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Abstract
The most common approach used in the mining industry for mineral resources modeling is to estimate the grades using
ordinary kriging and report the recoverable resources based on this deterministic estimated model. Mineral resources
calculated with kriging are a smooth representation of the actual distribution of grades and do not provide an assessment
of uncertainty. Unlike kriging, simulation reproduces the variability of the grades in the mineral deposit and provides an
assessment of uncertainty. Reporting mineral resources directly on high-resolution simulation results would assume
perfect knowledge of the grade at the time of mining and selectivity at the scale of the data. There will always be
uncertainty left at the time of mining, so assuming perfect knowledge of the grade in the future is incorrect. There are
two concerns when geostatistical simulation is used for resources modeling: the information and the mining selectivity
effects. A new framework for resource estimation is proposed with two separate modules to address those concerns. The
information effect is accounted for by anticipating the additional production data that will be available at the time mining
to guide the destination for the mined material. The mining selectivity effect is addressed by mimicking the grade control
procedure to get mineable dig limits at a chosen selectivity, represented by a minimum mineable unit size. In addition to
a prediction of recoverable resources that will be closer to the material mined in the future, the framework proposed
provides an assessment of local and global uncertainty for risk management.
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1 Introduction

There are three main complementary and sequential tasks
that are essential to any mining project: long-term mineral
resources and reserves modeling, mine planning, and
grade control. They are performed at different stages of
the mine life, in different contexts, and with distinct ob-
jectives and techniques. They must be successfully inte-
grated in order to achieve balance between what has been
planned and the material that is actually mined. Each
company has a different procedure for updating those
models, but they must be updated with a certain regularity
for accurate forecasting. There is a variety of geostatistical

techniques available; Isaaks and Srivastava [11],
Goovaerts [10], Deutsch and Journel [4], Sinclair and
Blackwell [20], and Rossi and Deutsch [19] describe the
many different geostatistical techniques available for
grade estimation and evaluation of mineral resources and
reserves.

The context of this paper is on recoverable resources
evaluation. Mineral resources and reserves evaluation are
done to predict tonnage and grade of ore that may be
mined. The grade, location, and tonnage of material must
be forecasted with the greatest accuracy possible to justify
the large investment associated with a mining project. The
recoverable resources and reserves tabulations are done
by adding up blocks of different tonnages—due to differ-
ent specific gravities of the host rocks—to obtain total
tonnes and grades based on a tonnes-weighted average
of different grades. The calculations are generally done
within deposit subsets or for different types of material
and for different destinations for the mined material, such
as different processing routes.
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2 Current Practice in Mineral Resources
Evaluation

The traditional approach used in the mining industry for min-
eral resources evaluation is to estimate the grades of all vari-
ables of interest within blocks through a deterministic block
model and report the recoverable resources on those estimates.
Long-term resources are typically reported directly from nu-
merical models built from delineation drilling, with no special
post processing. The most used estimation technique is ordi-
nary block kriging, but inverse distance interpolation is also
popular. Rossi and Deutsch [19] present details on minimum,
good, and best practices for estimating, managing, and
reporting ore resource models under a deterministic approach.
The estimated results provided by kriging are a smooth repre-
sentation of the actual distribution of grades on the estimated
blocks [13]. The use of restricted searches in kriging is a
common approach in the mining industry in a tentative of
controlling its smoothing effect. The local accuracy provided
by block kriging is fundamental for final selection at the time
of mining/grade control, when it is necessary to minimize
misclassification of ore and waste blocks. On the other hand,
the resources obtained from estimation are not the correct
representation of the grades at block scale [13]. Moreover, this
approach does not assess the uncertainty related to the mineral
resource.

In addition to the deterministic approach, there are alterna-
tives to evaluate recoverable resources, such as probabilistic
estimation and geostatistical simulation. Probabilistic estima-
tion techniques, such as multi-gaussian kriging [12] and
Uniform Conditioning (UC), directly predict the variability
and uncertainty in grade variables using a probability distri-
bution model. We compute conditional distribution functions
from which we can extract a range of possible values for the
estimated grade [19]. Gaussian-based probabilistic estimation
is the most commonly applied due to the simplicity of the
Gaussian distribution. Neufeld and Deutsch [16] provide a
summary of some of the main features of Uniform
Conditioning and can be further referred. The disadvantage
of probabilistic estimation is that, by not accounting for the
variability from one location to another, it does not provide a
joint model of uncertainty.

The third and more complete approach is geostatistical
simulation. As opposed to the deterministic approach through
estimation, simulation is particularly useful because it in-
cludes an assessment of joint multiple-location uncertainty.
Multiple “realizations” are drawn for all locations simulta-
neously to allow the transfer of local uncertainty through
large-scale resource uncertainty. Simulation could be thought
of as the process of generating realizations; some references
refer to realizations as simulations. Building a long-term re-
source model using geostatistical simulation provides a way
of assessing a complete model of uncertainty for the mineral

deposit. Even though the application of simulation has been
subject of extensive research, its use is still limited in the
mining industry, and its results are not typically used for re-
sources reporting and mine planning. Accounting for the un-
certainty assessment in a resources evaluation workflow and
transferring this uncertainty to further engineering calcula-
tions, such as mine planning and production scheduling, is
fundamental to the understanding of a mineral deposit. It is
highly recommended to adopt an approach where the mineral
resource report accounts for the degree of uncertainty.

