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Abstract
A trust model IMPACTS (intention, measurability, performance, adaptivity, communication, transparency, and security) has
been conceptualized to build human trust in autonomous systems. A system must exhibit the seven critical characteristics to gain
and maintain its human partner’s trust towards an effective and collaborative team in achieving common goals. The IMPACTS
model guided a design of an intelligent adaptive decision aid for dynamic target engagement processes in a human-autonomy
interaction context. Positive feedback from subject matter experts who participated in a large-scale exercise controlling multiple
unmanned assets indicated the decision aid’s effectiveness. It also demonstrated the IMPACTS model’s utility as a design
principle for enabling trust between a human-autonomy team.
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1 Introduction

Automation has been changing our lives dramatically over
many decades, with both positive and negative impacts. To
us, automation is any form of machine or software agent that
performs a human task, and it is a general term that includes all
machines, including autonomous systems and artificial intel-
ligence (AI)-enabled machines. On the positive side, more
intelligent automation technologies such as industry robots,
personalized social robots, self-driving vehicles, and AI bring
our day-to-day life and work more productivity, efficiency,
and convenience. On the negative side, besides some job loss
(Lamb 2016), one of the challenges when working with these

intelligent machines is the risk that these agents become in-
creasingly capable but occasionally fail (Desai et al. 2013;
Onnasch et al. 2014; Sebok and Wickens 2017; Wickens
et al. 2020). With more and more enabling AI technologies
applied to enhance agent capabilities, these machines will be-
come increasingly autonomous. Autonomy has been singled
out as a key component of the third offset strategy for military
applications, which intends to deliver leap-ahead battlefield
technologies such as the robotic wingman concept that team
up soldiers with autonomous systems to enhance military ca-
pability (Defense Science Board 2016).

A key challenge to successful and effective human-
autonomy teaming is enabling “trust” between the human-
machine team (Taylor and Reising 1995; Lee and See 2004).
Trust is a foundation for effective teaming, without which,
team members would spend unnecessary energy and time to
re-inspect work and revalidate decisions. Lack of trust also
results in less information sharing and an uneven distribution
of workload (Salas et al. 2005; Sycara and Lewis 2004). To
further detail the challenge, three “context constraints” tech-
nology, human capability and limitations, and system func-
tionalities have been identified for building a trusted partner-
ship between human and machine (Baber 2017; Hou et al.
2014). These constraints are further identified as the six bar-
riers for human to trust autonomous systems: (1) machine’s
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lack of human sensing and thinking; (2) machine’s inflexibil-
ity and adaptability to the changing situation; (3) machine’s
lack of sufficient transparency for predictable results or impli-
cation; (4) machine’s lack of sufficient understanding human
intent; (5) machine’s ineffective interface to build human con-
fidence; and (6) human’s lack of understanding how to design
machines that learn/adapt throughout their lifecycle (Defense
Science Board 2016).

Trust is an abstract concept and is complex and multidi-
mensional (Abbass et al. 2016; Lee and See 2004; Siau and
Wang 2018). Trust can be attributed to a wide variety of en-
tities, including humans, machines (hardware and software),
organizations, institutions (e.g., trust in a legal system), and
countries. Trust is not all or none but is continuous and can be
attributed to an agent (e.g., a human or a machine) as a whole
or to specific parts, capabilities, or functions of that agent.
Moreover, it can be a situation or task dependent. Thus, this
allows attributions of trust to vary even towards the same
agent. For example, an individual may trust their spouse more
than anyone else, yet they may not trust their spouse at all for
specific tasks like cooking. This complexity highlights the
need to be careful when examining trust as a construct that
shapes (and is shaped by) behaviors of and interactions be-
tween humans and machines. As AI becomes more advanced
and machines evolve into more complex and more autono-
mous systems, it is not surprising that how trust evolves with
these systems will also change.

A number of definitions of trust exist from a wide variety of
disciplines (e.g., Cho et al. 2015; Lee and See 2004).
Typically trust is defined as an attitude that an agent(s) (the
trustor) holds towards another agent(s) (the trustee), regarding
the risk taken to depend on the trustee to achieve a goal or
some positive outcome under uncertainty. Trust is commonly
understood as a cognitive process and a relational mediator for
interactions between humans, humans and organizations, and
human-machine interactions. In the context of human interac-
tion with intelligent technologies, trust has been regarded as a
key element and a “fundamental enabler” in human interac-
tion with autonomous systems (Hou et al. 2011, 2014).

A variety of models exist describing the development of
trust in automation (e.g., Abbass et al. 2016; Hancock et al.
2011; Hoff and Bashir 2015; Lee and See 2004; Muir 1994;
Schaefer et al. 2016; Sheridan 2019a). As a cognitive process,
trust has a long-term tendency that is relatively static unless it
is broken (Jarvenpaa et al. 1998; Mayer et al. 1995). This
dispositional trust is shaped by one’s personality, culture,
and experiences and shapes one’s general attitude towards
automation regardless of the system (Hoff and Bashir 2015).
Trust is also a dynamic cognitive state that evolves and chang-
es during systems operation. This dynamic trust is determined
by the situational context in which the interaction takes place
(e.g., task complexity, workload, organizational setting) and
by the learned trust through interactions with the system itself

(e.g., reliability, false alarm rates, ease of use) (Hoff and
Bashir 2015). In this regard, trust can be defined as a reactive
and transient short-term mental state when interactions occur
momentarily (McAllister 1995; Merritt and Ilgen 2008;
Schaefer 2013). Therefore, trust can change and become en-
hanced or degraded over time (Desai et al. 2013; Schaefer
2013; Wilson et al. 2016), revealing its dynamic nature over
repeated interactions or experiences.

