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Abstract
Ground vibration is one of the major hazards produced by rock-blasting operation. The accurate prediction of vibration 
is necessary for designing controlled blasting parameters. The existing vibration predictors consider maximum explosive 
charge weight per delay and distance as the parameters responsible for ground vibration. These predictors are based on the 
assumption that the geometrical parameters of the blast will be constant for a site. However, the mining sites with bigger 
production targets have varying geometrical parameters to suit the excavator utility. Accordingly, the other blast design 
parameters will also have an impact on ground vibration intensity. A principal component analysis is a dimension reduction 
technique. This technique along with multivariate logarithmic regression has been used in this paper to predict the ground 
vibration. The technique has classified the blast design parameters into four principal components. The regression with the 
scores from these principal components has been carried out. The evaluation of the model performance of predictors along 
with the existing empirical predictors has been carried out using R2 and RMSE values. The evaluation suggests that the 
predictor with logarithmic regression followed by principal component analysis gives better performance with respect to 
the existing empirical predictors.
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1 Introduction

Drilling- and blasting-based rock excavation technique is 
dominantly used in mining and civil construction excava-
tions. This technique comes with many safety and envi-
ronmental hazards. The major hazards due to blasting are 
ground vibration, flyrock, air overpressure, noise, dust, etc. 

The minimization of these hazards is necessary from both 
safety and productivity perspectives. The higher magnitude 
of blast-induced hazard can cause improper utilization of 
explosive energy. It has been reported by various research-
ers that the maximum utility of explosive energy for rock 
breakage is in the range of 20–30%. The remaining energy 
gets devastated in the form of different hazards [6, 8, 29, 36].

The ground vibration from blasting is a major environ-
mental hazard, which may cause stability threats to the 
nearby structures and nuisance to the habitants. The inten-
sity of ground vibration at a location is measured by peak 
particle velocity (PPV) and associated frequency. PPV has 
impacts on controllable blast design parameters and some 
uncontrollable parameters. The rock mass parameters, geo-
logical parameters, presence of discontinuities, etc. are 
considered uncontrollable parameters influencing PPV. 
Researchers around the globe have made attempts using 
different techniques to assess the impact of these control-
lable and uncontrollable parameters on PPV. The empirical 
predictor models such as USBM predictors [11], Ambra-
seys and Hendron [3] model, Langefors and Kihlstrom [27] 
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model, Ghosh and Daemen [12] model, Pal Roy [35] model, 
etc. have been developed over the years. The empirical mod-
els determine site constants for the experimental blast faces. 
These site constants are specific to the site and are dependent 
on the vibration propagating media. Himanshu et al. [20] 
developed a multivariate empirical predictor for a coal min-
ing site. The predictor consisted of other parameters such as 
hole diameter, number of blast holes, total explosive charge, 
and distance. Roy et al. [38] have investigated the impact of 
the total explosive charge on PPV. The scaled distance up 
to which there is a dependency of total explosive charge on 
PPV has been given in this study. Khandelwal and Singh 
[24] considered hole geometry including its diameter and 
depth along with burden, spacing, bench height, stemming 
length, total charge, powder factor, etc. as the parameters 
influencing PPV. Ainalis et al. [2] also considered free face, 
confinement, coupling of explosive, decking, and charge 
length as the parameters influencing PPV.

Various researchers have used statistical algorithms 
such as neural network, genetic algorithms, colony opti-
misation algorithm, random decision tree, particle swarm 
optimisation, and support vector machine for the assess-
ment of parameters influencing PPV [1, 13, 17, 25, 31, 41, 
42, 44, 46]. These statistical algorithms predict PPV on 
the basis of analysis of data for the trial blasts conducted 
at the site. The summary of statistical algorithms used for 

the prediction of PPV and air overpressure (AOp) is given 
in Table 1. Rezaeineshat et al. [37] predicted PPV using 
artificial neural network. The authors found that ‘maxi-
mum explosive charge weight per delay (MCPD)’ and ‘dis-
tance of the blast face from vibration monitoring point 
(D)’ are most influencing parameters and burden, spacing, 
and rock quality designation are least influencing param-
eter for PPV. Nguyen et al. [34] using different machine 
learning algorithms found that the elevation between blast 
site and vibration monitoring station is another important 
parameter influencing PPV along with charging param-
eters and distance. Additionally, researchers have also used 
the numerical simulation–based approach for prediction 
of PPV and damages from the blasting operation [2, 18, 
19, 21, 26, 28].

