 
that the fuzzy inference system performs a crucial part in 
the estimation of rockburst intensity. Zhou et al. [57, 59] 
applied the SVM algorithm with different kernels to rock-
burst prediction and achieved good results. Besides classical 
machine learning models, other methods such as quadratic 
discriminant analysis (QDA) [59], Naive Bayes (NB) [59], 
and Bayesian network [25] have achieved good results in 

rockburst prediction. Compared with traditional methods 
that rely on manual judgment and processing of informa-
tion, these emerging prediction models using artificial intel-
ligence technology can effectively reduce errors caused by 
human factors and process large volumes of data that are 
difficult to be processed by traditional methods more quickly 
and effectively. More importantly, the model established by 
using AI technology can perform better in solving the prob-
lem of complex and fuzzy relationships among the charac-
teristic values of datasets [22].

Although there are many scholars who have done research 
on different rockburst prediction methods [62], few scholars 
consider ensemble learning to analyze the monitored MS 
data and provide real-time and effective rockburst hazard 
warning for underground engineering.

Support vector machines (SVM) are gaining attention as 
a well-performing machine learning model in geotechnical 
engineering as well as in construction engineering [13, 71]. 
SVM has an uncomplicated structure and fewer controllable 
variables, and the difficulty of the calculation has nothing to 
do with the spatial dimension of the sample. Therefore, com-
pared with an ANN, SVM is based on a more solid theoretical 
foundation and can better deal with nonlinear, high-dimen-
sional, and small-sample problems [55]. Bi et al. [6] compared 
several types of machine learning models, such as KNN, RF, 
and SVM, for the classification of microseismic events, and 
the results showed that SVM has the most outstanding ability 
to recognize microseismic events. Pu et al. used the method of 
SVM to predict kimberlite rockbursts and achieved good pre-
diction performance [41], Zhou et al. proposed SVM hybrid 
models to classify and assess the long-term rockburst hazard 
of underground cavities, possessing a high prediction preci-
sion [57]. The aforementioned research has demonstrated that 
SVM has a fair level of robustness in predicting rockbursts; 
thus, this paper will employ the SVM method to categorize 
the different classes of rockburst hazards. In addition, the 
particle swarm optimization (PSO) algorithm is an algorithm 
that simulates the predatory behavior of birds to continuously 
search for optimal solutions. Compared with traditional algo-
rithms, on the one hand, PSO is easy to implement and has 
fewer adjustable parameters. On the other hand, it has a strong 
global search ability for nonlinear and multi-peak problems 
[32]. Therefore, it is widely used by researchers. Harris hawk 
optimization (HHO) algorithm [16] and moth flame optimi-
zation (MFO) algorithm [37] are optimized algorithms that 
simulate the process of Harris hawk predation and moth being 
attracted by flame respectively, both of which have the charac-
teristics of few adjustable parameters and fast convergence. It 
performs well even on higher dimensional and more complex 
problems. Based on these three optimization algorithms, three 
hybrid classification models, PSO-SVM, HHO-SVM, and 
MFO-SVM, are constructed for rockburst prediction using 
MS monitoring information.
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In this article, first, the background of the algorithm has 
been introduced. On this basis, the framework of the model 
is described. And then, a dataset containing 343 microseis-
mic monitoring samples from Dongguashan Copper Mine is 
established. After the previous preparatory work was com-
pleted, this paper developed a three-class hybrid model to 
predict the rockburst hazard level. Finally, the classification 
capabilities of the three hybrid models (PSO-SVM, HHO-
SVM, and MFO-SVM) are comprehensively compared by 
using multiple indicators, and the best hybrid classification 
model for rockburst prediction is obtained.

2 � Materials and Methods

2.1 � Support Vector Machines

Support vector machines (SVM) is a machine learning algo-
rithm of a binary model proposed by Vapnik [47]. It maps 
feature items corresponding to instances to a subset of points 
in space. Then, the points are classified by the hyperplane 
found in the model, to achieve the effect of classifying the 
input data, as shown in Fig. 1.

The support vector in SVM is a number of sample points 
scattered around the hyperplane. Margin is the sum of the 
distances between the support vectors distributed on each 
side of the hyperplane to the hyperplane, which can be indi-
cated by the following formula:

The larger the distance between support vectors, the eas-
ier it is to search for the most suitable hyperplane, that is, the 
value � should be minimized, to minimize the influence of 
sample local disturbance on the model and generate the most 
robust results. Depending on whether the training set data is 

(1)Margin =
2

‖�‖

linearly separable, the solution of the optimal classification 
hyperplane is also different.

By integrating constraints into the optimization objective 
function, the Lagrange formula [20, 28] is established, as 
shown in formula (2), where �i is the Lagrange coefficients 
and the same to�i.