Other models that look at trust in online social networks
and decision support systems categorize the factors affecting
trust into individual trust attributes and relational trust attri-
butes (Cho et al. 2015; Lai et al. 2020a, b). Individual trust
refers to constructs that are traced to the human’s own char-
acteristics, whereas relational attributes are derived from fac-
tors involving relationships. Individual trust attributes are fur-
ther divided into logical trust and emotional trust. Logical trust
is based on cognitive processes from interacting with the trust-
ee (e.g., beliefs, confidence, risk, bias, experience, reliability).
Emotional trust is influenced by a person’s feelings (e.g., fear,
hope, frustration). Relational trust factors include items like
the similarity between people and the importance of
individuals.

Similarly, Hancock et al. (2011) developed a model of trust
in robotics that included human factors, robot factors, and
environmental factors. Their model suggested that robot fac-
tors accounted for the most in the development of trust,
followed by environmental factors, and almost no effect on
the human factors. For the robotic factors, trust was most
related to the robot’s performance and less upon attributes
such as its appearance. Subsequently, Schaefer et al. (2016)
expanded this three-factor model to automation in general and
developed a human-automation interaction (HAI) model.
Again, this model stressed the importance of automation-
related factors in trust development. It is found that human
factors played a larger role in general automation trust, but
that there was a paucity of research examining environmental
factors (Schaefer et al. 2016). Robot and human factors of the
HAImodel mirror two of the three “context constraints” (tech-
nology, human, and system functionalities) identified by Hou
et al. (2014) and further explained byBaber (2017) in his book
review on the development of the human-autonomy collabo-
rative partnership. The environmental factor is highly relevant
to system functionalities based on application context
(Section 3.2 provides an example of functional requirements
based on an operational context, mission type, force structure,
etc.). The relevance has also been discussed for designing
more advanced autonomous systems such as intelligent adap-
tive systems (IASs) (Hou et al. 2014).

These models of trust in automation, while comprehensive,
may not consider dimensions related to AI and IASs. AI tech-
nologies within IASs are able to adapt their support (to hu-
man) in a manner that is sensitive to both the external world
and the internal (i.e., state of the human and machine) (Taylor
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and Reising 1995). Autonomous systems like IASs arguably
differ from traditional automation because these systems have
degrees of self-governance, learning, freedom of decision-
making, and possibly free will in responding to the requests
in extreme conditions within dynamic and indeterministic or
uncertain contexts (Hou et al. 2014). Another way to think
about traditional automation versus autonomy is in terms of
Parasuraman et al. (2000) model of the levels of automation.
This model suggests that automation replaces tasks at varying
levels across the human information processing process,
namely, information acquisition, analysis, decision-making,
and actions. It improved the flexibility of Sheridan and
Verplank’s ten levels of automation (Sheridan and Verplank
1978) with the convenient decomposition of task perfor-
mance, but still at a very coarse-grained conceptual level with
a low resolution. Traditional automation has typically in-
volved only using the machine to support humans in one of
the four categories and commonly at lower to moderate levels
of automation. However, autonomy allows the machine to
perform tasks for all four of these constructs at high levels of
automation.

The evolution of machines from relatively simple tools to
automation to complete autonomy (i.e., static automation,
flexible automation, intelligent adaptive automation, Hou
et al. 2014) affects the trust relationship between the human
and the machine (Yagoda 2011). For simple tools, trust is
defined almost solely by the tool’s performance. As machines
incorporate greater intelligence with higher degree of self-
governance and decision-making, the factors that affect the
trust relationship become more complex. As machines evolve
into highly autonomous systems (i.e., IAS) with greater AI,
Sheridan (2019b) argues that the trust relationship will start to
more closely mirror that of human to human trust. Siau and
Wang (2018) suggest that the performance, process, and
purpose of AI are different and more complex than previous
technologies, and thus the factors that influence human trust in
AI is also more complex. Hou et al. (2011, 2014) suggest that
the relationship between human and AI agents should be built
up based on aspects of human-human interactions to reflect
dynamic and complex nature of human-autonomy teaming. It
is evidenced by a study of the trust relationship with human
team performance (McNeese et al. 2019). The study found
that there was a lower level of trust in the autonomous agents
in the low human performing teams than both medium and
high performing teams, while there was a loss of trust in au-
tonomous systems among human teams at all three performing
levels over time. In fact, some have argued that true trust is only
attained when the agent itself has the free will to enter the trust
relationship (Abbass et al. 2016). It touches on the essential
topic of human-machine interaction: roles, responsibilities,
and authorities (Hou et al. 2014).

However, the free will for a machine to have greater self-
governance and decision-making increasingly invites the

uncertainty, vulnerability, and risk of the trust relationship.
The risk is characterized by what Onnasch et al. (2014) call
the lumberjack effect. That is, when a machine that operates at
higher levels of automation fails, the consequences of the
failure are more severe. The severity of consequences is cate-
gorized byVicente (1990, 1999), Miller (2000), and Hou et al.
(2014) for what they call the coherence and correspondence
domain applications. For coherence domain applications such
as a piece of document process software, the consequence of
automation failure may not be severe. However, for corre-
spondence domain applications such as safety and/or mission
critical systems, the consequence can be catastrophic (e.g.,
recent Boeing 737 Max accidents) (Marks and Dahir 2020).

The rise of IASs and the employment of AI also raise a
number of ethical concerns that have not been previously con-
sidered when examining trust in traditional automation (Awad
et al. 2018). The most notable example is an autonomous
vehicle in an imminent collision situation and must decide
whether fatally injure its occupants or pedestrians (Awad
et al. 2018). Thus, we must now consider the trustworthiness
of a machine not only on its technological capabilities or task
performance but also whether the outcomes are ethically
sound. System designers need to consider specific policies
of AI and autonomy and address associated complex legal,
ethical, moral, social, and cultural issues (Hou et al. 2014). It
also reminds all stakeholders that a set of global standards for
AI and IAS systems are needed.