Simulation provides a joint model of uncertainty be-
tween multiple locations. Upscaled simulated grades are
assigned to each block representing a selective mine unit.
Simulation attempts to reproduce the data histogram and
variogram model [13]. At the time of assessing the recover-
able resources and reserves, it is important that the histo-
gram of estimated block values shows the same proportion
of ore as the histogram of the true grades that could be
achieved at the time of mining. Unlike the traditional esti-
mation approach, simulation provides block grades that are
not smoothed [13].

The common practice when geostatistical simulation is
used to assess the recoverable resources is to summarize the
simulated realizations into one model, but the simulated grade
distribution should be summarized as late as possible. All
resource and reserve calculations that can be computed on a
single block model can also be computed on a number of
realizations of the same block model. After performing the
necessary calculations over all realizations and not over one
particular realization or a summary model, the response vari-
ables could be summarized [5]. At the end, the expected value
of all realizations can be retained as a single value. The prob-
ability to be within a 15% interval of the expected value is also
a value that is commonly retained in mining. Resources re-
ported on an average model or on one specific realization are
different from the average resource. Resources reported on
one single model do not carry the underlying uncertainty in
grade and tonnage. One should always go back to realizations
to perform other calculations, instead of calculating directly
on expected values.

Post-processing the simulation results is critical because of
the point scale resolution at which the realizations are com-
puted, that is, the data scale. The concept of a Selective
Mining Unit (SMU) is necessary to report resources from
the high-resolution simulated geostatistical realizations.
When simulation is performed, the traditional approach is to
average the grades at high resolution to the chosen SMU scale.
Many factors are considered when choosing the SMU block
size. The paradigm conventionally adopted is that the SMU
block size must be related to the selectivity of the mining
equipment, the availability of grade control data that is used
to classify the material as ore or waste, the geological bound-
aries of the deposit, and, in the context of an open pit mining
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operation, the practicality of the dig limits that will be gener-
ated from these blocks [19, 20].

Direct block simulation is an alternative to computing
high-resolution simulated realizations and averaging up to
the chosen SMU scale. Journel and Huijbregts [12] first pro-
posed a direct block simulation approach where the condition-
ing would happen at the block support after computing the
simulated realization. This approach would be valid for prop-
erties that average linearly from point to block support, such
as grade. Additional applications and algorithms are also
d i s c u s s ed a nd imp l emen t e d i n Benndo r f a n d
Dimitrakopoulos [1], Emery [7], and Emery and Ortiz [8].
The problem with direct block simulation is that assumptions
have to be made to build a local change of support model. The
point support is recommended because it assures consistency
between the simulated high-resolution grades and the block-
averaged values at any larger support [13].

Volume-variance correction methods can also be used to
create a target SMU grade distribution in the resources evalu-
ation workflow [11, 12, 15, 19]. They provide a quick assess-
ment of the recoverable resources. By applying a change of
support model to drill hole information, it is possible to cal-
culate grade-tonnage curves to check and calibrate the re-
source models. The most common change of support models
are the Affine Correction, the Indirect Lognormal, and the
Discrete Gaussian methods; where the latter is considered
the most robust option because it provides a realistic predic-
tion of the change in shape of the variable distribution. The
references mentioned above provide further details on each
volume-variance correction method.

3 Problem and Motivation

Resource models are constructed at specific times in the mine
life and consider the information available at that time.
Geostatistical simulation is normally calculated at high reso-
lution and quantifies the uncertainty in the truth at the scale of
the data used, not at the scale that mining will take place.
Reporting resources directly on high-resolution simulation re-
sults would assume selectivity at the scale of the data and
perfect knowledge of the grade at the time of mining. The
resources reporting and the determination of ore and waste
limits must consider the selectivity of future mining and the
information available at the time of mining.

Even though the uncertainty reduces as more or better in-
formation becomes available during the exploration and min-
ing processes, there will still be remnant uncertainty that is not
fully resolved at the time of mining because even the grade
control sampling is incomplete and imperfect. The remnant
uncertainty can be explained by small scale geological vari-
ability, mining practice, location errors, among other factors.
The decrease in uncertainty from the resources model to the

time of mining can be referred to as the information effect.
The information effect reflects the potential for misclassifica-
tion of ore/waste material because the long-term resource
model does not account for future information that will be
available at the time of mining. Anticipating future informa-
tion to correctly predict ore/waste classification errors is crit-
ical. The economic performance of any mining operation will
be impacted by misclassification of material.

The other concern when evaluating recoverable resources
is referred to as the mining selectivity effect. The maximum
profit available in a mining project would be given by free
selection of small-scale blocks of ore and waste, without ac-
counting for any mining inefficiency and equipment limita-
tions. The mining selectivity effect can be defined as how
selective the resourcemodel can be to incorporate bothmining
practice and equipment selectivity restrictions and geological
characteristics of the deposit, while trying to retain most of the
profit available at free selection of small-scale blocks of ore
and waste. The mining selectivity effect reflects the fact that
the resources evaluation is done at a scale orders of magnitude
larger than the core sample data used to estimate the grades
[13].

In the traditional framework for resource estimation, the
SMU size alone accounts for the information effect, mining
selectivity considerations (e.g., the mining practice and equip-
ment limitations and geological variability), and remnant un-
certainty at the time of mining. The traditional framework
combines the information effect, remnant uncertainty, and
mining selectivity considerations into an SMU size that is
larger than the final grade control data spacing [14]. It is as-
sumed that there is no remnant uncertainty in the SMU size at
the time of mining.

