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Abstract
Optimizing final pit limits for stochastic models provides access to geologic and economic uncertainty in the pit optimization
stages of a mining project. This paper presents an approach for optimizing final pit limits for a highly variable and
geologically complex gold deposit. A heuristic pit optimizer is used to manage the effect of geological uncertainty in the
resources within a pit shell with multiple uncertainty rated solutions. The uncertainty rated pit shells follow the mean-
variance criterion to approximate the efficient frontier for final pit limits. Stochastic dominance rules are then used in a risk
management framework to further eliminate sub-optimal solutions along the efficient frontier. This results in a smaller set
of final pit shells that could be further analyzed for production scheduling. Additionally, the original solutions are analyzed
for changes in the mining limits and two regions are targeted as potential regions for further exploration.

Keywords Pit optimization · Geologic uncertainty · Risk management · Heuristic optimizer

1 Introduction

Investors are increasingly concerned with risks associated
with investment decisions. Many mining projects are
economically marginal and components of the mining
project must be optimized with an understanding of the
relevant risks. In an open pit mining project, the life-of-
mine plan incorporates a geologic model, mining limits,
and economic parameters to determine the mining limits
of the final pit, which are then used in a production plan
to estimate the project value [12]. Geological uncertainty
can have a major effect on mine plan optimization [1, 19,
22]. However, the geological uncertainty is often not used
properly in the decision-making process.
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The classic method for modeling geological properties,
such as the mineral grade of a deposit, is with estimation
techniques like ordinary Kriging. Silva, and Boisvert [24]
surveyed NI 43-101 reports published in Canada and found
that estimation modeling techniques were used for the
determination of resources and reserves in 90% of the
reports. Estimation-based grade models produce a 3D block
model with a single locally accurate estimate of the mineral
grade for each block [14]. The local best estimate is not
sufficient to quantify joint uncertainty in mineral grade. An
alternative approach is to model the geological uncertainty,
including the uncertainty from the ore body model, the rock
type model, the grade model, and parameter uncertainty
[23]. Stochastic modeling is one approach to model the
geological uncertainty where simulation is used to create
multiple equally probable realizations of the geological
variables. Often at least 100 realizations are constructed
to represent model uncertainty [4, 23]. Each realization is
conditionally unbiased, honors the local data, and honors
the spatial variability [14, 23].

Equally probable realizations provide many benefits for
quantifying resources but utilizing all realizations is non-
trivial for planning and downstream processes, such as pit
optimization. Few tools have been developed to use all
realizations from stochastic models in the pit optimization
stage of mine planning. In a mine plan, optimization is key
to maximizing the forecasted value of pit designs.
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Incorporating the uncertainty from stages of a business
plan into the decision-making process is not a new concept.
The risk tolerance for the project should be understood [26,
27], and risk management practices can be implemented
to choose between many solutions. The mean-variance
criterion, proposed by [20] and commonly known as the
“Efficient Frontier,” is one risk management tool commonly
used to rank solutions that maximize the expected return
for a given measurement of risk. Additionally, stochastic
dominance rules can be used to help choose between
solutions that have an associated probability distribution for
a response value [13].

This paper presents an approach for optimizing final pit
limits in the presence of geological uncertainty using a
previously developed heuristic pit optimization algorithm
[2]. The models used in this study are created using real
data from a complex folded gold vein deposit in Africa. The
data consists of exploration drill holes and economic data
from multiple years of mining. The benefit of the heuristic
pit optimizer (HPO) is its ability to optimize a final pit shell
over many realizations concurrently. This study highlights
some differences between classical solutions to the final pit
limit problem and solutions optimized over all realizations
of a stochastic model.

2 Pit Optimization

Classical approaches to pit optimization focus on a single
economic block model derived from an estimation modeling
workflow. An optimal final pit is found and then production
scheduling algorithms are used to sequence nested shells
within the final pit by maximizing a time-weighted value
such as net present value (NPV) or rate of return. Classical
algorithms for final pit optimization include the Lerchs–
Grossman algorithm [16], floating cone methods [3, 6],
and the maximum-flow or pseudo-flow algorithms [9, 11].
These algorithms operate on geological models with a single
value at each location and cannot minimize the uncertainty
from stochastic geological models which have multiple
“possible” values for each block. It is common to have up to
100 realizations, or 100 possible values for each block in a
stochastic model.