For various divisions of the training set data, the SVM 
uses various planning strategies. For linear non-separa-
ble problems, a kernel function should be established 
firstly:K(xi, xj) = �(xi)�(xi) . To construct the optimal 
classification hyperplane, the input samples in the origi-
nal space need to be mapped into the high-dimensional 
feature space H using a nonlinear mapping � ∶ Rd

→ H 
[54]. The optimal decision formula is shown in formula 
(3) [64, 68]:

According to the problem of linear divisibility and linear 
indivisibility of SVM, it is not difficult to find that SVM is 
defined only for binary classification problems. If you want 
to solve the multi-classification problem, you need to make 
further improvements. At present, there are two main meth-
ods for constructing a multi-classification SVM model: direct 
method and indirect method. The direct method is to directly 
solve and calculate the multi-classification function suitable 
for the problem to be solved. The indirect method is to real-
ize multiple classifications by constructing and combining 
multiple SVM models. The commonly used methods are as 
follows: one-to-one method and one-to-many methods.

(2)

LP =
‖�‖2

2
+ C

l�

i=1

�i −

l�

i=1

�i[yi(�
Txi + b) − 1 + �i] −

l�

i=1

�i�i

(3)f (x) = sign[

l∑

i=1

yi�iK(xi, x) + b]

Fig. 1   Schematic diagram of 
SVM. a Classification principle 
in one-dimensional space for 
nonlinear classification prob-
lems. b Classification principles 
in multidimensional space for 
linear classification problems

(a) (b)



620	 Mining, Metallurgy & Exploration (2023) 40:617–635

1 3

In the SVM, a node represents a support vector, and the 
output is a linear combination of the intermediate nodes, as 
shown in Fig. 2. Kernel functions commonly used in SVM 
include the d-order polynomial kernel function, linear ker-
nel function, radial basis kernel function (RBF), and Sig-
moid kernel function with parameters k and θ. The RBF is 
used in this study. In RBF-SVM, different combinations of 
hyperparameters c and g play a crucial role in classification 
capability. Therefore, in order to obtain better classification 
performance, PSO, HHO, and MFO are used to optimize the 
hyperparameters c and g.

2.2 � Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm seeks opti-
mal solutions through mutual cooperation and informa-
tion sharing among individuals of a group [10], which is 
inspired by the predatory actions of birds. PSO has the 
advantages of few adjustable parameters and simple imple-
mentation and is widely used in image processing, function 
optimization, vehicle driving road optimization, and other 
fields [5, 9, 36, 27]. The system structure of the PSO is 
shown in Fig. 3. This algorithm first initializes a group of 
random particles, which have two properties of velocity vi 
and position xi . In each iteration, the particles will update 
themselves according to two “extreme values” p and g, and 
the formula is as follows:

where xi(t) represents the position and vi(t) represents a 
velocity of the tth iteration; pi(t) represents the historical 
best location where the ith particle is found; pg(t) is the his-
torical sweet spot where all particles have been found; c1 and 
c2 represent learning factors, and both of them are 2; r1 and 
r2 represent random numbers between [0,1].

2.3 � Harris Hawk Optimization

Harris hawk optimization (HHO) algorithm was proposed by 
Heidari et al. [16] taking inspiration from simulated Harris 
hawk predation. HHO has a great global search ability and 
few adjustment parameters. The process of HHO is mainly 
composed of three parts: the search stage, the search and 
development transformation stage, and the development stage.

(a)	 In the search stage, the location of the Harris hawk is 
randomly selected, and the prey is searched through 
two strategies, as shown in Eqs. (6) and (7).

(4)vi(t + 1) = vi(t) + c1r1[pi(t) − xi(t)] + c2r2[pg(t) − xi(t)]

(5)xi(t + 1) = vi(t + 1) + xi(t)

(6)

X(t + 1) =

{
Xrand(t) − r1

||Xrand(t) − 2r2 X(t)|, q ≥ 0.5[
Xp(t) − Xm(t)

]
− r3

[
lb + r4(ub − lb)

]
, q < 0.5

Fig. 2   The structure of support 
vector machines
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where X(t) represents the individual current position, 
while X(t + 1) represents the next iteration position, 
and t represents iteration times. Xrand(t) is a random 
position of an individual; Xp(t) represents the location 
of prey and also represents the location of the individ-
ual with the optimal fitness; r1, r2, r3, r4, q are random 
numbers ranging from 0 to 1, where q represents the 
strategy chosen. Xm(t) represents the average position 
of individuals, Xk(t) represents the location of the kth 
individual in the swarm; M represents the swarm size.