Principal component analysis–based classification and 
logarithmic regression technique has been used in this 
paper for the prediction of blast-induced ground vibra-
tion. The technique consists of representing data in a lower 
dimensional space. The technique is useful in identify-
ing the linked parameters. The most and least influencing 
parameters have also been identified using this technique. 
Researchers, viz., Dehgani and Ataee-Pour [10], Zhongya 
and Xiaoguang [45], and Shida et al. [39], have used PCA-
based and other dimension reduction techniques for the 
prediction of blast-induced ground vibration.

Table 1  Summary of statistical algorithms for prediction of PPV and AOp

ANN, artificial neural network; KNN, K nearest neighbor; ANFIS, adaptive neuro fuzzy inference system; GA-ANN, genetic algorithm-artifi-
cial neural network; FA-ANN, firefly algorithm-artificial neural network; ICA-ANN, imperialist competitive algorithm-artificial neural network; 
PSO, particle swarm optimization; PNN, probabilistic neural network; GMDH, group method of data handling; RF, random forest; HKM, hier-
archical k-means clustering; ABC, artificial bee colony; PPV, peak particle velocity; AOp, air over pressure; Q, maximum explosive charge per 
delay; D, distance of blast face from monitoring point; HD, horizontal distance; RD, radial distance; MRD, modified radial distance; B, burden; 
S, spacing; SL, stemming length; P, P wave velocity; E, Youngs’ modulus of elasticity; SGD, subgrade drilling; RQD, rock quality designation; 
PF, powder factor; N, number of holes; BI, blastability index; Pr, Poisson’s ratio; Vod, velocity of detonation of explosive

Study Technique Input Output Total data used R2

Amiri et al. [4] ANN and KNN Q, D PPV, AOp 75 0.88 and 0.95
Armaghani et al. [5] ANFIS,

ANN
Q, D PPV 109 0.97

Azimi et al. [7] GA-ANN Q, HD, RD, MRD PPV 70 0.98
Bayat et al. [9] FA-ANN B, S, Q, D PPV 154 0.938
Hajihassani et al. [14] ICA-ANN B, S,Q, D, SL, P, E PPV 95 0.97
Hajihassani et al. [15] PSO-based ANN Hole Depth, Q, B, S, SL, SGD, D, 

RQD, PF, N
PPV and AOp 88 0.85

Harandizadeh and Armaghani [16] ANFIS-PNN-GA Q, PF,D, SL AOp 62 0.94
Khandelwal and Singh [24] ANN Hole Depth, B, S, D, Q, BI,E, Pr, P,Vod PPV 154 0.98
Khandelwal et al. [23] ANN Q, D PPV 130 0.91
Mokfi et al. [30] GMDH SL, PF, B, S, D, Q, Hole Depth, PPV 102 0.91
Nguyen and Bui [32] ANNs-RF Q, D, PF,B,S, SL AOp 114 0.98
Nguyen et al. [34] HKM-ANN B, S, Q, D, PF PPV 149 0.98
Rezaeineshat et al. [37] ICA-ANN B, S, Q, D, RQD PPV 112 0.90
Taheri et al. [40] ABC-ANN Q, D PPV 89 0.92
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1.1  Details of Study Site and Experimental Blasts

The study site was a coal mine located in the Singrauli coal-
field, Madhya Pradesh, India. The mine is broadly divided 
into two parts: the easternmost part is known as Moher sub-
basin and the western part is known as Moher main basin. 
The mining block during the experimental trial was situated 
in the Moher sub-basin which is a broad basinal structure 
with uneven undulations on its limbs. An overview of the 
working benches of the mine is shown in Fig. 1.

Experimental trials were undertaken at different work-
ing benches of the mine. The mine consists of shovel and 
dumper excavators. The benches of the mine have been 
developed considering the optimum utility of these excava-
tors. Deeper benches of 40–55 m have been developed for 
the optimum utility of the dragline. Shovel benches were 
having a height of 20–25 m. The data were recorded for 
thirty-two experimental blasts. Table 2 summarises the blast 

design parameters used for shovel benches and dragline 
benches during trial blasts.

1.2  Prediction of Ground Vibration Using Empirical 
Models

Different empirical predictors have been proposed over the 
years for the prediction of PPV. The most popular predictor 
among these is the US Bureau of Mines (USBM) predictor 
equation proposed by Duvall and Petkof [11]. The predictor 
relates PPV with square root scaled distance. Ambraseys 
and Hendron [3] proposed a cube root scaled distance-
based predictor. Pal Roy [35] included a joint parameter as 
a dominant parameter along with maximum charge weight 
per delay (MCPD) and distance. The performance of some 
of the empirical model has been assessed in this study using 
the data collected at the experimental sites. The empirical 
models used for comparison are shown in Table 3.