Deraisme and Roth [3] stated that there were no significant
advances towards trying to address the information effect for
estimating recoverable reserves despite being widely
discussed in geostatistical theory. Even 18 years later, not
much has changed. In the latest version of software ISATIS,
Geovariances [9] released a new tool called “Information
Effect for Simulations.” This tool helps optimize grade control
sample spacing by evaluating its impact on grade-tonnage
curves, but it can also be applied to mimic ore loss/dilution
at the time of mining. The idea is similar to what is proposed
here to assess the information effect: sample high-resolution
simulated grids at the anticipated grade control spacing and
use the samples to re-estimate the grades. Nevertheless, the
entire workflow proposed here is different because it includes
an additional module to address the mining selectivity effect.

Some advances have been made in research. Journel and
Kyriakidis [13] discuss the information effect and propose a
simulation approach to anticipate the production data. This
approach is also similar to the one implemented in the latest
release of software ISATIS. In addition, Journel and
Kyriakidis [13] proposed to address the difference in the data
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quality from the long-term resources modeling and grade con-
trol. For example, if the present data (resources modeling) is
drill hole data and the future data (grade control sampling) is
blast hole data, according to Journel and Kyriakidis [13], the
possible error in the future data should be modeled. The sta-
tistics between the two types of data and the correlation be-
tween the error and the present data should be inferred by prior
experience on similar mining operations.

Leuangthong et al. [14] and Neufeld, Leuangthong, and
Deutsch [17] also proposed the sampling of simulated realiza-
tions and re-estimation of the grids using those samples.
Leuangthong et al. [14] proposed this simulation approach
to determine the optimal SMU size that would give ore and
waste tonnages and grades of ore to match the actual produc-
tion at the time of mining. Neufeld et al. [17] compared the
results of the simulation approach with a change of support
model. In the change of support approach, the information
effect is accounted for by reducing the variance of the block
scale distribution. In the change of support model, as the block
size increases and the block variance decreases, the block
distribution becomes smoother (less selective) and the final
profit decreases. In the simulation approach, the ore and waste
classification quality decreases as the grade control sample
spacing increases resulting in less profit. The results of both
approaches can be combined to help choose the SMU size for
resources and reserves evaluation. Both papers mix the con-
cepts of information and mining selectivity effects. This re-
search develops a framework to specifically account for the
information and mining selectivity aspects separately.

Cuba, Boisvert, and Deutsch [2] propose a framework to
model the evolution of the degree of knowledge of a deposit
and its dynamic behavior due to the acquisition of new data in
the design of the long-termmine plan. The mining sequence is
continuously adapted to information sampled from simulated
realizations. The goal of here is to calculate directly the final
resources/reserves that would be obtained.

The remnant uncertainty at the time of mining must be
considered for long-term mineral resource reporting and the
information and mining selectivity effects must be anticipated
at the time of resources modeling. A methodology is proposed
to correctly predict recoverable resource estimates by explic-
itly accounting for the information and mining selectivity ef-
fects. The recoverable resources forecast will be closer to the
material actual mined in the future. A framework consisting of
separate modules to address these two concerns is proposed.

4 Proposed Methodology

This paper proposes a framework to address the two concerns
in long-term models for probabilistic resources reporting: (1)
the information effect, that is, anticipating the additional data
that will be available in the future to direct the choice of

destinations of the mined material, and (2) the selectivity ef-
fect, that is, how selective the model can be to incorporate
both mining equipment and practical selectivity restrictions
considering the geological characteristics of the deposit. The
steps of the proposed procedure are described below:

1. Simulate high-resolution realizations of all necessary var-
iables considering the data available. Parameter and data
uncertainty could also be taken into account. This step is
no different from the traditional simulation paradigm.

2. (a) Sample the realizations at the anticipated production
data spacing to mimic the grade control data planned in
the future. (b) Interpolate all variables of interest that are
required for grade control for every set of sampled final
data. Use a larger block size than for the simulations and
the best possible set up for ordinary kriging. Sampled data
from each realization and the existing exploration data are
considered in the estimation. This step will account for the
information effect.

3. (a) Calculate expected profit values for every block in the
estimated grade control grids for at least two different
destinations (i.e., ore and waste), depending on the final
estimated grade. (b) Apply the mining selectivity calcula-
tions for each estimated grade control model at a chosen
selectivity to anticipate future mining. This step mimics
the grade control practice to get a different mineable dig
limit for each estimated grade control grid of anticipated
grade control data.

4. (a) Transfer the mineable dig limits at the desired selec-
tivity resulted from the previous step to the high-
resolution reference simulated model from the first step.
(b) Estimate the probabilistic resources using these dig
limits for the long-term model to be reported, that is,
available as the distribution over all realizations from the
original reference simulated model.

By following the proposed workflow, recoverable re-
sources are estimated accounting for the information and min-
ing selectivity effects explicitly and assessing the degree of
uncertainty associated with it. Any summary models required
for mine planning can be calculated on the long-term re-
sources model including the probability to be above or below
the cutoff grade, the average grade above the cutoff grade, the
tonnes of ore and waste, and the grade of ore. The kriging
estimates done in step two are exclusively for determining
the destinations of mined material; all resources are estimated
based on the original simulated realizations.