(b)	 Transformation of search and development. HHO algo-
rithm will convert between search and development 
according to the escape energy of prey, which can be 
expressed in Eq. (8):

where E0 represents the escape energy of prey, t rep-
resents the number of current iterations, and T repre-
sents the maximum number of iterations. When |E| ≥ 1 , 
HHO enters the search stage or enters the development 
stage.

(c)	 The development stage. Depending on the circum-
stance, HHO will now select between a light siege and 
a severe siege to approach the optimal result.

In HHO, compared with the update of the fitness of 
individual fitness and prey location. If the individual fit-
ness value is superior to the prey position fitness, the prey 
location will be replaced by a new and better individual 
position. The process will stop when HHO reaches a set 
number of iterations.

(7)Xm(t) =

M∑

k=1

Xk(t)∕M

(8)E = 2E0(1 −
t

T
)

2.4 � Moth Flame Optimization

Seyedali Mirjalili proposed the moth flame optimization 
(MFO) in 2015 [37] which was inspired by the character-
istics of moths spiraling close to an artificial light source 
in the night environment, as shown in Fig. 4. MFO has 
strong parallel optimization ability, global optimization, 
and characteristic ability[69, 50].

In MFO, the moth is represented by m. Considering 
the moth as the solution to the problem, then the posi-
tion of the moth in space is the unknown parameter of the 
required solution. Thus, the moth can be made to fly in 
various spatial dimensions by changing its position vector. 
The flame that corresponds to each moth in MFO is the 
only flame that the moth will fly around. The following 
equation can reflect the change in moth location needed to 
quantitatively model how moths react to flames:

Fig. 3   The architecture of parti-
cle swarm optimization

Fig. 4   Principles of moth fire suppression algorithm
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Among them, Mi is the ith moth; S is the spiral function; 
Fj represents the jth flame; Di = |Fj −Mi| is the distance of 
the ith moth to the jth flame; b is the defined logarithmic spi-
ral shape constant, t takes a random value between − 1 and 1 
which represents the path coefficient.

As shown in Fig. 5, the position of the flame influences the 
update of the moth’s position. The different values of t repre-
sent the different positions of the moths from the flame. In the 
continuous iterations, the moth updates the position based on 
the fitness value of the current location and the fitness value 
of the corresponding sequence of flames, as shown in Fig. 6, 
and then more accurately approaches the flames in their cor-
responding sequence.

Since each position update of each moth will search all dif-
ferent positions, the local search capability of MFO becomes 
weaker. A control mechanism for the number of flames as 
shown in Eq. (10) solves this problem well:

Among them, N represents the maximum quantity of flames; 
l represents the present number of iterations; T represents the 
maximum quantity of iterations. According to the formula, due 
to the reduction of flames, the moths will change their position 
parameters according to the flame adaptation value.

(9)Mi = S(Mi,Fj) = Di ⋅ e
bt
⋅ cos(2�t) + Fj

(10)flame.no = round(N − l ∗
N − 1

T
)

3 � Data Collection

3.1 � Data Sources

This study is based on microseismic monitoring data from 
the Dongguashan Copper Mine in Tongling City, Anhui 
Province, China. Dongguashan Copper Mine, formerly 
known as Shizishan Copper Mine, is located 7.5 km east 
of Tongling City and is an extra-large high-sulfur copper 
deposit, as shown in Fig. 7. The elevation of the main ore 
body in the mining area is − 680 ~  − 1000 m; the horizon-
tal strike is 1810 m; the maximum width is 882 m, while 
the minimum width is 204 m; the average thickness of the 
middle section is 40 m. The ore body is layered, and its 
occurrence is basically the same as that of the surrounding 
rock. It is a gently inclined layered ore body. The ore body 
as a whole has the characteristics of wide distribution in the 
plane, but shallow distribution in the vertical direction. The 
internal structure of the mine is simple and uncomplicated, 
joints and fissures are not developed, and the rock mass is 
high in hardness.

The stress and deformation state of rock mass and its 
change characteristics caused by mining activities are an 
important factor that causes ground pressure activities. 

Fig. 5   Logarithmic spiral and the space around the flame

Fig. 6   Moth flame distribution diagram
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The Dongguashan Copper Mine contains a variety of lith-
ologic rock formations, the mining area is large, and the 
structural distribution of the stope and the mining area is 
intricate, resulting in a complex spatial distribution of rock 
masses prone to rockbursts [11, 49]. A schematic diagram 
of the stope distribution of Dongguashan Copper Mine is 
shown in Fig. 8, and it is also the main monitoring area of 
the microseismic monitoring system.