One of the problemswith AImodels (e.g., deep learning and
machine learning models) relates to the complexity and opacity
of their outcomes such that AI decisions and actions are unex-
plainable and might appear illogical to humans (Rahwan et al.
2019). Hence, to maintain trust, there needs to be an increased
focus on transparency, communication, and shared mental
models of intent which are critical for building human trust in
autonomous systems. To address the concern of AI opacity, the
field of explainable AI (XAI) has emerged to develop tech-
niques and AI models that allow for increased explainability,
interpretability, and transparency of AI. Research under the
Defense Advanced Research Projects Agency’s (DARPA)
XAI program (Arrieta et al. 2020; Gunning and Aha 2019), and
projects under the Fairness, Accountability, and Transparency
Machine Learning (FAT/ML) working group (fatml.org) contin-
ue to advance the knowledge in this area (Adadi and Berrada
2018).

The widespread adoption of AI and autonomy introduces
new challenges that can impact trust. There now exists new
threats to our digital security (e.g., speech synthesis for imper-
sonation), physical security (e.g., using autonomous systems to
attack), and political security (e.g., mass unwanted data collec-
tion) (Brundage et al. 2018).With the emergence of the Internet
of Things (IoT) that promises various exciting applications
from the power grid to smart cities and to networked autono-
mous vehicles, security has come to the forefront of the system
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design process. The risk of cyber-attacks is a major concern and
a critical design challenge for autonomous systems when at-
tackers penetrate the network from anywhere in the world
(NIS Cooperation Group 2019). Moreover, when data-driven
machine learning techniques (e.g., deep neural network) are
used for object classification and threat assessment in sensor
images, autonomous systems are vulnerable to a wide variety of
attacks (Computing Community Consortium 2020; Szegedy
et al. 2013; Vorobeychik and Kantarcioglu 2018).

Attacks to AI can take on many forms. For example, poi-
soning attacks introduce noise or very specific but small de-
viations into training data (such as changes in pixels) before a
model is learned, thus affecting its subsequent performance
by introducing bias into the system or causing the model to
misclassify or make poor decisions (Vorobeychik and
Kantarcioglu 2018; Zhang and Dafoe 2014). Evasion attacks
attempt to avoid detection and try to mask malicious code to
be classified as benign or safe. If a model is known, attackers
may know how to manipulate it or “fool” the classifier. These
so-called white-box attacks might focus on altering the state
of the environment to influence the system to misinterpret a
state (Vorobeychik and Kantarcioglu 2018).

Therefore, due to the dynamic nature of trust, adaptive
behaviors of the autonomous system and measurable perfor-
mance of the actions are required for predictability and reli-
ability that will instill trust during IAS operations with differ-
ent contexts. Sufficient levels of communication, transparen-
cy, and security are needed for trust development. Thus, in this
paper, we provide not only a conceptual but also practical trust
model for system designers to build trustworthy autonomous
systems. This new trust model IMPACTS has been developed
to address shared intention, performance measurability, pre-
dictable and reliable performance, context adaptivity, bi-
directional communication, optimal transparency, and protec-
tive security. The next section explains what the IMPACTS
model is, and followed by an example of the construct of an
IAS as a decision aid guided by the IMPACTS model, and
then followed with evaluation results in a recent field test of
the entire system.

2 IMPACTS trust model

With their advanced capabilities and high degrees of self-gov-
ernance, learning, and freedom of decision-making, AI and
autonomous systems are becoming more and more capable
and exhibiting leadership in more areas. Thus, human trust
in these types of technologies should closely resemble that
of human to human trust (Sheridan 2019b). For humans,
strong leadership depends on trust that is a function of capa-
bility and integrity. Trust in technologies also cannot exist
without any of these two variables. Technologically, there is
no doubt that those autonomous systems with greater AI

capabilities are more capable than their human partners in
certain areas. The question is how to build up their human-
like integrity to gain actual trust and demonstrate their true
leadership? To exhibit integrity for autonomous systems, in-
tention, measurability, performance, adaptivity, communica-
tion, transparency, and security are considered to be seven
essential elements and building blocks of the IMPACTSmod-
el. The IMPACTS model is aimed to guide the construct of
user’s trust in autonomy when designing a human-agent part-
nership and addressing the three context constraints (i.e., hu-
man, technology, and environment) as well as six trust barriers
discussed in the last section. These agents are intelligent and
adaptive enough that they can “think for themselves” and can
often conduct tasks on their own with their afforded authority
(Hou et al. 2014). In some cases, they also decide which task is
best suited to achieve the goal for themselves. Figure 1 illus-
trates the defining characteristics of the seven IMPACTS ele-
ments in this context.

2.1 Intention

Regardless of what you mean to do or hope to happen, your
behaviors speak louder. It is critical that behaviors are aligned
with one’s intentions and that those intentions are properly
communicated (Schaefer et al. 2017). By doing so, others
can infer the motives of the agent based on the behavior and
make accurate judgments of trust. A collaborative partnership
must have the desire to support each other. The chosen desires
are defined as intentions to which the agent commits resources
for achieving the goals to help its human partner (Hou et al.
2014). Poor understanding of common goals is a potential risk
for human-agent teaming. The recent Boeing 737 Max acci-
dents demonstrate how disasters can happen when the human
wants to take one action, but the machine agent is attempting
to execute another (Endsley 2019). The way that the technol-
ogy partner (e.g., adaptive intelligent agent (Hou et al. 2014))
is designed affects the performance of its human partner.

Understanding common goals and how to optimize the
relationship between humans and technological systems is at
the core of human-autonomy teaming. The agent must know
what its human partner is trying to achieve so that it can pursue
achieving its intention to help. Meanwhile, understanding the
agent’s supportive intention towards a common goal serves as
a starting point for a human to trust his/her agent partner.