Deutsch et al. [5] present an approach to optimize
with stochastic models within this single model restriction
by using a scripting approach that optimizes a pit shell
for each realization. The pit shell for each realization
is then analyzed and individual blocks are ranked based
on the probability to be within all of the pit shells.
With this approach each optimization only considers one
realization independently of the other realizations, the joint
uncertainty is not considered and the full uncertainty is not
shown [2].

Some algorithms have been developed for optimizing
pit shells from a stochastic modeling workflow [2, 10,
15]. Goodfellow and Dimitrakopoulos [10] and Koushavand
[15] utilize information from the stochastic models by
summarizing the realizations on a block by block basis.
Their approaches focus on optimizing the production
schedule. Acorn and Deutsch [2] manage the uncertainty in
the total pit reserves and focus on optimizing the final pit
with the ability to find risk rated pit shells.

Goodfellow and Dimitrakopoulos [10] demonstrate
an approach for optimizing production schedules. The
realizations are summarized on a block by block basis with
summary variables, such as probability to be ore, upper
and lower deficient amounts, and the expected value of the
block. Uncertainty is penalized on a block-by-block basis
and the blocks with higher uncertainty are pushed to later
periods of the production schedule with a time-weighted
factor. Koushavand [15] optimizes the production schedule
within a final pit shell determined from an estimation type
model using traditional optimizers. Similarly, Koushavand
[15] summarizes the stochastic model at the block level and
applies constraints to the blocks to optimize the production
schedule.

Acorn and Deutsch [2] present a heuristic pit optimiza-
tion algorithm (HPO), for optimizing a pit shell over all
realizations from a stochastic workflow. The HPO maxi-
mizes the expected net value and uses a penalization factor
to manage the uncertainty in the total reserves within the
pit. Changing the penalization factor results in different
uncertainty rated pit shells. The objective function for HPO,
Eq. 1, optimizes the expected net value of the pit shell, (Vp),
defined in Eq. 2. Uncertainty in the pit shell is managed with
a user defined penalization factor, ωpv, applied to the risk,
(Rpv). Rpv is the standard deviation of the net value as cal-
culated across all realizations (Eq. 3). In these equations, L
is the total number of realizations in the stochastic model,
often 100. By increasing ωpv, a more stringent constraint
is applied to the optimization problem which decreases the
uncertainty in the pit value and causes the pit shell to shrink.

Maximize : Vp − ωpv ∗ Rpv (1)

Vp = 1

L

L∑

l=1

Vp(l) (2)

Rpv =
√√√√ 1

L

L∑

l=1

(
Vp(l) − Vp

)2 (3)

It should be noted that the penalization factor, ωpv, used
by HPO to target levels of uncertainty is not directly
correlated to a specific measure of uncertainty. Instead,
ωpv is a user defined value used to add a constraint to
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Fig. 1 Schematic comparing the
traditional pit optimizer
approach with a single model
restrictions (left), to optimizing
for all realizations with HPO
(right)

the objective function. Different ωpv values find different
solutions that maximize the expected net value for different
levels of uncertainty in the pit shell resources. The specific
uncertainty managed is the uncertainty in the final pit
resources. HPO manages this uncertainty with an objective
function that evaluates the value of a single pit shell
over all of the input model realizations; therefore, the
uncertainty managed is determined by the input models
used. Grade uncertainty can be included with a stochastic
grade model. Economic uncertainty can be included with
a distribution of grade to economic transfer functions.
Geotechnical uncertainty is not currently incorporated in
HPO. HPO is still being further developed and currently
uses a simple block precedence rule set in order to
test this heuristic optimization concept. A more complex
geotechnical rule set would need to be developed for the
algorithm to incorporate geotechnical uncertainty into the
workflow.