5 Methodology—Information Effect

The uncertainty reduces as more information becomes avail-
able during the exploration and mining process. However,
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there will still be remnant uncertainty that is not resolved at the
time of mining because even the final sampling is incomplete.
There are many factors that contribute to the remnant uncer-
tainty at the time of mining, including small scale geological
variability, mining practice, incomplete grade control sam-
pling, and location errors. The decrease in uncertainty from
the resources model to the time of mining is referred to as the
information effect. Figure 1 illustrates the information effect.

There will be classification errors of ore and waste due to
incomplete information during the mining process. There are
two types of classification errors: type I and type II. The type I
error refers to the material that is classified as ore, but in fact is
waste, that is, a false positive, while the type II error is a false
negative, the material that is thought to be waste but is actually
ore [19]. Both of these errors reduce the profit of an area being
mined. These ore/waste classification errors should be
minimized.

The remnant uncertainty at the time of mining should be
considered for long-term model reporting and the information
effect should be anticipated. The distribution of grades repre-
sented in geostatistical realizations for resources reporting re-
lates to the distribution of the true values, not the values at the
time of mining. Calculating resources directly on the simulat-
ed realizations would be too optimistic. Reporting resources
from geostatistical realizations simulated with widely spaced
exploration data is only reasonable because we use the con-
cept of a production volume or SMU that is larger than the
final grade control data spacing [14]. Choosing an SMU size
that is larger than the final data spacing results in a small
remnant uncertainty at the SMU scale. The large SMU size
would account for the remnant uncertainty at the time of
mining.

The proposed workflow to account for the information effect
starts by sampling each of the realizations at the anticipated pro-
duction data spacing. The goal of this step is to mimic the pro-
duction data planned in the future. Then, it is necessary to

estimate all variables that are required for grade control for every
set of sampled final data. As shown by Vasylchuk [21], the
recommended grade control grid resolution is 25 to 40% of the
(anticipated) production data spacing to minimize the amount of
misclassified ore and waste on the grade control model.

Anticipating the information that will be available at the
time of mining by sampling the reference simulation realiza-
tions is a critical step of the proposed procedure. The existing
exploration data could be considered together with the sam-
pled data from each realization in the estimation. Sampled
data that is too close to the original drill holes from
delineation/exploration campaigns can be rejected because
production sampling is of lower quality than exploration sam-
pling in practice.

By sampling each high-resolution realization at the antici-
pated final grade control data spacing, we will have a different
dataset for each realization. This is the case unless the explo-
ration drilling is at the final production data spacing and there
will be no additional grade control sampling forthcoming. The
majority of mining operations gather additional production
data. Sampling the realizations from geostatistical simulation
will provide an approximation of the final data that will be
acquired at the time of mining.

An important detail to consider is the expected quality of
grade control data that will be available in the future.
Dedicated grade control drilling samples would have higher
quality and better precision than regular production sampling
coming from blast holes. The practitioner can make a decision
on whether or not to add some reasonable error to the grade
values sampled from the reference simulation realizations [13].

6 Methodology—Mining Selectivity Effect

During the mining process, the material is classified and sent
to a destination that could include a processing plant, waste

Fig. 1 The information effect: the decrease in uncertainty from the resources model to the time of mining
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dump, leach pad, or stockpile. Depending on the complexities
of the mining process and of the deposit itself, there can be
many other different destinations. The scale at which material
can be separated during the mining process is referred to as
mining selectivity and represents a key feature for long-term
resources reporting, mine planning, and design. Mining selec-
tivity depends on a series of factors intrinsic to the deposit type
and operation. It depends on the amount of information avail-
able at the time of mining, geological variability of the depos-
it, mining equipment and mining practice constraints, and oth-
er factors. Concepts and solutions for mining selectivity ap-
plied to the open pit mining context will be presented and
discussed.

Selectivity can be represented by a number of different
approaches in practice. Conventionally, in open pit mining,
dig limit polygons are drawn using information from blast
hole samples, that maybe refined by adding information of
visual inspections made on-site. In the approach developed
here, selectivity is represented by a minimum mineable size
unit, instead of dig limits polygons. Research has been done
towards assessing the final selectivity for grade control
models and determining the exact dig limits for actual mining.
Vasylchuk and Deutsch [22] developed a system called
“Intelligent Grade Control” to automate the grade control
practice (selection of ore/waste) while maximizing the total
profit given by a mine bench, requiring a minimum level of
user input. This approach has a different context than the
research presented here. It is aimed at drawing/calculating
the exact dig limits for the actual mining practice. Here, the
concern is to accurately predict the recoverable resources by
accounting for the information and mining selectivity effects
at the time of resources modeling.

Calculating the profit assuming free selection of small-
scale blocks of ore and waste, without accounting for any
mining practice and equipment limitations, would overstate
achievable profit. The ore/waste selection process should not
be free, and each small-scale block should not be selected as
ore or waste independently of other locations in the surround-
ing area. Geometrical or mining constraints may limit access
to a specific location. The volumes considered should incor-
porate mining practice, equipment selectivity restrictions, and
geological characteristics of the deposit and, at the same time,
try to retain the maximum profit possible. The actual profit
realized at the time of mining will be less than the maximum
profit available with free selection of small scale blocks.