Fig. 1  Overview of the working 
benches of the study site

Table 2  Summary of blast design parameters used in Shovel and Dragline benches during trial blasts

Blast design parameters Shovel benches Dragline benches

Hole diameter (mm) 150, 159, and 259 311
Numbers of blast holes 07–249 96–250
Burden (m) 5–8 10
Spacing (m) 4–10 13
Hole depth (m) 6–28 46–57
Average explosive charge per hole (kg) 75–1300 3860–4571
Maximum explosive weight per delay (kg) 75–1300 3860–17,460
Total explosive charge in a firing round (kg) 3000–123,393 405,270–980,330
Explosive type Site mixed emulsion (SME) and ammonium nitrate 

fuel oil (ANFO)
Site mixed emulsion (SME) and 

ammonium nitrate fuel oil (ANFO)
Initiation system Detonating fuse (DF) with cord relay and NONEL Detonating fuse (DF) with cord relay
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The recorded PPV data along with blast design param-
eters were grouped together. The statistical analysis was car-
ried out to compute site constants under different empirical 
models. The regression plots to establish the USBM pre-
dictor, Langefors and Kihlstrom predictor, and Ambraseys 
and Hendron predictor are shown in Fig. 2. Site constants 
for Ghosh and Daemen predictor have been evaluated using 
multivariate statistical analysis. The summary of empirical 
models for the study site is shown in Table 4.

1.3  Methodology for Classification of Parameters 
Using Principal Component Analysis.

Principle component analysis (PCA) is a dimension reduction 
technique. This technique is mainly used for representing data 
in the lower dimension space. Data in lower dimensional space 
reduces the complexity of the model. At first, the parameters 
to be classified are identified for this purpose. The data are 

normalised before analysis. A matrix is formed using the data 
set of these parameters. Suppose there are ‘m’ parameters to 
be classified with a total of ‘n’ data set. Then a matrix ‘A’ of 
n × m will be formed. In the next step, covariance matrix ‘C’ of 
the matrix ‘A’ is computed as – C =  ATA. Here,  AT represents 
the transpose of matrix ‘A’. Matrix ‘C’ will be the symmetric 
matrix of m × m. In the next step, the eigenvalues correspond-
ing to this covariance matrix are computed using the relation 
shown in Eq. 1.

where ‘I’ is the identity matrix.
λ = λ1, λ2, λ3, λm.
λ1, λ2, λ3 represents Eigen values.
Eigenvectors corresponding to each eigenvalues are calcu-

lated as per Eq. 2. These eigenvectors are known as principal 
components (PCs). Each component is compared with the 
respective eigenvalues to assess the variance of data in that 
component. The plot of PCs with the respective eigenvalue is 
known as the scree plot. Variance of the principal components 
is evaluated as per Eq. 3. The principal component correspond-
ing to λ1 will have the highest variance of data as compared 
to other PCs.

where [0] is m × 1 null matrix.
[X] is eigenvector of m × 1.

(1)|C − λI| = 0

(2)[C − λI][X] = [0]

(3)VarianceofPC1 =
�
1

�
1
+ �

2
+⋯ + �m

Table 3  Empirical models for prediction of PPV

where PPV is peak particle velocity of ground vibration; D, distance 
of blast face from vibration monitoring point; Q, maximum explosive 
charge per delay; K, b, and α, site constants

No Researchers Empirical models

1 Duvall and Petkof [11] PPV = K
(

D∕Q1∕2
)−b

2 Langefors and Kihlstrom [27] PPV = K
(

Q∕D2∕3
)b∕2

3 Ambraseys and Hendron [3] PPV = K
(

D∕Q1∕3
)−b

4 Ghosh and Daemen [12] PPV = K
(

D∕Q1∕2
)−b

e−�R

Fig. 2  Regression plots of different empirical ground vibration predictors

Table 4  Empirical models for 
the study site

No Empirical models

1 USBM [11] PPV = 163.43
(

D∕Q1∕2
)−1.207

2 Langefors and Kihlstrom [27] PPV = 0.7485
(

Q∕D2∕3
)1.5554

3 Ambraseys and Hendron [3] PPV = 443.4
(

D∕Q1∕3
)−1.085

4 Ghosh and Daemen [12] PPV = 184.93
(

D∕Q1∕2
)−1.31

e−0.000133R
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The data sets are further projected along the correspond-
ing principal component using Eq. 4. The projected data is 
known as the factor score.