A schematic diagram of the network layout of the 
microseismic monitoring system used at the Dongguashan 
Copper Mine is shown in Fig. 7. The microseismic moni-
toring system installed in Dongguashan Copper Mine has 
a total of 7 sensors buried, one of which is a three-com-
ponent sensor. The specific arrangement of the sensor is 
shown in Table 1.

The database used in this paper contains 343 sets of 
microseismic monitoring data, including the angular fre-
quency ratio (AFR), which indicates the vibration frequency; 

the total energy (TE) released by microseismic in rock mass; 
the apparent stress (AS), which measures the stress release 
at the source; the concave and concave and convex radius 
(CCR), which reflects the variation of geological plate char-
acteristics; the energy ratio (ER) of P-wave to S-wave; and 
the moment magnitude (MM), which visually indicates the 
magnitude of the earthquake, as shown in Table 2.

3.2 � Rockburst Hazard Index

The monitoring status of the data used in this study includes 
a large number of parameters such as magnitude, energy, 
angular frequency, apparent stress, and convexity radius. 
Among these, a large number of fields are not strongly cor-
related with rockburst hazard, so the variables closely related 
to rockburst hazard need to be screened out. Table 3 gives a 
brief overview of the microseismic evaluation indicators of 
mining engineering.

Fig. 7   The location of the Dongguashan Copper Mine
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In the microseismic monitoring of mines, the angular fre-
quency reflects the vibration of the rock mass. Based on the 
angular frequency ratio of P-wave and S-wave, the internal 
vibration of the rock mass can be judged. For microseis-
mic events, the release of microseismic energy is related 
to the internal fracture mode and speed of rock mass, and 
the energy radiation of the P-wave and S-wave is also dif-
ferent. In this study, the sum of the energy values of P- and 
S-waves can reflect the energy released by the occurring 
microseismic events. The radius of the asperity is a kind of 
geological plate feature, and the occurrence of earthquakes 
is related to the rupture of the asperity [31]. The apparent 
stress is generally expressed as the ratio of the microseismic 

release energy to the microseismic body change potential. In 
addition, volumetric potential magnitude [35] and moment 
magnitude [14] are also intuitive indicators for evaluating 
microseismic events.

With microseismic monitoring at the Dongguashan 
copper mine, researchers are able to quickly identify 
anomalous microseismic conditions and notify site staff 
to observe the actual site conditions and provide feed-
back. To avoid the ambiguity of visual description, the 
staff usually classify the site conditions roughly based 
on empirical formulae and combine the microseismic 
monitoring anomaly data with the actual site conditions. 
In mine microseismic monitoring, four types of micro-
seismic characteristic parameters including angular fre-
quency ratio (AFO), total energy (TE), apparent stress 
(AS), and concave and convex radius (CCR) were taken 
into consideration to preliminarily calculate rockburst 
hazard composite index [19] and then classify the RHL 
to quantify the rockburst hazard. The empirical formula 
to discriminate RHL steps is as follows:

(1)	 First, the rockburst hazard index of a single parameter 
should be determined. The premise of calculating the 
comprehensive index of rockburst hazard is to deter-
mine the rockburst hazard index of a single microseis-
mic characteristic parameter Wi(t) . The calculation 
method is as follows:

Fig. 8   Schematic diagram of 
Dongguashan microseismic 
monitoring system network 
layout

Table 1   Location of microseismic monitoring sensors in Dong-
guashan Copper Mine

Sensor’s 
number

Component X Y Z

R790_1 Three components 4056.700 2081.200  − 787.600
R790_2 Single component 3946.200 2227.600  − 789.600
R790_3 Single component 3939.000 2097.600  − 780.200
R730_1 Single component 4031.100 2043.600  − 726.800
R730_2 Single component 4079.200 2109.500  − 725.000
R730_3 Single component 4114.200 2196.400  − 712.300
R730_4 Single component 3984.800 2119.600  − 726.600
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(11)Wn(t) =
||A(t)| − A0|
Amax − A0

where A(t) represents the amplitude of a certain type 
of characteristic parameter at time t; A0 is the mean 
of the amplitude monitored under normal conditions; 
Amax represents the maximum value of microseismic 
characteristic parameters monitored.