As discussed above, following the standard practice of
choosing an SMU size that is larger than the final data spacing
results in a small remnant uncertainty at the SMU scale. It is
the normal approach to increase the SMU size to account for
the fact that there will not be perfect information in the future.
Assigning a fixed dilution factor in the hope to account for the
information effect and selectivity of mining practice and
equipment is also a common approach [17]. Figure 2

illustrates a typical situation in hard rock mining where re-
sources reporting is normally done using a large block size
to account for the remnant uncertainty and for the fact that
there will not be perfect information in the future and the
operational grade control model is constructed at the scale that
the actual mining will take place, that is smaller than the block
size used for resources reporting. This concern is part of the
selectivity effect. The mining limits must, at the same time,
capture geological variations in grade and keep the practicality
of the mining volumes for the mine operation. On the other
hand, considering a block size smaller than the final grade
control data spacing and assuming no remnant uncertainty
will likely provide too optimistic resource estimates. The prac-
titioner must target estimates in the grade control model and in
the long-term resources model that reconcile.

Consider two or more destinations d for the mined material
within the grade control grid A; at a minimum, ore and waste.
Every block in the grade control grid corresponds to a
location u. Calculate the expected profit value associated with
each different destination d for each location u within the
grade control grid A as:

EP u; dð Þ; d ¼ 1;…;D; u∈A

One can consider as many factors as necessary for the def-
inition and calculation of the expected profit values.
Normally, these values depend on the destination and are gen-
erally a function of the grade of the material, recovery and
value (selling price), and all costs associated with it: mining,
processing, selling, and overhead. The maximum total profit
for the entire grade control grid would be given by free selec-
tion of small-scale blocks of ore and waste (and any other
destination being considered in the scenario) based on their
expected profit values that would maximize the total profit.

For practical purposes, we will define a square or rectan-
gular minimum mineable unit size to represent the mining
selectivity. Note that the aforementioned minimum mineable
unit size (MMUS) is different than the selective mining unit
(SMU). In this paper, the concept of the SMU refers to a long
range regular block size that is intended to match the results of
short-term grade control in the future. The concept of the
MMUS, on the other hand, simply refers to a floating selection
frame intended to match equipment minimum widths during
the creation of dig lines. The developed algorithm considers
the MMUS dimension and visits the set of blocks in the loca-
tions u that falls inside this chosen selectivity scale. The iter-
ation occurs in the entire grade control grid A. Based on the
expected profit values calculated earlier, EP (u; d), the most
profitable destination is assigned to the set of blocks in the
locations u within the chosen mineable unit size as:

dmaxEP uð Þ ¼ maxdof EP u; dð Þ; d ¼ 1;…;Dð Þ; u∈A
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where dmaxEP(u) is the most profitable destination for each
location uwithin the grade control grid A, d is the two or more
destinations for the mined material, and EP (u; d) is the ex-
pected profit value associated with each different destination
d.

The total profit is calculated as the sum of the expected
profits of all maximum profit destinations at the chosen selec-
tivity (MMUS) over the grade control grid:

PmaxEP ¼ ∑EP u; dmaxEP uð Þð Þ; u∈A

where PmaxEP is the total profit over the grade control grid
A and EP (u; dmaxEP(u)) is the sum of the expected profits of
all maximum profit destinations at the chosen selectivity
(MMUS) for each location u within A.

The mineable unit (MMUS) is translated over five different
origin points of the block model. The procedure described
above is followedmultiple times considering different origins.
Finally, the most profitable case in terms of total profit over
the grade control gridA is chosen and the final destinations are
assigned to each block in the locations u within A and the
mineable dig limits are calculated.

The idea behind this algorithm is very similar to the one
developed by Deutsch [6]. The algorithm developed by
Deutsch [6] will assign the maximum profit destination onto
locations that meet the mineability criteria from the beginning
and will flag the locations that do not attend the mineability
criteria. By revisiting the problematic locations and enforcing
the mineable unit size onto them, the mineability criteria are
almost guaranteed to be met over the entire grid. There could
be areas that do not satisfy the mineable constraint because of
interactions between problematic locations. The main concern
involved with this algorithm is the computational time. At the
time of long-term resources modeling, it is not crucial to have
the exact locations of ore/waste blocks, since this

classification will inevitably change at the time of mining.
Rather, it is necessary to have a faster procedure that will
anticipate the expected profit given the mining selectivity.

The algorithm developed in this paper is faster than the one
mentioned previously within relatively small blast volumes. It
will not be exact given interactions between the five different
origin offsets mentioned above: adjacent mineable areas/units
do not necessarily need to have the same origin and small
volumes may be created between the mineable ones.
Nevertheless, it is reasonable and practical to support the
probabilistic resources workflow proposed here. The devel-
oped algorithm is also flexible with the edges of the block
model. There will be cases where the edges do not meet the
mineability criteria. This is not a concern. In a real situation,
there would not be ore close to the limits of the block model.
The limits would be large enough to include all profitable
areas within the bench that will be mined.

Developing an algorithm in a full optimization fashion
would be recommended for final grade control procedures
and classification of ore/waste blocks. The tools developed
by Vasylchuk and Deutsch [22] and presented here are exam-
ples of what should be applied in the context of final classifi-
cation. The algorithm developed in this research is a less time-
demanding alternative appropriate to anticipate the mining
selectivity at the time of recoverable resources modeling. An
example of an implementation of the algorithm is presented in
in the following section.

7 Combined Workflow and Case Study

Figure 3 summarizes the steps in the proposed framework in a
flowchart. Note that the SMU scale is not incorporated in the
workflow. Instead, the proposed workflow applies the concept
of the MMUS in its selectivity module. In the case study,

Fig. 2 Contrasting block size
used for resources reporting (left)
and SMU size used for the oper-
ational grade control model
(right). The anticipated final grade
control data spacing is presented
in blue
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ordinary kriging at the SMU scale is performed as representa-
tive of the traditional long-term resources evaluation for com-
parison with the resources evaluated by the proposed
methodology.