HPO differs from the traditional final pit limit optimizers
with the ability to optimize one pit shell for all realizations
(Fig. 1) and manage uncertainty by applying an uncertainty
constraint, ωpv, to the optimizer. One way of analyzing
the results from HPO is with the risk versus expected
return (Fig. 2) popularized by Markowitz [20]. Once
the HPO algorithm and its heuristic settings are tuned,
as explained in Acorn and Deutsch [2], ωpv can be
changed to find different pit shells along the efficient
frontier. HPO differs from other stochastic model optimizers
that penalize the uncertainty locally on a block-by-
block basis by addressing the uncertainty in the total pit
reserves.

3 Decision-making with Uncertainty

Gallardo and Deutsch [7, 8] present one approach to
incorporate geological uncertainty into a decision-making
workflow when choosing between a set of feasible actions.
For this study, the set of feasible actions refers to the set
of final pit limits from which a choice is made to mitigate
risk. The final pit limits represent the life-of-mine plan,
which incorporates a geological model, mining limits, and
economic parameters. The full set of feasible actions is
extremely high dimensional and an exhaustive global search
for optimization purposes is impractical. To choose from
the set of all feasible actions, different uncertainty rated

Fig. 2 Schematic of the efficient frontier that Markowitz [20] used
for comparing risk versus expected return. Generalized here for pit
optimization
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solutions are found along the efficient frontier using the
HPO. Stochastic dominance decision rules can then be used
to rank and help choose between uncertain projects based
on the distributions of a response variable. Each stochastic
dominance rule makes certain assumptions about the risk
aversion preferences of the decision-maker [17] and specific
rules can be chosen to tailor the process to the decision-
maker’s risk profile.

In this work, the mean-variance criterion is used to find
pit shells along the efficient frontier with the uncertainty
represented by the standard deviation of the pit values over
all realizations. The efficient frontier can be approximated
empirically [2], with each point on the frontier representing
a final pit shell with the maximum expected net value for a
given level of uncertainty (Fig. 2), and conjointly each point
also represents the minimum level of uncertainty for a given
expected net value.

Different regions of the frontier are more applicable
for risk management than others and some generalities
can be assumed about the shape of the frontier (Fig. 2).
The efficient frontier starts with the option that maximizes
the expected net value, regardless of the uncertainty in
the pit shell (point A on Fig. 2). Any point with a
greater uncertainty is not applicable for the decision-making
process. The frontier represents solutions with maximum
value for a given level of risk. With decreasing risk,
solutions have decreased value. The slope of the frontier
represents changes in value over a range of uncertainty.

This study incorporates two stochastic dominance deci-
sion rules, first- and second-degree stochastic dominance.
These decision rules are chosen based on the assumptions
for each rule as discussed by Levy and Sarnat [18] and Levy
[17]. The two rules match a risk management profile where
the decision-maker prefers projects that return more money
rather than less and are risk averse.

First-degree stochastic dominance assumes that investors
always prefer projects that return more money rather
than less. As shown in Eq. 4, first-degree stochastic
dominance states that, given the cumulative distributions of
the response variable for two projects F(x) and G(x), if
F(x) is always greater than G(x) (Fig. 3), then project F is
said to dominate project G [17]

F(x) ≥ G(x), ∀x (4)

Second-degree stochastic dominance assumes that the
decision-maker is risk averse. When comparing the cumula-
tive distribution function for two different project distribu-
tions, a risk averse decision-maker will choose the project
with a higher overall return. In this case, if the project distri-
butions F and G consist of real numbers between the limits
a and b, then as shown in Eq. 5, second-degree stochastic
dominance states that project F dominates project G if for
every point, x, along the cumulative density function, the

Fig. 3 Schematic highlighting the first stochastic dominance rule that
assumes the decision-maker prefers a project that returns more money
rather then less. In this case F(x) dominates G(x)

area between the two distributions is non-negative [17]. An
example of this is shown in Fig. 4. If there is a negative area
between the two distributions (A2 in Fig. 4 between x1 and
x2), F(x) still dominates G(x) as long the sum of the areas to
the left are larger and positive, in this case A1 (between x0
and x1).