Table 2   Microseismic 
monitoring data

No Angular fre-
quency ratio

Total energy Apparent stress Concave and 
convex radius

Energy ratio Moment 
magni-
tude

1 1.23 2.73E − 03 4.79 2.94 1.1  − 1.18
2 1.13 4.61E − 03 3.14 2.08 1.29  − 0.9
3 0.92 1.25E − 03 1.86 1.37 2.41  − 1.13
4 0.95 1.29E − 03 1.71 1.16 0.88  − 1.1
5 0.77 1.09E − 03 0.92 1.15 4.37  − 0.97
6 0.68 4.21E − 03 4.25 0.85 2.01  − 1.02
7 0.91 2.97E − 03 2.86 2.77 1.52  − 1
8 1.06 4.02E − 03 6.41 1.60 1.98  − 1.15
9 0.43 2.39E − 03 3.88 0.88 2.94  − 1.16
10 1.18 4.35E − 03 10.21 2.25 0.88  − 1.26
11 1.39 3.04E − 03 3.18 2.67 0.97  − 1.03
12 0.91 1.60E − 03 2.65 1.35 1.6  − 1.16
13 0.8 1.28E − 03 1.42 1.99 1.44  − 1.04
14 0.52 1.01E − 03 1.97 1.99 1.17  − 1.21
15 1.2 1.78E − 03 2.43 2.66 2  − 1.1
16 1.9 1.19E − 03 0.62 2.29 1.25  − 0.82
17 1.11 2.43E − 03 4.57 1.39 0.98  − 1.2
18 1.26 5.01E − 03 12.47 1.28 1.71  − 1.28
19 0.59 4.91E − 03 1.02 1.36 1.45  − 0.56
… … … … . … …
343 0.55 8.69E − 04 8.94 0.43 1.84  − 1.07

Table 3   Common indicators of microseismic in mine engineering

Parameters Symbol Unit Instructions

Radiated seismic energy Es [J] The energy generated by the source is released partly in the form of radiated seismic waves or partly 
in the form of work done

Seismic moment Ms [Nm] The seismic moment is a scalar used to measure the seismic inelastic deformation of the source
Seismic potency P [m3] Seismic potential is used to measure the strain variation of the source body
Apparent stress �a [Pa] �a =

E∕
P

Apparent volume Va [m3] Va =
�P2

∕2E , where μ is rock mass stiffness (shear modulus)
Energy index EI The energy released by a given seismic event over the average energy at the same seismic moment is 

the energy index
Magnitude m Magnitude is widely used to describe the magnitude of seismic events in the international mining 

field. The following four are common magnitude scales
Richter magnitude mR m

R
= 2

/
3 logE − 3.2

Moment magnitude mM m
M
= 2

/
3 logM − 6.06

Local magnitude mL m
L
= �logE + �logM + � , where �, � and � are constants

Potency magnitude mP [m3] m
P
= logP

Asperity model Asperity is the name for a geological plate whose rupture can cause earthquakes
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(2)	 The weighting factor Pn(t) is usually determined manu-
ally by the staff based on the site damage. After deter-
mining the weight factor Pn(t) of a single index, accord-
ing to the rockburst hazard index Wn(t) of each index, 
the comprehensive rockburst hazard index Wz(t) can be 
obtained by referring to Eq. (12).

According to the comprehensive rockburst hazard 
index, rockburst is divided into four hazard levels, and 
the corresponding RHL at each moment are evaluated. 
The classification of weight factors and rockburst hazard 
grades is shown in Table 4.

This method relies on the personal experience of the 
staff to roughly discriminate the RHL by empirical for-
mulae, which has many drawbacks. Firstly, this approach 
relies heavily on the personal work experience and sub-
jectivity of the staff and may be biased due to the dif-
ferent experiences of the observers (the data obtained in 
this paper were obtained from experienced staff and veri-
fied by microseismic monitoring researchers). Secondly, 
for some hazardous areas, which is hard for the staff to 
check them, it is difficult to assess the damage situation 
at the site. Based on the above-mentioned drawbacks of 
the empirical formula, this paper is aimed at developing 
a new machine-learning model to achieve the prediction 
of RHL and reduce the influence of human subjectivity 
and environmental limitations. In this study, the influ-
ence of energy ratio (ER) and moment magnitude (MM) 
on rockburst is also considered in addition to the four 
types of characteristic parameters included in the empiri-
cal formula.

Correlations, graphs, scatterplots, and histograms 
obtained from the analysis of rockburst data are shown 
by the GGally function [42] in Fig. 9a. And Pearson 
correlation coefficients of various characteristic param-
eters in different RHLs are illustrated in Fig. 9b. Based 
on the above, the input variables are angular frequency 

(12)Wz(t) =

R∑

n=1

Wn(t)Pn(t)

ratio (AFR), total energy (TE), apparent stress (AS), 
concave and convex radius (CCR), energy ratio (ER), 
and moment magnitude (MM), and the output variable 
is RHL, from which the three hybrid classification mod-
els (PSO-SVM, HHO-SVM, and MFO-SVM) are trained 
and tested. The whole process is implemented for this 
study in Fig. 10.

In addition, it can be seen from the description of 
the parameter distributions of the training and test sets 
in Fig. 11 that they are almost identical for each class 
of parameters. Therefore, the credibility of the model is 
guaranteed.