The proposed methodology to evaluate long-term mineral
resources is demonstrated through an example that represents
one bench of an open pit metallic deposit. This synthetic ex-
ample provides access to the “truth,” that is, the reference
model created to generate a dataset. The truth can be used
for comparisons that can help validate the proposed frame-
work. Since one bench is being considered, the example is
2-D. A reference model is generated via one unconditional
simulated realization. The variogram model γ(h) for all lag
vectors h is arbitrary and its maximum continuity direction
is along azimuth 45° with the following model:

γ hð Þ ¼ 0:05þ 0:45 � Sph ahmax ¼ 400
ahmin ¼ 200

hð Þ þ 0:5

� Sph ahmax ¼ 500
ahmin ¼ 300

hð Þ

Note that Sph is short for the common spherical variogram
function and the variogram ranges are in the subscripts. The

reference model is 1000 × 1000 cells and each cell is 1 × 1 × 5
m. The cell height is equivalent to a nominal bench height of 5
m. A positively skewed distribution is used for back transfor-
mation of grades from Gaussian to original units. Figure 4
presents the reference grade distribution and the reference
grade grid model generated.

In order to mimic exploration data, the reference uncondi-
tional simulated realization is sampled at a 100 × 100 m spac-
ing. The exploration dataset created has 100 drill holes. The
traditional long-term resources evaluation paradigm is to sim-
ply estimate the grades by ordinary kriging at a SMU scale.
Experimental variograms were calculated for the exploration
dataset created in original units. The major direction of anisot-
ropy is at 45° azimuth. A variogram model was fitted and
ordinary kriging was used to estimate the grades at 20 × 20
× 5 m cells. The variogram model γ(h) fitted is as follows:

γ hð Þ ¼ 0:05þ 0:95 � Sph ahmax ¼ 500
ahmin ¼ 150

hð Þ

As above, Sph is short for the common spherical variogram
function. These estimates and the resources assessed by them
will be used for comparison with the resources evaluated by

Fig. 3 Flowchart that illustrates the steps in the proposed framework
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following the proposed methodology. Figure 5 presents the
exploration data sampled from the simulated realization in
original units and their estimates by ordinary kriging.

The first step in the proposed workflow is to generate high-
resolution simulated realizations of grade using the explora-
tion data. The exploration data was transformed to normal
scores to simulate a hundred realizations. Normal score exper-
imental variograms were calculated following the major direc-
tion of anisotropy at 45° azimuth and perpendicular to it, 135°.
The normal score variogram model fitted to perform the sim-
ulation is:

γ hð Þ ¼ 0:05þ 0:95 � Sph ahmax ¼ 420
ahmin ¼ 160

hð Þ

In order to account for the information effect, the simulated
realizations are sampled at the anticipated production data

spacing at the time of mining. To mimic a typical hard rock
deposit, where the production data (dedicated grade control
drilling or blast holes) is usually done at a closely spaced grid,
the simulated realizations are sampled at 10 × 10 m. The one
hundred datasets generated consist of 100 drill holes and 9701
data that mimic production data. Figure 6 shows one simulat-
ed realization of exploration data and a location map of the
production data sampled from the same realization.

Still in the information effect module of the workflow, the
next step is to interpolate the grade control grades. Blast hole
sampling is normally of lower quality than exploration drilling
and the exploration data is the only actual data available at the
time of resources modeling. The production data too close to
the exploration data is, then, rejected. The remaining produc-
tion data and the existing exploration dataset are used in the
estimation. Following the recommendation to minimize the
amount of misclassified ore and waste on the grade control

Fig. 4 Reference grade distribution (left) and reference gridded model (right)

Fig. 5 Location map of exploration data (left) and kriging estimated grid (right)
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model proposed by Vasylchuk [21], the grade control block
size is 4 × 4 × 5 m, that is, 40% of the anticipated production
data spacing.

Experimental variograms were calculated for each dataset
consisting of exploration and sampled production data. The
major direction of anisotropy is at 45° azimuth. Variogram
models were automatically fit and ordinary kriging was used
to estimate the grades of the grade control blocks. The exper-
imental variograms calculated and the fitted variogram model
for one dataset are shown in Fig. 7 together with the estimated
grade control grid.

Proceeding to the mining selectivity module of the pro-
posed framework, the expected profit values EP(u; d) were
calculated for two different destinations for the mined materi-
al, ore and waste, for all blocks in the locations u on the bench.
Expected profits were calculated for each block in the estimat-
ed grade control grids. If the final destination for a block is ore,
its expected profit is calculated as:

EP u; dð Þ ¼ alpha� grade uð Þ þ C0 =tÞ; d ¼ ore; u∈Að

where alpha is the slope of the grade x profit graph and C0

is the cost of sending material at zero grade to the processing
plant. In this example, alpha = 30 and C0 = − 15 $/t, which
yields a cutoff grade of 0.5% between ore and waste. The
expression to calculate expected profit if the final destination
of a block is waste does not depend on the grade value, it is a
fixed cost of $2/t:

EP u; dð Þ ¼ −2 =tÞ; d ¼ waste; u∈Að

Expected profit calculations are done using a specified cut-
off grade. A precise calculation could include all costs and
prices associated with the final product. The profits calculated
for both destinations for each block of estimated final grade
control data will be used to calculate the maximum profit
destinations at high resolution and at the chosen selectivity.