∫ x

a

[G(t) − F(t)]dt ≥ 0, ∀x ∈ [a, b] (5)

This study incorporates the first- and second-degree
dominance rules; however, Levy [17] continues to describe
other stochastic dominance rules that could be used to
eliminate options from the set of efficient solutions. Each
stochastic dominance rule is based on an assumption about
the decision-maker and could be used to model more
complex risk management profiles. For instance, the third-
degree stochastic dominance assumes a preference for
positive skewness in the response distribution. Stochastic
dominance is a larger area of study that although useful
for this paper, is too large to fully summarize here. A
deeper look at the stochastic dominance rules available
would be required to customize the approach to the specific
uncertainty concerns for a project.

Fig. 4 Schematic highlighting the second stochastic dominance rule
that assumes the decision-maker is risk averse. When F(x) is below
G(x), the area between the two distributions is positive. In this case,
F(x) dominates G(x) because for every point. x, the area to the sum of
the areas to the left is positive
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4 Site Characteristics

The gold deposit in Africa that is modeled in this
study exhibits complex geology with a large mine-scale
fold pattern and nested small-scale fold patterns on
the limbs (Fig. 5). Since the domain contains complex
structural relationships, ordinary Kriging with locally
varying anisotropy is used to generate locally accurate
grade estimates with the correct structural relationships
[21]. The complex geological relationships combined with
low short-range continuity present a unique and challenging
geological environment.

4.1 Geostatistical Models

Exploration drill data is used to create the geostatistical
models for this study. The complex-folded vein deposit
contains multi-phase folding at the mine scale that host
mineralized vein sets. The deposit also exhibits a high
nugget effect in the variograms which increases the
expected local uncertainty in the models.

Fig. 5 Plan view of the domains, colored by reference number, for the
folded gold deposit

The deposit is split into four domains that represent the
predominant structural zones. The domains are numbered
8850, 8870, 8880, and 8890. Grade values are simulated
at locations within the mineralization wire frames. The
domains are shown in plan view (Fig. 5) and in an east-
west cross-section (Fig. 6), which highlight the complexity
and orientation of the deposit. Two of the domains are
considered low grade only regions, while two domains
consist of both high-grade and low-grade regions.

4.2 Operational Parameters

The deposit modeled for this study is from an active mine
with historic mining data. Historic mining and economic
data are used to calculate the economic block value from
the geostatistical grade models for use in the pit optimizer
(Table 1). The block size of the selective mining unit is
determined for this study to be 10 m × 10 m horizontally
and 6 m vertically resulting in 7.9 million cells in the model.
A block precedence rule set is used to set the geotechnical
slope angles of the final pit shells to 30◦.

5 Optimizing Pit Shells with a Heuristic
Optimizer

To manage the uncertainty in the modeled deposit, a
heuristic algorithms, HPO, is used to find uncertainty rated
pit shells. The first step in managing the uncertainty in
the pit shell resources is the creation of the input models.
Stochastic realizations of the geological grade model are
created using sequential Gaussian simulation and standard
geostatistical practices to model the uncertainty in the
grade variables. The geological realizations are converted to
economic block models using an economic transfer function
created from historic mining data of the deposit [25] and
the subsequent economic models are the input for HPO.

Fig. 6 East-west cross-section of the folded gold deposit domains
colored by reference number
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Table 1 Surface mining cost data used for economic block value calculations. Cost data comes from a feasibility study for the deposit [25]

Description Amount Unit

Mining cost $3.16 USD/ton

Incremental pit depth cost $0.003 USD/m

Ore cut-off 0.9 g/t

Net revenue after mining and processing $21.8 USD/g

For this study, not enough economic data was available to
create a distribution of grade to economic transfer functions
so the same transfer function is used for all realizations;
therefore, economic uncertainty is not specifically targeted
in this study.