This technique of classification and subsequent regres-
sion has been used for the prediction of PPV in this study. 
The purpose of principal component analysis in the study 
is to classify the parameters influencing PPV in different 
sets. Eight input blast design parameters influencing PPV 
have been taken for this purpose. The parameters include 
hole diameter (⏀), numbers of blast holes (N), burden (B), 
spacing (S), column length of explosive charge (L), MCPD 
(Q), total explosive charge in a blasting round  (Qt), and dis-
tance of blast face from vibration monitoring point (D). The 
methodology used in the study is shown in the flow chart in 
Fig. 3. Initially, the optimum number of principal compo-
nents is selected based on the scree plot to accommodate 
the maximum information from the data set. Factor scores 
are extracted along the selected number of PCs. After that, 
the regression analysis is performed between the extracted 
scores and PPV. The correlation coefficient of the regres-
sion analysis is determined. The number of PCs is further 
increased and scores are again extracted if the correlation 
coefficient is less than 0.9. After achieving a correlation 
coefficient of more than 0.9, data are classified based on 
the rotated component matrix. The Kaiser-Varimax rotation 
is applied to the component matrix of PCs to get a rotated 
component matrix. The rotation uses a mathematical algo-
rithm that is based on the principle of maximizing the sum 
of the squares of the loadings. The factor loadings with high 
and low values are maximised and those of mid-value are 
minimised under this rotation [43]. Finally, the most domi-
nant parameters along each PC are classified based on the 
rotated component matrix. This results in the classification 
of parameters influencing PPV.

1.4  Classification of Data Using Principal 
Component Analysis and Prediction of Ground 
Vibration.

Initially, the exploratory analysis has been carried out to 
identify the parameters influencing PPV. The PCA of all the 
input parameters has been done along with PPV. The result 
shows the extraction of two PCs with a cumulative vari-
ance of more than 80%. The scree plot of PCs is shown in 
Fig. 4. The parameters have been plotted along the extracted 
components. The component plot for exploratory analysis 
is shown in Fig. 5. The plot shows a significant distinction 
between PPV and other parameters. The distinction between 
distance and other blast design parameters can also be seen 
in this plot. It can be drawn from this plot that there is an 

(4)[score1]
1×n = [x

1

T]
1×m[A

T]m×n

interrelationship among blast design parameters that affect 
the magnitude of PPV. The classification of this interdepend-
ency is necessary for the accurate prediction of PPV.

The PCA has been carried out among all the input param-
eters influencing PPV. The scree plot of PCA is shown in 
Fig. 6. It can be seen in the scree plot that the plot becomes 
linear after  4th component. Eigenvalue matrix of the compo-
nents is shown in Table 5. The table shows that the variance 
of eigenvalues of  1st,  2nd,  3rd,  4th,  5th,  6th,  7th, and  8th compo-
nents are 72%, 83%, 90%, 95%, 97%, 99%, 99%, and 100% 
respectively. The first component alone has a very high vari-
ance to represent the data. Accordingly, the score for a single 
PC was extracted and regression analysis was carried out. 
The regression shows a correlation coefficient of 0.19. So, 
the score was further extracted with an increasing number 
of PCs. The regression analysis with two and three scores 
has correlation coefficients of 0.319 and 0.757 respectively. 
Four PCs have variance of more than 95%. The scores were 
extracted for four PCs. The regression analysis with four 

Fig. 3  Flow chart of the methodology for classification and regres-
sion using PCA
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extracted scores and PPV shows a correlation coefficient of 
0.931. Hence, the classification of data along four PCs has 
been accepted.

The rotated component matrix with four PCs is shown 
in Table 6. The comparison of component scores of each 
parameter shows that PC1 contains ⏀, B, and S parameters. 
The parameters of PC1 can be termed geometrical param-
eters. PC2 contains L and Q parameters. PC3 contains N 
and  Qt parameters. The parameters of PC2 and PC3 can be 
termed charging parameters. PC4 contains D as the domi-
nant parameter. The scores along all the four PCs have been 
extracted. The logarithmic regression analysis has been car-
ried out between extracted scores and PPV. The relationship 
between PCs and PPV has been established based on the 
regression output. The relationship is shown in Eq. 5.