3.3 � Evaluation Indicators of the Models

To evaluate the performance of PSO-SVM, HHO-SVM, 
and MFO-SVM models, this study adopted four kinds 
of evaluation indicators, namely, accuracy (ACC), pre-
cision (PRE), kappa coefficient, and confusion matrix 
[60, 61, 70] as shown in Fig. 10. ACC is the proportion 
of samples where the predicted value matches the true 
value of all samples. In the classification process, the 
class concerned is usually positive and the other classes 
are negative, and the classifier is correct or incorrect in 
the prediction of the dataset. Therefore, there are four 
situations as follows: TP (true positive), FP (false posi-
tive), TN (true negative), and TP (true positive). PRE is 
the true percentage of the sample that is predicted to be 
positive. In the evaluation of multi-class problems, the 
precision is calculated separately for each label, and the 
unweighted average is taken. The kappa coefficient plays 
a role in statistics to evaluate consistency. In practical 
application, the general range is [0,1]. The magnitude of 
the coefficient is positively related to the classification 
accuracy of the model. The calculation methods and prin-
ciples of ACC, PRE, and kappa coefficients are shown in 
Fig. 12, where, P0 represents the accuracy of prediction, 
Pe represents accidental consistency:Pe =

∑n

i=1
ai+∗a+j

N2
 , aij is 

the sample with actual i and predicted j; N is the whole 
quantity of samples, and n represents the number of cat-
egories;ai+ =

∑
j aij;a+j =

∑
i aij.

Table 4   Evaluation table of weight factor and rockburst hazard composite index

Criterion of W
n
(t) Weighting factor Criterion of W

z
(t) Rockburst hazard com-

posite index
Rockburst hazard level

0 ≤ W
n
(t) < 0.25 Depends on site conditions 0 ≤ W

z
(t) < 0.25 0.125 1 (none)

0.25 ≤ W
n
(t) < 0.50 0.25 ≤ W

z
(t) < 0.50 0.375 2 (light)

0.50 ≤ W
n
(t) < 0.75 0.50 ≤ W

z
(t) < 0.75 0.625 3 (medium)

0.75 ≤ W
n
(t) 0.75 ≤ W

z
(t) 0.875 4 (hard)
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Fig. 9   Correlation analysis of 
rockburst eigenvalues. a Cor-
relation plot of rockburst char-
acteristic quantities. Different 
colors represent different RHL. 
b Pearson correlation coeffi-
cients of various characteristic 
parameters in different RHL

(a) Correlation plot of rockburst characteristic quantities. Different colors represent different RHL

(b) Pearson correlation coefficients of various characteristic parameters in different RHL
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4 � Results and Discussion

To optimize the target machine learning algorithm, PSO, 
HHO, and MFO are introduced to determine its internal opti-
mal parameters. In this section, the classification capability 
of PSO-SVM, HHO-SVM, and MFO-SVM models are sys-
tematically compared and analyzed as a single SVM model.

The input dataset consists of a training set and a test set, 
usually in the ratio of 70:30 [26, 39], 75:25 [52], or 80:20 
[17, 29]. In this paper, the dataset obtained from microseis-
mic monitoring is divided into a training set and a test set 
in the ratio of 80:20 to prove the reliability of the model. 
Divided in this way, the training set contained 274 sample 
data, while the test set contained 69 sample data.

In summary, different values of the two hyperparameters 
(c and g) included in the SVM can have a marked effect on 
the classification capacity of the model. To obtain better 
classification results when predicting RHL, three optimiza-
tion algorithms (PSO, HHO, and MFO) are applied to search 
for the best combination of hyperparameters for the SVM. 
To avoid the randomness of dividing the dataset, six kinds 
of population scales (10, 20, 50, 100, 150, and 200) are set 
in each classification model, corresponding to the number 
of particle populations in PSO-SVM, the number of Harris 
hawk in HHO-SVM, and the number of moths in MFO-
SVM, respectively.

4.1 � Parameter Setting

Some parameters need to be set in PSO-SVM, HHO-SVM, and 
MFO-SVM, such as some parameters in the three optimization 

Fig. 10   Complete analysis flow of PSO-SVM, HHO-SVM, and MFO-SVM

AFR ER TE MM AS CCR
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2
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4
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e

Fig. 11   Distribution of the training and test sets of the hybrid models
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Fig. 12   Definition and calcula-
tion formula of each evaluation 
index. a Definition and calcula-
tion formula of three types of 
evaluation indicators. b The 
illustration of the RHL confu-
sion matrix. c The dichotomiza-
tion of RHL multi-classification 
problems

Yes(N) No(N)

Yes(N) TP1 FN1

No(N) FP1 TN1

True
Predicted

Yes(L) No(L)