Furthermore, the ability of IAS to communicate intent ties
into judgments of its ethical and legal behavior. Technology
has matured to the point that it is no longer dependent on
human involvement to perform activities such as driving cars
or tracking and firing at enemy targets. IAS designers must
now consider “should we?,” rather than “can we?”. The ten-
sion between what is possible and what is acceptable in terms
of the range of capabilities and functionalities in IASs requires
careful consideration of both ethical and legal issues; focusing
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solely on technological and operational perspectives can lead
to user rejection and/or severe consequences (Hou et al. 2014).
For example, the ethical and legal ramifications of unmanned
robotic systems can be extensive, and the British Broadcasting
Corporation (Hughes 2013) cites a campaign calling for an
international ban on “killer robots” due to concerns about
the ethical and legal implications of fully autonomous
drones. That is why Murphy and Woods (2009) proposed
amending two of the three original Isaac Asimov’s “laws” in
his collection of short stories I, Robot, although they still re-
flect human understanding and expectation regarding the
relationship of humans and autonomous machines. Given
the legal and ethical responsibility of those who design and
deploy autonomous machines and the complexity and
dynamics of relationships between human and machine,
Murphy and Woods (2009) propose two changes. First, a
human may not deploy a robot without the human-robot work
system meeting the highest legal and professional standards
of safety and ethics. Second, a robot must respond to humans
as appropriate for their roles.

The relationship between intent and ethics is commonly
discussed as the principle of double effect. This principle
states that an agent may cause or allow for a negative outcome
as long as there is no malicious intent and that the negative
outcome is proportional or less than to any anticipated positive
outcome (Shaw 2006). Thus, understanding the intent of AI or
autonomous systems will allow humans to judge its ethical
and legal behavior and develop trust in their ethical behavior.

It is also related to social relationships between autonomous
systems and their human partners. Generally speaking, these
IASs are not benign tools; they can engender social relation-
ships. In fact, many researchers have deliberately engineered
knowledge about social relationships into the design of intel-
ligent systems so that they are sensitive to individual cultural,
moral, social, and contextual differences and follow good et-
iquette based on social norms that apply to the user (Sheridan
and Parasuraman 2006).Miller et al. (2007) also suggest that a
wide range of social interactions could be modeled using
quantitative computational tools.

2.2 Measurability

“We judge ourselves by our intentions and others by their be-
havior” (Covey 2008). Until we can read others’minds, we can
only infer intentions. The inference may come from words,
actions, and patterns. Hence, the development of trust is a pro-
cess, and it has been said that it takes a lifetime to build trust,
but only an instant to destroy it. Given the capabilities and
limitations of technologies, trust should not be undermined
by a single instant. You may not trust words or even question
actions, but should not doubt patterns. Therefore, we can ob-
serve others’ behaviors, measure their actions, and analyze their
patterns. The same philosophy for human-human relations can
also be applied to the human-agent relations where an agent
may be a complex and opaque entity, especially when the AI is
part of the entity. The agent system must be measurable so that

Fig. 1 IMPACTS: a conceptual
and practical trust model
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agent’s behaviors can be observed, its actions can be measured,
and its patterns can be analyzed to gauge its intentions. Trust is
something that is earned through observable behaviors or mea-
surable actions or analyzable patterns. Then the results and/or
implications can be judged to be helpful or not. The concept of
trust can be separated into trust, the intention or attitude to be
vulnerable to another agent, and trustworthiness, the perceived
capability and/or integrity of the trustee agent. Trustworthiness
largely depends on reliability (Hancock et al. 2011; Schaefer
et al. 2016). If the machine does not work, how can a soldier,
sailor, or aviator be expected to hand over a task to it that may
mean life or death? It is essential to establish trustworthiness at
the design time and provide adequate indicator capabilities
within the agent system so that inevitable context-based varia-
tions in operational trustworthiness can be assessed and dealt
with in real time (Defense Science Board 2016).

There are at least three ways that the measurement of trust
can be applied to understand the interaction with agents. First,
most commonly, trust towards the machine agent is measured
to understand the degree of trust the human has towards the
agent (e.g., Jian et al. 2000; Schaefer 2016; Yagoda 2011).
Second, supported by a theoretical framework of autonomous
systems underpinned by cognitive, intelligence, and systems
sciences, some measures also try to capture the trustworthi-
ness of a machine agent through mathematic models based on
their performance and other objective qualities of the agent
(e.g., communication and transparency) (Wang and Singh
2010; Wang et al. 2020a, b). Measures of trustworthiness
may aid in the design and development of systems to optimize
the machine itself. Third, real-time bi-directional measures of
trust need to be explored so that adaptive trust can be allowed
in a way that humans and IASs can dynamically calibrate their
trust in one another (Awad et al. 2018; Sheridan 2019b). All
these possible measures should be considered during the de-
sign process of the system for the dynamic process of human-
autonomy interactions.

2.3 Performance

Trust is never given. It must be built, earned, and maintained.
The establishment of trust results from the reliable, consistent,
and predictable performance of an agent over time to meet the
goals of the human. In fact, performance was identified as the
primary contributor for establishing trust for robots (Hancock
et al. 2011) and significant for the development of trust for
automation (Hoff and Bashir 2015; Schaefer et al. 2016).
Performance entails a variety of attributes. For trust to be
gained, the agent must demonstrate performance that is reli-
able (consistency over time), valid (the agent performs as
intended), dependable (low frequency of errors), and predict-
able (meeting human expectations). Predictability is central to
establishing trust. For humans, the greatest challenge an infant
has is to determine whether or not he/she should trust her/his

parents, and the greatest determinant of that is their predict-
ability (Erikirk 1993). Thus, unanticipated actions from ma-
chine agents can often lead to rapid declines in trust.