Fig. 7 Experimental variograms calculated with production data and fitted variogram model (left) and their estimates (right)

Fig. 6 Simulated realization with exploration drill holes (left) and blast holes sampled from it (right)
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Moving forward to the mining selectivity module of the
proposed workflow, the next step is to get mineable dig limits
at a chosen mining selectivity (MMUS). The idea of this step
is to mimic the actual grade control practice. The minimum
mineable unit size (MMUS) considered for this example is 12
× 12 m, which seems to be a reasonable dimension for the
deposit type represented here. The developed algorithm for
mining selectivity is used to calculate the most profitable des-
tination for each mineable unit. The mining selectivity calcu-
lations are applied to each estimated grade control grid. A
small block size ore and waste map of the same estimated
grade control grid shown in Fig. 7 is shown in the left side
of Fig. 8. This map is purely the maximum profit destination
available for each small-scale block without accounting for
selectivity at the time of mining. The mineable ore and waste
map are showcased in the right side of Fig. 8, after applying
the selectivity calculations using the algorithm developed.

The proposed workflow is completed by transferring the
mineable dig limits calculated in the mining selectivity mod-
ule to the high-resolution realizations simulated with explora-
tion data only. This step is needed to ensure that all resources
estimations are done over the simulated grid that uses the
actual data available at the time of resources modeling. The
resampling from the simulated realizations and re-estimates of
final grade control data are exclusively for determining the
destinations of the mined material. No final resource tabula-
tions are done on the re-estimated models.

Finally, the probabilistic mineral resources can be evaluat-
ed. They are available as the distribution over all realizations
from the original simulated grid with exploration data and
considering the mineable dig limits. For comparison, the re-
sources were also tabulated directly on the high-resolution
simulated results, without applying selectivity considerations,
on the reference model that was used to generate the explora-
tion data and on the kriged model with exploration data. A

fixed density value of 2.7 g/cm3 was considered. The tonnage
is calculated as the volume of each block multiplied by the
density. Figure 9 shows the probabilistic resource
distributions.

The cutoff grade is lower than the average grade on the
bench. The smoothing effect of kriging leads to ore tonnes
that are greater than the truth—represented by the reference
model (black solid lines in the graphs)—in the kriged explo-
ration data (orange solid lines). The larger support of the mod-
el following the proposed workflow (blue dashed lines) leads
to ore tonnes that are greater than the ore tonnes calculated
from the high-resolution simulated realizations. The average
ore tonnes given by the model that follows the proposed
workflow is closer to the true value. Regarding the total profit
calculated, note that high-resolution simulated realizations
yield a maximum profit that is not attainable at the time of
mining. The selectivity and the data available at the time of
mining must be considered to report the recoverable
resources.

Note that a carefully implemented kriging can be tuned to
perform very good from a global perspective. If the kriging is
allowed to use a large number of samples, then the estimates
will be quite smooth and the tonnage, grade, and metal will
not likely match the future (reference). The mismatch would
depend on where the cutoff falls on the distribution. A low
cutoff (compared with the mean of the grade distribution)
would lead to kriging overstating the tonnes and metal. A high
cutoff would lead to kriging understating the tonnes and met-
al. A second approach would be to use ordinary kriging and
severely limit the number of samples and smoothing. This
would lead to locally poor estimates and an overstatement of
selectivity. Some practitioners tune kriging to performwell for
global predictions despite conditional bias and poor local pre-
dictions (further discussion on this matter can be found in
Nowak and Leuangthong [18]). In summary, although the

Fig. 8 Maximum profit destination maps at small-scale blocks (left) and considering mining selectivity (right)
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kriging can look to perform well globally, it is not recom-
mended. Kriging applied with a reasonable search and number
of data would perform better locally, but not as good globally.

Regarding the apparent bias in the expected value of the
high-resolution simulated realizations, it is the result of one
reference. In other cases, the expected could be low or, coin-
cidently, exactly right. The theoretical expectation is that the
uncertainty predicted by the proposed methodology would
represent the truth in an accurate manner; being below the
reference half the time, above the reference half the time and
so on. Table 1 is presented to help understand these differ-
ences. The variations between the summary statistics indicate
the significant uncertainty attributable to incomplete
sampling.

Ore and waste location maps were generated for the refer-
ence model and ore loss and dilution maps were generated for
the kriged exploration data and for all realizations going
through the proposed workflow. The results are shown in
Fig. 10. As mentioned before, the precise location of ore and

waste blocks is not known at the time of resources modeling.
The ore and waste classification and decision will change at
the time of mining based on real production data. One goal
here is to minimize the classification errors to have more ac-
curate resources reporting.

Summary probabilities models can also be calculated fol-
lowing the results of this workflow. For example, the

Fig. 9 Distributions of resources calculated on the reference model (black), the kriged estimates of exploration data (orange), the high-resolution
simulated realizations (red), and going through the proposed workflow (blue)

Table 1 Comparison of summary statistics in different datasets related
to example

Mean Std Min Max

Reference model 0.504 0.396 0.033 5.981

Exploration data 0.537 0.464 0.095 2.591

Exploration data kriging 0.530 0.383 0.079 2.490

High-resolution realizations 0.538 0.472 0.095 2.591
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probability of a grid cell to be above the cutoff grade, that is, to
be ore, is shown in Fig. 11.