HPO is tuned by comparing the results to a known
optimal solution, such as the results from the Lerchs–
Grossman algorithm [2]. Since the Lerchs–Grossman
algorithm can only optimize over a single estimation type
model, HPO is first tuned with an averaged response model
to find the gap in optimality of the tuned optimization
settings. The average response model is determined by
averaging the block values across all realization to create a
single estimation type model. Once HPO is tuned, multiple
uncertainty rated final pit limits are found with HPO by
changing the penalization factor, ωpv, and the solutions
are analyzed from a risk management perspective. The
mean-variance criterion of the efficient frontier shows the
value versus uncertainty trade-off between the solutions.
Stochastic dominance rules are applied to eliminate some
pits.

5.1 SimulationModels Versus EstimationModels
in Pit Optimization

The optimization of a final pit limit is required for
production scheduling and sets the boundary for the life-of-
mine production [12]. Uncertainty can be managed during
the pit limits optimization by considering all realizations
simultaneously. A pit optimized for the stochastic model
still has a single set of mining limits; however, it differs
from the classical approach in that there is a value associated
with each realization of the model. Figure 7 shows the net
values with an empirical cumulative distribution function.
Statistics from the distribution of the net values can be used
either in the optimization process or in making decisions
between solutions. HPO allows the practitioner to decide
how the uncertainty is penalized during the optimization
process. In certain cases, there might be seemingly minor
difference between the pit shells, as seen later. However,
by optimizing over all realizations, you can penalize the
standard deviation of this distribution to target different
uncertainty rated solutions.

5.2 Tuning the Pit Optimization

HPO is a heuristic algorithm that uses a random restart
tuning parameter to escape local optima traps [2]. To
tune the parameter, the results from HPO are compared
to a known optimal solution, in this case, the Lerchs–
Grossman algorithm. The Lerchs–Grossman algorithm can
only optimize over estimation style models (i.e., with single
locally accurate block grade estimates); therefore, HPO is
first tuned on the estimation style model or with an averaged
stochastic model [2]. The gap in optimality is compared and
the optimization settings for HPO are tuned to decrease the
gap if needed [2]. HPO uses a greedy optimizer and can
get caught in local optima. If the gap between HPO and
Lerchs–Grossman is large, the number of random restarts
can be increased until the results are sufficiently close to the
Lerchs–Grossman solutions.

For the current domain, Lerchs–Grossman found a final
pit shell with a net value of $1.5Bn. HPO found a solution
with a net value within 1% of the Lerchs–Grossman pit
shell. Although HPO can find nearly optimal solutions

Fig. 7 Cumulative distribution function of the net value of a pit shell
for all realizations
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in a single model test case, targeting specific levels of
uncertainty while optimizing over all realizations is a
more complex problem due to the incorporation of many
realizations. After tuning the HPO algorithm, the efficient
frontier for final pit limits can be found by changing ωpv.

6Managing the Risk in the ResourcesWithin
Pit Shells

6.1 The Efficient Frontier for Final Pit Limits

The proposed iterative uncertainty penalization workflow
generates a set of final pits that consider the suite of
geostatistical realizations for this deposit. The profit/costs
data (Table 1) are applied to the full suite of realizations. For
this study, ωpv is then iteratively increased from 0 (which
finds a similar result as Lerchs–Grossman) to 11 to find
pit shells with decreasing variance in the distribution of pit
values.

The efficient frontier is constructed and the results are
plotted in the value-risk space (Fig. 8). Since ωpv does not
directly correlate to a specific measure of uncertainty, the
range of values to use for a specific study will change.
A multi-scale step approach is therefore useful. First, the
overall shape of the frontier is found using large step
increases in ωpv. This study started with a step size of
3. Then, specific regions of the frontier are filled in with
smaller incremental changes of ωpv.

Utilizing the results from HPO requires a project specific
understanding of the acceptable level of risk in future
mine plans; however, the probability distributions for the
pit values provides insight into the level of uncertainty
and potential risk of different pits on the efficient frontier
and can be used to narrow the efficient options. In
addition, regional changes in the pit limits between solutions

Fig. 8 A mean-variance plot showing the efficient frontier of final pit
limits found by optimized over all realizations

can provide insight into local effects of the geological
uncertainty on the final pit limits.