Yes(L) TP2 FN2

No(L) FP2 TN2

True
Predicted

Yes(M) No(M)

Yes(M) TP3 FN3

No(M) FP3 TN3

True
Predicted Yes(H) No(H)

Yes(H) TP4 FN4

No(H) FP4 TN4

True
Predicted

(1) (2)

(3) (4)

(c) The dichotomization of RHL multi-classification problems

Fig. 12   (continued)
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algorithms (PSO, HHO, and MFO). These parameters affect 
the classification ability and running speed of the model. Some 
parameter settings of these three hybrid models are the same, 
including the region where c and g are taken, the number of iter-
ations, and the division ratio of the training set and test set. In the 
range of values of the hyperparameters c and g, the optimization 

algorithm will search for a more reasonable parameter com-
bination in the algorithm space. The number of iterations will 
affect the optimization result after the optimization process. The 
segmentation ratio of the training set and testing set affects the 
reliability and classification ability of the whole model to some 
extent. In this article, parameters in PSO-SVM, HHO-SVM, and 
MFO-SVM are compared and analyzed, and the final screening 
parameters are shown in Table 5.

4.2 � Discussion and Analysis

In this section, the combined capabilities of PSO-SVM, 
HHO-SVM, and MFO-SVM are compared and analyzed. 
In this study, the three indexes PRE, ACC, and kappa coef-
ficient in the above equation are used to evaluate the three 
hybrid classification models (PSO-SVM, HHO-SVM, and 
MFO-SVM). In addition, all models adopt the same training 
set and test set.

To compare the comprehensive performance of the hybrid 
models, this paper adopts the method of scoring each eval-
uation index and finally takes the total score to make the 
comparison. Therefore, the combined capacity of different 
models in different populations was ranked during the test-
ing phase. The results of relevant rankings can be seen in 
Fig. 13.

Table 5   The setting of parameters in three hybrid models

Method Parameters Dataset

SVM Bound for c [0.1, 20]
Bound for g [0.1, 20]

PSO Minimum inertial weight 0.2
Maximum inertia weight 0.9
Self-learning factor 2
Group learning factor 2
Number of the variables 2
Iteration 100
Population size 10, 20, 50, 100, 150, 200

HHO Number of the variables 2
Iteration 100
Population size 10, 20, 50, 100, 150, 200

MFO Number of the variables 2
Iteration 100
Population size 10, 20, 50, 100, 150, 200

Fig. 13   Comprehensive ranking 
comparison of RHL predic-
tion models. a PSO-SVM, b 
HHO-SVM, c MFO-SVM, and 
d Hybrid models

(a)PSO SVM (b)HHO-SVM

(c)MFO-SVM (d)Hybrid models
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Based on the results in Fig. 13a, PSO-SVM models of dif-
ferent populations all reached a stable state at 100 iterations. 
To determine the optimal population size, after the comple-
tion of PSO-SVM model training, the prediction capacity 
of the model is comprehensively analyzed. From Fig. 13a, 
it can be clearly visualized that the optimal population for 
the PSO-SVM model is 50 (PRE = 0.8198, kappa = 0.8477, 
ACC = 0.9265).

For the HHO-SVM model, parameters are set as pre-
sented in Table 6. It should be noted that HHO differs from 
PSO in that it does not need to set too many parameters, 
while other training and test conditions are the same as PSO-
SVM. Figure 13b shows the fitness changes in six differ-
ent populations. Finally, according to the combined score 
in Fig. 11, the HHO-SVM model has the best classification 
ability when the population is 200, and thus, the optimal 
combination of parameters is obtained, as shown in Fig. 13b. 
(PRE = 0.8660, kappa = 0.8461, ACC = 0.9265).

In the process of establishing MFO-SVM, parameters 
are also set according to Table 6. Similar to HHO, MFO 
does not need to set specific parameters, and its training 
and test conditions are set the same as PSO-SVM and 
HHO-SVM. Finally, the comprehensive performance of 
the MFO-SVM model is evaluated. As shown in Fig. 13c, 
the optimal parameter combination and model perfor-
mance of MFO-SVM is achieved when the population is 
50 (PRE = 0.9063, kappa = 0.9094, ACC = 0.9559).

In order to further study the classification and predic-
tion ability of different models for RHL, the PSO-SVM 
model with a population of 50, the HHO-SVM model 
with a population of 200, and the MFO-SVM model with 
a population of 50, which performed better among the three 
hybrid models, are further evaluated for comprehensive 
performance. As shown in Fig. 13d, among the three kinds 
of hybrid models, the MFO-SVM model with a popula-
tion of 50 demonstrates greater ability in predicting RHL 
compared to other models, while the performance of PSO-
SVM and HHO-SVM is slightly inferior to that of MFO-
SVM, and there is no significant difference between them. 
However, in comparison with the SVM model that has not 

been optimized, as presented in Table 6, the prediction 
capacity of the three hybrid models has been significantly 
improved, which confirms that the optimization algorithm 
is effective in improving the rockburst prediction ability of 
the model (Fig. 14).