Research on trusted performance has also shown that some
nuanced agent behaviors can impact trust. For example,
human’s bias affects trust in decision-making (Lai et al.
2020a, b), and the suitability of cues and feedback has shown
to affect trust (Schaefer et al. 2016). As well, alarm sensitivity
affects trust. Too many alarms have been shown to negatively
impact trust (e.g., the design of control panel used at the Three
Miles Island nuclear station, Hou et al. 2014). The type of
error (i.e., false alarms vs. misses) appears to affect trust dif-
ferentially. False alarms are more salient but can instill greater
trust than miss prone automation (Hoff and Bashir 2015). The
key factors determining if trust degrades when agents commit
errors are the complexity of the task and the consequences of
the error (Schaefer et al. 2016). Thus, in the context of human-
agent teaming, agents need to exhibit consistent, reliable, and
predictable behavior and interactions with its human partner
over time across different situations. Of course, predictable
protocols and/or reliable service standards are needed to be
established and communicated well with the common under-
standing of shared team goals or intents.

Further, system performance, including both agent and hu-
man performance should be considered at the same time when
designing a human-machine system. An agent's behavior and
performance should not be the cause of human-automation inter-
action issues but instead, provide aid to address issues like situ-
ation awareness (SA) loss, loss of skills, overtrust (complacency),
or undertrust (skepticism) as discussed by Hou et al. (2014).

2.4 Adaptivity

In the context of human-agent teaming and due to the lack of
human sensing, reasoning, and thinking for the agent, it is
challenging to have its self-awareness, or perceive, under-
stand, make decisions, and act on different contextual assump-
tions of the operational environment. Especially with dynamic
changing environments and human mental states, the agent
needs to have the capability to learn and understand its human
partner’s intentions, the changes in the environment, the sys-
tem status, monitor the human cognitive workload and perfor-
mance, and guard the human resources and time, and then
change its course of action to help the human achieve the
team’s common goals. An agent that exhibits these adaptive
and intelligent characteristics can then be a trusted partner to
build a truly collaborative human-agent partnership. Thus,
agent adaptivity needs to be demonstrated through its three
defining characteristics: adaptation, autonomy, and coopera-
tion in accomplishing tasks for its human partner (Jansen
1999). Such an adaptive intelligent agent (AIA) is then de-
fined by Hou et al. (2011) as a personification of computer
code and algorithms that mimics human behavior, perception,
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and cognition that can cooperate with other agents, that auto-
matically act either autonomously or on behalf of its human
partner, and that can adapt to changes in the human, system, or
environment. An AIA is not a “normal” computer application.
For example, a standard macro would not be classified as an
AIA. Macros automate tasks for its user; however, they are
usually dependent on the working environment and user in-
puts. Any deviation from the initial input or changes to the
environment can cause the macro to fail. Therefore, agent
adaptivity is defined as its ability to take actions either auton-
omously or on behalf of its human partner and adapt to the
changes in the human, system, or environment (Hou et al.
2011, 2014).

One area related to adaptivity that has not received atten-
tion is the idea of adaptive trust from an agent (de Visser et al.
2018). In human relationships, when trust is broken, the
offending partner can alter their behaviors to try to re-
establish trust. AIAs may adapt and try to re-establish trust if
it is broken by altering their behavior accordingly. This can be
done in multiple ways. It could increase or decrease the fre-
quency of communication or alter the form of feedback to
provide additional details. Detection thresholds can also be
dynamically changed to adjust for error rates. Moreover, an
AIA could also apply more rigorous and computationally
complex algorithms to improve accuracy.

Further, agent adaptivity should be measured through their
performance based on the exhibition of descriptive, prescrip-
tive, intelligent, adaptive, and cooperative characteristics
(Hou et al. 2014). Agents should be able to inform operators
about what is happening (i.e., being descriptive) and explain
and specify what will or should be done next (i.e., being pre-
scriptive); they should be able to learn from past experiences
about human intentions; monitor the system, the environment,
human workload, performance, and timeline to understand the
situation (i.e., being intelligent); and, in response, change how
they behave in any given situation (i.e., being adaptive); and
they should enable themselves to communicate and cooperate
with each other and act in accordance with the results of their
communication (i.e., being cooperative). For example, an in-
car GPS is able to learn from its satellite agent partner that the
car is approaching a traffic jam (i.e., being cooperative); it can
inform the driver of the situation (i.e., being descriptive) and
advise the driver to take a different route (i.e., being intelligent
and prescriptive). If the GPS had the ability to work with other
in-car speed agents to detect that the car was traveling in a
wrong direction (i.e., not consistent with previously learned
driver intentions) or was going too fast for the driver to stop, it
could then work with an agent controlling the brakes to stop
the car automatically without asking the driver for authoriza-
tion (i.e., being intelligent, adaptive, and cooperative).
Overall, agent adaptivity is a key trust attribute and should
be measurable through its performance. System designers
should consider how to exhibit the adaptivity into their design

and development process to facilitate human trust in their
agent partner during their continuously complex and dynamic
interactions.

2.5 Communication

Communication is a specialized type of behavior that uses
ideas, words, sound, or even odor to convey intentions.
Communication speaks to how teammates understand each
other and how information is transferred in the team.
However, communication issues are common in human-
automation interaction. Human operators require feedback
from automated systems so that they can understand what
the automationwill do (Olson and Sarter 2000), but automated
systems do not always provide the types of feedback that
operators would like. Automated systems perform better if
they are told what humans intend to achieve, and not about
the working environment (Harbers et al. 2012). A common
issue demonstrated by automated systems is conversational
inflexibility, which occurs when automated systems and
agents are unable to react to the information of queries being
offered by human participants. For instance, automated phone
systems often require callers to listen to all options before he/
she makes a decision. This is not practical and acceptable in
the heat of battle for mission critical systems and will damage
the trust of human in technologies regardless they are auto-
mated or autonomous systems. However, recent advances,
such as Google Duplex, show promise in reducing conversa-
tional inflexibility in future systems.