The efficient frontier consists of efficient solutions based
on the mean-variance criterion. Stochastic dominance rules
can be used to analyze the pit value distributions and find
smaller subsets of efficient solutions. Certain assumptions,
such as an aversion to risk, are used to find a compromise
between maximizing the expected value and minimizing the
uncertainty in that value. The smaller subset of efficient pits
can then be further optimized and evaluated for production
scheduling. Regardless of the final choices made, reviewing
the solutions provide insight into the potential risks of the
project and gain insight into regions of the deposit that
could warrant further exploration drilling to decrease the
uncertainty.

6.2 Eliminating Solutions on the Frontier

The effect of grade variability on future mine plans can be
seen in the risk-value space (Fig. 8). It is tempting to choose
the option that maximizes the expected return, however,
that choice does not account for any associated risk. In
this study, each solution shows a significant coefficient
of variation (6.3–6.0%) in the expected pit value. The
distributions in Fig. 9 provide a better visual representation
of the variability in the net value of the final pit limits with
a slight skew towards the lower values. At the lower end,
the fifth percentile values range from $1.3Bn to $1.1Bn
(Table 2), which provides an idea of the risk of a lower than
expected return. The upper end, the 95th percentile values,
ranges from $1.6Bn to $1.3Bn (Table 2), which provides
insight into the potential upsides of each solution.

Fig. 9 The ECDF for each pit shell along the efficient frontier is
labeled A through G, with the ECDFs for pits A through D nearly
overlapping. The empirical cumulative distribution functions of the
value distributions for all of the pit shells are presented together
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Table 2 Summary statistics for the pit value distributions of the pits found along the efficient frontier

Pit Mean Standard deviation Coefficient of variation P5 P95

A $1.510Bn $95.3Mn 6.31% $1.343Bn $1.649Bn

B $1.510Bn $94.9Mn 6.28% $1.342Bn $1.647Bn

C $1.507Bn $93.9Mn 6.23% $1.342Bn $1.641Bn

D $1.504Bn $93.4Mn 6.21% $1.341Bn $1.640Bn

E $1.454Bn $88.2Mn 6.07% $1.305Bn $1.604Bn

F $1.309Bn $78.2Mn 5.97% $1.193Bn $1.445Bn

G $1.220Bn $72.6Mn 5.95% $1.094Bn $1.326Bn

Pit A is the start of the efficient frontier for this study.
As seen in Table 2, there is a corresponding decrease in
the expected value with a decreasing uncertainty. Stochastic
dominance can be used to find the trade-off between
expected value and the uncertainty to account for certain
risk averse preferences.

Stochastic dominance rules are an objective approach
for narrowing solutions along the efficient frontier. For the
current study, the first-degree stochastic dominance and
second-degree stochastic dominance rules are applied and
the efficient set is narrowed down to pits A, B, and C. Pits
E, F, and G are dominated by both first- and second-degree
stochastic dominance and are therefore inefficient solutions.
Pit D is only dominated by pit B with both first- and second-
degree stochastic dominance, but is dominated by pits A and
C with second-degree stochastic dominance.

The remaining efficient set of pits (A, B, and C)
are found at the start of the efficient frontier where the
slope is shallowest (Fig. 10). Although the other solutions
significantly decrease the uncertainty in the resources
within the pit, the cost in the loss of value is too great, as
shown by stochastic dominance. These three pit shells can
now be advanced to the next stage of the mine planning

Fig. 10 Expected value versus risk of final pit limits optimized over
all realizations to maximize the expected net value for targeted levels
of risk. The efficient set (A-B-C) are labeled at the upper end of the
efficient frontier

process for further analysis. Productions schedules would
be optimized for each final pit limit and for all realizations.