When evaluating the results, the confusion matrix serves 
to demonstrate the agreement between the predicted and 
actual values of the model [44, 59–61]. The numbers on 
the diagonal line from the top left to the bottom right of 
the confusion matrix indicate the number of samples whose 
predicted values agree with the actual values, while the other 
positions present the number of samples where the predicted 
value does not match the actual value. According to the opti-
mal population number and corresponding parameters of 
the three hybrid classification models, the confusion matrix 
of the three hybrid classification models can be obtained. 
As shown in Fig. 15, among the three hybrid models, the 
data dispersion degree of MFO-SVM is the smallest, while 
the performance of PSO-SVM and HHO-SVM is slightly 
inferior to that of MFO-SVM, but they also have good clas-
sification prediction ability.

In conclusion, among the three kinds of hybrid classifi-
cation models based on the test set, the MFO-SVM model 
with a population of 50 has an outstanding performance 
in RHL prediction, while the performance of PSO-SVM 
and HHO-SVM is slightly inferior to that of MFO-SVM. 
However, the performances of the three hybrid models 
have improved significantly compared to the unoptimized 
SVM model.

5 � Conclusions

Rockburst is a common disaster in deep hard rock mines 
and tunnel engineering, which is potentially dangerous to 
personnel and equipment. This paper studied the high-
precision prediction of RHL by SVM classification tech-
nology, which is vital for rockburst hazards prevention and 
control in mines as well as tunneling projects.

Table 6   The classification performance of four classification models on the test set

Model PRE Rank Kappa Rank ACC​ Rank Total

PSO-SVM (swarm = 50) 0.8198 2 0.8477 3 0.9265 2 7
HHO-SVM (swarm = 200) 0.8660 3 0.8461 2 0.9265 2 7
MFO-SVM (swarm = 50) 0.9063 4 0.9094 4 0.9559 3 11
SVM 0.6650 1 0.5498 1 0.7642 1 3



632	 Mining, Metallurgy & Exploration (2023) 40:617–635

1 3

The parameters of the model in this paper contain the 
total energy, apparent stress, moment magnitude, and other 
variables in microseismic monitoring. Machine learning 
can better clarify the relationship between multiple highly 
nonlinear variables compared to the traditional rockburst 
prediction methods, which are mostly based on microseis-
mic monitoring.

Based on the SVM model, three optimization strategies 
are combined to select the best combination of hyperpa-
rameters for the model. After the optimization of PSO, 
HHO, and MFO algorithms, the three kinds of mixed 
classification models (PSO-SVM, HHO-SVM, and MFO-
SVM), and SVM models were comprehensively evaluated, 
and thus, the optimal combination of hyperparameters 
and the model with the best classification capacity were 
obtained.

Experimental results showed that the MFO-SVM per-
forms best among the three hybrid classification models 
proposed in this article with the same dataset with the 
highest ACC and PRE (ACC = 0.9559, PRE = 0.9063) 
and is more suitable for rockburst prediction using micro-
seismic information. After the improvement of the three 
optimization algorithms, the prediction performance of 
SVM models was significantly improved, and the kappa 
coefficients of PSO-SVM, HHO-SVM, and MFO-SVM 
prediction models reached 0.8477, 0.8461, and 0.9094, 
respectively. Given the complex relationship between each 
input variable and the rockburst hazard, these results are 
highly satisfactory.

The results showed that the three optimization methods 
have different optimization effects on the prediction capacity 
of the SVM model. A comparison shows that MFO-SVM 
has the optimal comprehensive prediction performance, 
which can be applied to the prediction of rockburst hazards 
based on microseismic information. The limitation of rock-
burst prediction using the SVM method in this paper is the 
limited sample size of the dataset, with only 343 microseis-
mic monitoring samples in total. On the other hand, there 
may be other characteristic parameters that are not covered 
in this study that affect the RHL. Therefore, with the con-
tinuous expansion of the sample data and more associated 
characteristic parameters being considered in the model, the 
prediction capacity of the hybrid classification model will 
be further improved.

(a)PSO-SVM 

(b)HHO-SVM

(c)MFO-SVM

Fig. 14   Optimizing SVM models with PSO, HHO, and MFO of dif-
ferent population values based on the training set. a PSO-SVM, b 
HHO-SVM, and c MFO-SVM

▸
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