Automation and autonomy are becoming increasingly
prevalent as humanity continues to traverse the information
age. As digitized systems become essential parts of military
toolboxes and as machines slowly turn into independent enti-
ties that continue to replace and support humans in a variety of
tasks, issues regarding human-machine interaction come to
the forefront. Sheridan (2002) comments that as the frontiers
between automation and operators blur, it becomes “increas-
ingly critical” that automation designers realize they are build-
ing not only technology but also relationships. It is even more
important for autonomous system designers to build a trusted
relationship between human and autonomy through proper
and effective communications.

Thus, it is critical to make good use of the communication
tools, aligned with the intentions, to demonstrate system trust-
worthiness. An effective human-machine interface (HMI)
should enable the autonomous agent to clearly, fairly, and
directly explain and justify its intention, its actions, and its
desired end states to its human partner on how it helps reach
the common goals. These are critical characteristics that an
agent needs to exhibit to build up human confidence and trust.
HMI also needs to be flexible and offer the types of feedback
its human partner would like so that effective communications
happen at the right time, in the right format, through the right
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channel, and to the right recipient. Thus, autonomous system
designers or developers need to understand that they are build-
ing not only technology but a partnership and HMI is the
means between the two partners: human and autonomous sys-
tem. If an HMI could facilitate effective communications, an
appropriate trust partnership between human and autonomy
would be enabled and maintained constantly.

2.6 Transparency

It is often noted that automation occurs in a black box. That is,
it works in a fashion that the operator does not fully under-
stand and has no way to validate. While this has remained
acceptable when the system is reliable and is designed for
simple tasks, the opacity of advanced agents is more problem-
atic for trust. Autonomous systems with AI capabilities are
expected to perform complex tasks, involving multifaceted
decisions in dynamic and uncertain situations alongside hu-
man teammates with potentially vital consequences. Thus, in
order to be trustworthy, autonomous systems need to be able
to communicate and rationalize their actions so that the human
can ascertain that their goals and methods for achieving those
goals are aligned. This is particularly true if the human and the
agent are working in different spaces, with different assump-
tions and mental models, or each has some unique information
not directly available to the other.

Therefore, agent transparency is necessary to support trust
(Chen and Barnes 2014; Verberne et al. 2012). Transparency
is typically provided through the HMI, which communicates
real-time information to its human partner about its intentions,
goals, reasoning, decisions, actions, and expected outcomes.
However, transparency can also be provided through indirect
means, such as through observable behaviors and/or measur-
able actions; transparency can also be supported through ef-
fective communication, providing understandability of agent
behaviors and predictability of its future actions.

Chen and her colleagues (Chen et al. 2016, 2018) provide a
model under which transparency can work called the situation-
awareness-based transparency (SAT) model. Following
Endsley’s three-stage model for SA (Endsley 1995), SAT fo-
cuses on providing the operator with information regarding (a)
the current status of the agent, its actions, and plans; (b) the
agent’s reasoning process; and (c) the agent’s predictions and
uncertainty. Each stage of SAT is designed to provide the hu-
man operator with information to allow for each stage of SA,
perception, comprehension, and projection.

Several studies demonstrate how added transparency facil-
itates trust in the system. For example, Helldin (2014) found
improved trust when humans were provided with information
regarding sensor accuracy and uncertainty, but at the expense
of workload and decision time. Similarly, Chen et al. (2016)
provided participants with greater transparency by applying
the SAT model to the user interface of an autonomous system

and found greater trust when the agent presented all three
levels of SAT information.

Therefore, in order to build trust, the human partner needs
to develop an appropriate mental model on agent intentions,
reasoning, behaviors, and end states. Transparency helps
achieve this goal by providing display different levels of in-
formation with reduced visual complexity (e.g., density,
grouping, format, layout) while providing sufficient details
like task complexity (e.g., number of paths, number of possi-
ble end states), conflicting interdependencies, and uncertainty
in linkages. With the changing situational factors in the hu-
man, system, and environment, transparency is also needed to
convey ongoing feedback to the human so that he/she main-
tains an accurate mental model of the events and system (Hou
et al. 2014). Through transparent interactions, dynamic and
appropriate levels of trust can be developed.

2.7 Security

Trust in AI and autonomous systems also depend on its security
or its ability to remain protected from accidental events or de-
liberate threats. For example, military autonomous systems act
as force multipliers, and AI has dramatically improved many
defense capabilities, including cyber-security, intelligence, sur-
veillance, and reconnaissance (ISR) and navigation systems
(Mae Pedron and Jose de Arimateia 2020). Yet these systems
are commonly networked, which invites opportunities for ad-
versaries to attack the system itself, its sensors, or to manipulate
their inputs or their models in the hopes of encumbering their
performance. These inputs tend to come from a variety of sen-
sors (e.g., radar, EO/IR) originating from multiple distributed
locations, thus opening the door for multiple points of vulner-
ability. Therefore, strong and robust security is often a neces-
sary condition that must be met for a trusted relationship be-
tween humans and autonomous systems. However, conveying
trustworthy security can be difficult. Security tends to occur in
the background, often occurs in a black box, and is typically not
in the forefront of mission or task goals.

As discussed early in the Introduction section, there are a
variety of AI-induced potential attacks, such as adversarial
patterns, misleading examples, and data poisoning. It is a crit-
ical concern to special classes of weapons systems that use
sensor suites and computer algorithms to identify and engage
a target without a human in control (Mae Pedron and Jose de
Arimateia 2020). A secure system must behave as designed
and implemented following rules or laws even when under
attack; otherwise, it cannot gain human trust.