6.3 Local Effects of Geological Uncertainty on the Pit
Limits

Local changes in the pit limits can be used to target regions
of the pits for further study. Figure 11 illustrates three
potential ways the pit might change when the geological
uncertainty is penalized. Figure 11 a illustrates the side wall
of a pit being incrementally shaved away, thus decreasing
the overall width of the pit, while in Fig. 11b the depth
of the pit is incrementally decreased. Figure 11 c differs
from the first two, in that instead of an incremental change,
sometimes sudden losses of a sub-region of a pit are seen
with a decrease in the uncertainty.

A combination of all three of these effects are seen
in this study. Plan views of two selected solutions, pit D
in Fig. 12 and pit E in Fig. 13, illustrate the third effect
where a large region is removed when the uncertainty is
decreased. The probability distributions for pits A through
D are very similar (Fig. 9) and pit E shows where a
slight increase in ωpv caused a significant change in the
cumulative distribution function. The change from pit D to
pit E also corresponds to the southern tail of the pit being
removed from the mining limits, as seen by comparing
Figs. 12 and 13. Two cross-sections are taken through the
averaged grade model to further show how the pit shells
change as the uncertainty is penalized (Figs. 14 and 15).

The east-west cross-section (A-A’), shown in Fig. 14
shows minimal changes between the different uncertainty
rated solutions, with the majority of the changes occurring
on the western slope of the pit shell. Here, the primary
effect of the decrease in uncertainty is that the pit walls are
moved inwards, thus decreasing the overall width of the pit.
This decrease in width also corresponds to a decrease in
pit depth. The north-south cross-section (B-B’), shown in
Fig. 15, shows major differences in the lowest uncertainty
rated solutions. The first four solutions along the efficient
frontier, pits A through D, show minimal variation through
this cross-section. However, the three lowest uncertainty
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Fig. 11 Ways the pit can change
as the uncertainty is decreased. a
Decreasing the width of the pit;
b decreasing the depth of the pit;
c removing a large sub-region of
the pit

(a) Decreasing the width of the pit (b) Decreasing the depth of the pit

(c) Removing a large sub-region of the pit

rated solutions, pits E through G, drop the southern portion
of the pit. In addition, from the southern section of the pit
to the center, the depth of the pit is further decreased. This
shows two regions of the pit shell that are affected when
the uncertainty is penalized with a large enough factor. The
seemingly high grade ore zone in the bottom of Fig. 15 is
deceiving in this 2D slice. The actual size of the ore pocket
is smaller than it appears in the 2D slice and does not offset
the additional waste above it.

7 Discussion

Traditional pit optimizers are constrained by their ability to
optimize over a single economic block model derived from
an estimation type grade model. This limitation hampers
the ability of the practitioner to manage the risk in the pit
shell designs that are derived from the uncertainty in the
underlying models. A heuristic algorithm such as HPO can

Fig. 12 Plan view of pit D on the efficient frontier. Dotted orange lines
show the location of cross-sections A and B

instead optimize concurrently over all of the realizations
in a stochastic model. By optimizing over all realizations,
uncertainty in such parameters as the rock type and grade
values can be managed by the optimization algorithm. By
applying a penalization factor, a constraint on the desired pit
value uncertainty, an uncertainty rated pit shell solution is
found. Iteratively changing the penalization factor provides
multiple uncertainty rated solutions that are useful when
applying risk management principals to a project.

The uncertainty in the pits can be analyzed through
multiple uncertainty rated solutions and risk management
principals can be applied during the optimization of final pit
limits. In this study, HPO is used to estimate the efficient
frontier for the final pit limits. The chosen stochastic
dominance rules eliminated all but three of the uncertainty
rated solutions. The three remaining solutions showed
minimal differences in the pit limits. The expected pit values
also showed minimal difference and ranged from $1.510Bn

Fig. 13 Plan view of pit E on the frontier where the decrease in
uncertainty causes the southern tail of the pit shell to be dropped.
Dotted orange lines show the location of cross-sections A and B
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Fig. 14 East to west
cross-section of the averaged
grade model showing the
outlines of each pit shell along
the efficient frontier

to $1.507Bn (a max difference of 0.23%). Although the
standard deviation showed a larger max difference of 1.5%
while ranging from $95.3Mn to $93.9Mn, the coefficient
of variance for the pits stayed fairly constant at 6.31% to
6.23%.