The study of powers of PCs in this equation reveals 
that the dependency of PPV on PCs is in order of 
PC4 > PC2 > PC1 > PC3. The higher dependency of PPV 
on PC4 (i.e. distance) and PC2 (i.e. MCPD and column 
length of the explosive charge) is in the same line with the 
conclusions of other researchers who considered Q and D as 
the most dominant parameters influencing PPV. Holmberg 
and Persson (1978) have also considered Column length of 
explosive charge as a dominant factor influencing PPV. The 
predicted magnitude of PPV was determined using Eq. 5. 
The comparison between the measured and predicted values 
of PPV is shown in Fig. 7.

(5)PPV = 7.36
PC10.022PC20.072

PC30.005PC40.532

Fig. 4  Scree plot of PCA with 
blast design parameters and 
PPV

Fig. 5  Component plot for 
exploratory analysis
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1.5  Evaluation of Models’ Performance.

The performance of empirical predictors and PPV prediction 
using PCs has been evaluated. The evaluation has been done 
by computing R2 and root mean square error (RMSE) values. 
The computation of RMSE has been done on the basis of the 
relation shown in Eq. 6

The computed values of R2 and RMSE for different pre-
dictors are shown in Table 7. The analysis of the computed 
values reveals that USBM and Ghosh and Daemen predic-
tors are the best empirical predictors. The prediction com-
prising of regression analysis followed by PCA shows better 
R2 values than all the empirical predictors. RMSE value for 
PPV prediction using this method is also significantly low. 

(6)

RMSE =

√

√

√

√

(

1

n

n
∑

j=1

(PredictedPPV −MeasuredPPV)2

)

Hence, predictions using this classification and regression 
technique are more accurate.

2  Conclusions

The accurate prediction of blast-induced ground vibra-
tion is the main challenge in designing controlled blasting 
parameters for rock excavation. The identification of the 
impact of different parameters on vibration intensity is also 
important. The regression analysis followed by principal 
component analysis–based data classification can be a use-
ful tool to identify the parameters and predict PPV. This 
paper has used this technique for the classification of eight 
input parameters influencing PPV. The dimension reduc-
tion of parameters has been carried out for this purpose 
using PCA. The appropriate numbers of principal com-
ponents have been initially selected by assessment of the 

Fig. 6  Scree plot of PCA for 
input parameters

Table 5  Eigenvalues of PCs for PCA of input parameters influencing 
PPV

Principal com-
ponent

Eigenvalues

Total % of variance Cumulative %

1 5.774 72.169 72.169
2 0.894 11.179 83.348
3 0.591 7.390 90.738
4 0.380 4.755 95.494
5 0.163 2.034 97.527
6 0.123 1.541 99.068
7 0.064 0.794 99.863
8 0.011 0.137 100.000

Table 6  Rotated component  matrixa with four PCs

Extraction method: principal component analysis
Rotation method: Varimax with Kaiser  normalisationa

Component

1 2 3 4

Hole dia .863 .246 .265 .270
No. of holes .148 .155 .958 .166
Column length .342 .880 .205 .180
Burden .757 .476 .143 .259
Spacing .717 .589 .181 .152
Totexpl .378 .556 .696 .223
Cpd .478 .723 .355 .258
Dist .293 .219 .228 .901
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variance of data in different principal components. The 
original data has been projected along the required num-
ber of principal components to extract the factor score. 
The regression analysis has been done by taking the factor 
scores of PCs as input and PPV as output. The regres-
sion with four PCs gives a correlation coefficient of more 
than 0.9. Accordingly, the data has been classified into 
four PCs. The comparison of component scores of each 
parameter shows that PC1 contains geometrical parameters 
such as hole diameter, burden, and spacing. PC2 contains 
MCPD and column length of the explosive charge. PC3 
contains number of blast holes and total explosive charge in 
a blasting round. PC4 contains the distance of the blasting 
face from the monitoring point. The relationship between 
these PCs and PPV has been established using logarithmic 
regression analysis. The comparison of coefficients of PCs 
reveals that the dependency of PPV on PCs are in order 
of PC4 > PC2 > PC1 > PC3. The performance of the vibra-
tion prediction model using regression analysis followed by 
PCA has been compared with the existing empirical pre-
dictors. This prediction technique gives better predictions 
than the existing empirical predictors. Hence, the predic-
tion technique can be used for a more accurate prediction 

of PPV at a rock excavation site having large variations in 
blast design parameters. The technique used in the paper 
may be applied for the prediction of ground vibration for 
sites similar to the study site. The technique can also be 
used in the future for the assessment of the impact of other 
input parameters such as rock mass properties and joint 
conditions on PPV.
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