To counter attacks, many traditional techniques can be ap-
plied, and new ones are being explored to provide for stronger
security. For instance, to guard against poisoning attacks,
methods such as data sub-sampling, outlier removal, and
trimmed optimization can better ensure model and data integ-
rity (Vorobeychik and Kantarcioglu 2018). More recently,
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federated learning, whereby machine learning models are op-
timized through multiple decentralized devices, protects pri-
vacy by avoiding explicit sharing of data (Yang et al. 2019).
Another approach that is gaining recognition is the use of
blockchain technology to handle data storage and exchanges
(Pilkington 2016). Blockchains, first developed to ensure the
safe and private transactions of Bitcoin, use a distributed re-
cording method and immutable records of every transaction.
The other advantage of blockchain is that it offers transparen-
cy since the transactions are distributed and open to everyone,
thus establishing a means to provide accountability and trace-
ability. Blockchain technology has been suggested for other
types of transactions, such as sharing of medical records by
ensuring the integrity of privacy logs (Sutton and Samavi
2018). It has also been suggested as a way to provide explain-
able AI since it offers transparency, openness, and traceability
(Nassar et al. 2019).

However, building trust in security is more nuanced than
simply providing strong security. Peiters (2011) differentiates
between explanations-for-confidence and explanations-for-
trust. Confidence refers to self-assurance without considering
the risks or alternative options. In these situations, there is no
choice in the matter, but people still need to have confidence
that the system will work as intended (e.g., confidence in
electricity supply or the rules of traffic). In contrast, trust in-
volves self-assurance based on a decision to rely on an agent,
human, machine, or organization.

Peiters (2011) argues that for information security, systems
need to provide explanations-for-confidence, as opposed to
explanations-for-trust. In the case of security, explanations
of confidence do not need to provide the inner workings of
the black box but instead should focus on how the user is
protected from adversarial threats. In contrast, explanations-
for-trust delve into the inner workings of the black box and are
better for explaining AI decisions. In fact, he suggests that
providing too much detail in explanations for security may
be counterproductive to the goals of the explanation and
may actually be detrimental to trust. He also suggests that
security explanations do not have to reside in the system itself
but is the role of the designers or the business strategy of an
organization to provide explanations-for-confidence.

Similar to Hou et al.’s W5+ for IAS design principles
(2011, 2014), Vigano and Magazenni (2018) build upon
Peiters (2011) work and provide a framework for explainable
security based on W5+ of security: who, what, where, when,
why, and how. The framework suggests explanations for se-
curity consider not only who the messages are directed to, but
what information is provided, where and when they should
receive it, why it is necessary, and the medium of the message.

With the growth of AI and autonomous system technolo-
gies, adversaries and agents with malicious intent will contin-
ually look for new methods to manipulate the performance of
these technologies. Strong security measures are required to

establish trust so that people can benefit from these systems.
However, robust security measures are not enough to gain
confidence from all stakeholders. Designers and organizations
need to build confidence for autonomous systems and AI
technologies by providing goal-directed explanations of how
security measures are in place (i.e., at the right level of detail)
to protect and ensure the performance of the system.
Therefore, security becomes an essential character of
IMPACTS model to guide designers for enabling trust in au-
tonomous systems such as IASs.

Trust is the vertex and essential ingredient in effective re-
lationships including human-autonomy partnerships. Trust is
the careful balance upon which healthy relationships grow
between the partners when considering physical, intellectual,
emotional, relational, and even spiritual aspects of human-
human relationships. To truly be trustworthy, to be consistent,
predictable, reliable, and demonstrate human-like integrity
with shared intentions accurately through its adaptive behav-
ior and measurable performance, transparent communica-
tions, and secured protection are indeed IMPACTS that only
the human can make with the agent partner. Engineers, re-
searchers, and technologists developing autonomous systems
must carefully design them to inspire confidence and build
trust, and the IMPACTSmodel is a conceptually practical tool
to guide the design and development of effective human-
autonomy teaming.

3 Authority pathway for weapon
engagement—an example of IMPACTS-based
design

A target engagement process is often complex, lengthy, and
error-prone. It is even more challenging if a combat team does
not have sufficient doctrinal knowledge on rules of engagement
(ROEs) and international laws of armed conflict (LOAC) when
operating in a foreign country. These issues caused the loss of
situation awareness (SA) and consequent mission failure when
an unmanned aircraft system (UAS) crew engaged a target
during a few trials conducted at Defense Research and
Development Canada (DRDC) (McColl et al. 2016).

To assist the UAS crew in doctrine training and provide them
decision support with shared SA to succeed their missions, an
intelligent adaptive decision aid called Authority Pathway for
Weapon Engagement (APWE) was developed to ensure UAS
crew tomake critical target engagement decisions, maintain mis-
sion SA, and follow ROEs, LOAC, and standard operating pro-
cedures (SOPs). APWE is a good example of a human-
autonomy teaming to resolve a military operational issue. The
development of APWE followed the design principles based on
the IMPACTS model to demonstrate its characteristics of inten-
tion, measurability, performance, adaptivity, communication,
transparency, and security.
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3.1 APWE concept

The goal of APWE is to support the UAS crew by guiding
them through the required steps and permissions needed to
conduct a lawful and successful engagement of a target fol-
lowing a positive identification (PID). Specifically, the APWE
supports a use case of a pattern of life (POL) operation during
which a person of interest (POI) is positively identified and
then engaged following the necessary permissions being
granted from a tasking authority (TA). This process represents
the most complex use case of the APWE insofar as it might
take many minutes or hours to complete and involves signif-
icant and complex decision-making with respect to the ROEs
in effect for the mission and applicable military laws.

Figure 2 depicts the logic and flow of the ten steps required
to undertake a weapon engagement on a target. The process
essentially commences once a POI has been detected, local-
ized, and retained as a potential target. The subsequent steps
involve completing a PID checklist, notifying the TA and
requesting authorization for the use of a kinetic response;
performing a collateral damage estimate (CDE) while simul-
taneously completing the weapon engagement planning; noti-
fying the TA of the UAS readiness to engage and requesting
weapon release authorization; lazing the target (as required);
and releasing the weapon.Maintaining continuous eyes on the
target is a requisite parallel activity that must occur throughout
the target engagement process. Battle damage assessment
(BDA), not shown in the figure, is performed subsequent to
the weapon release.