Figure 12 shows an overview of all steps and results of the
proposed workflow for the case studied.

8 Discussion

There are a large number of factors that can influence the
estimation of recoverable resources and the results of this
workflow. The exploration data variogram, the grade control
data spacing, the mining selectivity, and the cutoff grade rel-
ative to the grade distribution are examples of the factors that
could be important for the estimation of recoverable resources
of the bench. In practice, a sensitivity study could be carried
out to understand the influence of each factor as well as the
interactions between them. Nevertheless, the importance of
anticipating the information and mining selectivity effects at
the time of resources modeling with exploration data only is
shown.

Besides a prediction of recoverable mineral resources clos-
er to what will be mined in the future, the results of the
workflow provide assessments of both local and global uncer-
tainty on the resources. The local model of uncertainty is rep-
resented by ore probability maps, as shown in Fig. 11. The
global model of uncertainty is represented by the uncertainty
in the global recoverable resources. The distribution of re-
sources calculated using the mineable dig limits resulted from
the workflow is shown in Fig. 9. These results can be used to
support resource/reserve classification and the uncertainty im-
plicitly considered in the chosen classification scheme. Public
disclosure of uncertainty should not be considered. There is a
danger that reported low probability results could be adopted
by the marketplace and unfairly punished advanced technical
work. Additionally, the uncertainty should be used for internal
evaluation of reconciliation results as mining takes place.

Using the mineable dig limits to calculate the resources
would be equivalent to using an economic cutoff grade in a
traditional approach. Then, the global resources are presented

in terms of tonnes of ore and ore grade. Table 2 shows an
example of how the uncertainty could be internally disclosed
in a mineral resources evaluation. It consists of the average
value of each element calculated and other two values that
correspond to the P10 (10th percentile) and P90 (90th percen-
tile) of the distribution derived from the realizations and rep-
resent low and high “boundaries” for the resources. Although
these percentiles are most commonly used in the petroleum
industry, they provide a valuable understanding of the distri-
bution of uncertainty as they represent the tails of the uncer-
tainty distribution given by the realizations.

Other values could also be retained to assess the uncertain-
ty in the overall resources, such as the probability of the re-
ported values to be within the plus or minus 15% interval of
the average value. The important point here is that, in the
proposed approach, by not summarizing the simulated reali-
zations into one model, the uncertainty can be assessed.

9 Conclusion

The main contribution of this paper is a framework that will
properly forecast recoverable resource estimates by explicitly
accounting for the information and mining selectivity effects.
By following the proposed framework, the prediction of re-
coverable resources at the time of resources modeling will be
closer to the material that will be actually mined in the future.
In order to explicitly address these two concerns, the proposed
framework consists of two separate modules. The first module
is designed to account for the information effect and the sec-
ond for the mining selectivity effect.

The information effect is accounted for by anticipating the
additional production data, represented by blast holes or ded-
icated grade control drilling, which will be available at the
time mining to guide the destination for the mined material
(i.e., ore or waste). The selectivity effect is addressed by mim-
icking the grade control procedure to get mineable dig limits at
a chosen selectivity, represented by a minimum mineable unit
size (MMUS). The proposed methodology does not introduce

Fig. 10 Ore, waste, ore loss, and dilution location maps
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Fig. 12 Overview of steps and results of the proposed workflow for the case studied

Fig. 11 Ore probability map of
simulated model going through
the proposed workflow
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any bias in the resources estimations, is effective at anticipat-
ing information and selectivity considerations, and can be
straightforwardly applied as a resources modeling workflow.

Another important result of the proposed methodology is a
model of uncertainty in the recoverable mineral resources
assessed. In addition to a prediction of long-term resources that
will be closer to the mined material in the future, there is an un-
certainty assessment for riskmanagement by following the frame-
work proposed. The case study presented follows the complete
framework for open pit mining and shows how the uncertainty is
assessed by successfully accounting for the information andmin-
ing selectivity effects in the long-term resources evaluation. The
multiple realizations generated at the beginning of the proposed
framework are used as an ensemble; they are not summarized into
onemodel aswith the traditional approach. Theworkflow is set in
awaythateachstep is repeatedforeachrealizationanduncertainty
is carried all the way to the end.

The proposed framework allows the practitioner to assess
local and global uncertainty. The local model of uncertainty is
represented by ore probability maps, which are easily achiev-
able using the results of the workflow. Ore probability maps
are generated by visiting one location at a time over all reali-
zations to determine local distributions of uncertainty. The
average value of the ore and waste flags (1 or 0, respectively)
is then calculated for the location. This is done at all locations.
A map of probabilities of ore can then be plotted. The same
technique could also be used for classification of resources.
For example, one could decide what should be the minimum
probability of a grid cell to be ore for it to be considered
measured resource and so on. The global model of uncertainty
is represented by the uncertainty in the global recoverable
resources assessed in the workflow. The global resources are
calculated for each realization of the workflow using the mine-
able dig limits resulted that are equivalent to using an econom-
ic cutoff grade in a traditional approach. The global resources
can be presented in terms of ore grade, tonnes of ore, and
profit. After calculating the recoverable resources for each
realization, the uncertainty in the resources can be found.
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Table 2 Overall mineral
resources of the bench
studied and the
uncertainty on it

Tonnes Grade

(000 t) (%)
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P10 P90 P10 P90
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