Reviewing the changes in the mining limits for the pits
along the efficient frontier can be used to inform future
studies, such as targeting regions for future laybacks or
regions where correctly setting the starting mining limits are
important. If the local changes are large enough, i.e., larger
than the minimum mining width required for a layback,
then the region could be evaluated as a potential location
for future laybacks. If the local changes are smaller then the
minimum mining width, then correctly setting the initial cut
is of higher importance.

The three remaining solutions, after applying stochastic
dominance rules, are oriented roughly north to south with
a shallow pit sitting in a southern tail of the final limits. In
contrast, the solutions with the lowest variance do not show
the pit taking the shallow region to the south (Fig. 13). The
western slopes of the pit shells also show significant but
incremental decreases in the pit width. All other slopes show
a consistent but minimal decrease in the limits.

The changes in the mining limits highlights two large
regions where the uncertainty from the geological models
greatly affect the final mine plans in a way that could be
of interest for a future layback study in the production
scheduling phase of the project. Additionally, the eastern
slopes of the pits show minimal changes highlighting a
region where setting the initial mining limits correctly are

of importance; errors in setting the location would cause
either a loss of ore, or a needless increase in waste mined. A
further study in this region could be of interest to decrease
the uncertainty of the location of the optimal highwall.

8 Conclusion

HPO represents a fundamental shift in the practice of pit
limit optimization in the presence of uncertainty. Using
a heuristic algorithm like HPO allows the practitioner to
simultaneously consider value and uncertainty captured
with a suite of geostatistical realizations when optimizing
a pit shell for a given deposit. The uncertainty captured is
determined by the input models therefore multiple types of
uncertainty, such as geological and economic uncertainty,
can be managed. The additional information generated by
optimizing over all realizations can be used to improve
decision-making with risk management principals, or to
target different zones that affect uncertainty in the pit shells.

The approach presented in this study relies on an
algorithm that can find pit shells on the efficient frontier,
the mean-variance criterion. The algorithm used in this
study, HPO, is still in its infancy and there are limitations
in the mining parameters used to determine the pit shells.
Currently, only simple block precedence rules are used to
determine the pit slopes. More complex mining parameter
rules would need to be developed for the algorithm in
order to incorporate mining parameter uncertainty into the
analysis.

Fig. 15 North to south cross-section of the averaged grade model showing the outlines of each pit shell along the efficient frontier. Pits A through
D nearly overlap each other
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The study presented herein demonstrates the utility of
pit optimization over all realizations for understanding the
risk-value outcomes of the different possible decisions. The
complexly folded gold deposit has short-range continuity
and complex mineralization envelopes that increase the
variability in the grade models and present a challenging
environment for decision-making. Without considering the
stochastic variability in the grade distribution traditional
methods can only optimize for a single model at a time, such
as an estimated model, and therefore cannot account for the
underlying uncertainty. Alternatively, a suite of uncertainty
rated pit shells are generated by targeting varying levels
of uncertainty using the HPO algorithm. In the presented
study, the uncertainty rated pit shells range in expected
value between $1.5Bn and $1.2Bn and range in standard
deviation between $95.3Mn and $72.6Mn. In this case, the
coefficient of variation decreased from 6.3 to 6.0%. This
directly contrasts with a traditional approach that can only
provide one estimated pit shell value and no measure of the
variance of that value for one set of geostatistical, economic,
and mining parameters.

Incorporating the full suite of stochastic realizations into
the pit optimization process is key to managing the geologic
uncertainty. However, using the suite of realizations is a com-
plex problem and has not yet been fully or consistently em-
braced by the mining industry. Embracing the present uncer-
tainty is the first step of staying relevant in a competitive
industry with marginal mining deposits. The second step
is to manage that uncertainty to meet business objectives.
The results from this study show the potential for further
developing a pit optimization algorithm that can optimize
over all realizations concurrently. This provides a new tool
that can be used to apply risk management principals to the
pit optimization process of a open pit mining project.
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