During a sortie, the UAS may take on different roles. For
instance, in the case of a call for direct fire, the UAS may be

responsible for the targeting and weapons release, whereas in
the case of a call for indirect fire, the UAS crew may only be
providing a target lazing capability for another manned or
unmanned asset. The APWE seeks to address two critical
functional areas of the target engagement process: (1) main-
taining a shared mission SA among all UAS crew members
and (2) ensuring that all applicable, relevant ROE and LOAC
are considered in a timely manner and that the SOPs are
followed (i.e., built-in capabilities and integrity). One of the
underlying premises of the APWE concept is that the judi-
cious use of IAS technologies (intelligent adaptive
automation and intelligent adaptive interface, Hou et al.
2014) applied to the UAS ground control station (GCS)
HMI will support the individual and collaborative decision-
making during the target engagement process. The goal is to
facilitate effective interactions and positive relationship be-
tween the UAS crew and the embedded IAS agents thus foster
trust.

3.2 Design challenges and requirements

The lack of a commonmission SAwas identified as one of the
key issues contributing to the mission failure during an anal-
ysis of a few human factors experiments conducted on various
UAS missions previously (McColl et al. 2016). To alleviate
this issue, a common/shared target engagement SA display
should be provided to the crew. Additionally, target engage-
ment procedures can vary as a function of the operational
context, the type of mission, and the force structure. The
APWE needs to operate in an environment in which opera-
tional and emulated command and control (C2) systems will

Fig. 2 Ten steps of Authority
Pathway for Weapon
Engagement required releasing a
weapon based on a positive
identification (steps requiring
external authorization from the
tasking authority are depicted by a
“transmitter” icon) (Original by
the authors)
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be integrated. It needs to support a variety of missions that will
result in a specific instantiation based on mission templates.
The fog of war, the unpredictability of military operations, and
the dynamic nature of UASmissions are all reasons why these
missions are subject to change, sometimes referred to as dy-
namic re-tasking, i.e., a change in mission during a sortie.
During dynamic re-tasking, the system is required to recon-
figure itself to meet the evolving mission requirements.
Basically, the APWE needs to have C2 agility, which is the
capability of a system to successfully affect, cope with, and/or
exploit changes in circumstances. Agility enables entities to
effectively and efficiently employ the resources they have in a
timely manner (NATO STO SAS 085 2013).

The so-called agility enablers are responsiveness, ver-
satility, flexibility, resilience, adaptiveness, and innova-
tiveness (NATO STO SAS 085 2013). The APWE needs
to have C2 agility requirements since the target engage-
ment requires many of these enablers. In particular, the
responsiveness and adaptivity of the system will impact
the efficiency with which requests to the TA can be com-
municated and processed. Current target engagement sys-
tems are limited by relying too heavily on radio commu-
nications and chat for UAS operations. For example, these
enablers are important in the case when a troops-in-
contact (TIC) mission pre-empts an ongoing POL mis-
sion. The system must be adaptive and react to this
change by presenting a modified instance of the APWE
that reflects the relevant set of applicable ROE and is
consistent with the procedures and time-critical operation-
al context. The APWE also needs to automatically detect
this change in mission by interpreting UAS system data
(e.g., C2 systems, sensor), or the APWE ROE could be
changed manually by the UAS crew. These changes in
ROE would result in a new or modified APWE display
to inform the crew of the changes.

Therefore, the design of APWE needs to address at least the
following challenges based on IAS framework (Hou et al.
2014):

& The system must adapt to the mission type and UAS role,
both of which may vary over the course of the sortie.

& The system must provide user-specific views (e.g., UAS
pilot, payload operator, intelligence analysts, external au-
thorities, other users).

& The system must allow for the evolution of the level of
automation consistent with future UAS requirements for
additional semi-automated crew functions related to target
engagement.

The need for C2 agility of the APWE is further compounded
by the requirement for UAS collaboration scenarios wherein
one UAS asset, for instance, may provide a target lazing

capability for another manned or unmanned asset that is pro-
viding a weapons fire. Collaborations among assets, whose
crews are not co-located, present specific coordination and
communication challenges related to maintaining mission SA
while executing critical decision-making. For example, timely
communication and coordination are vital to ensuring the quick
response times required in the case of time-sensitive targeting
(TST), in both deliberate and dynamic targeting scenarios while
considering CDE, ROE, airspace, and other restrictions during
the targeting process.

To address these challenges and meet those high level sys-
tem requirements, a cognitive task analysis was conducted,
resulting in a decision ladder for the UAS target engagement
tasks. The results were used to identify areas where IAS tech-
nologies could be applied for both automation and HMI sup-
ports (McColl et al. 2017). The decision ladder identified as
pertinent to the APWE included two possible types of auto-
mation requirements: (1) intelligent adaptive automation
(IAA) requirements and (2) intelligent adaptive interface
(IAI) requirements (Hou et al. 2014; McColl et al. 2016;
McColl et al. 2017). IAA requirements are related to behind
the scenes calculations and the process performed on behalf of
(or instead of) a UAS crewmember. IAI requirements involve
visual and aural cues, checklists, and indications that consol-
idate or accentuate information directed to the crew member.
The two main areas addressed by the APWE are sharing SA
and ensuring that procedures are clearly identified in the de-
cision ladder and followed. For the ten steps comprising the
target engagement process shown in Fig. 2, nineteen decision
ladder items were identified from the CTA (McColl et al.
2017).

With respect to the automation of crew functions, some
functions are obvious candidates for automation, while the
automation of other functions may be contrary to doctrine
and/or legal considerations. For example, certain aspects of
the CDE activity can be greatly facilitated through the use
of AI-based agent technologies. Automatically signaling
potential fratricide or civilian casualties and other relevant
information to the crew early on in the target engagement
process could facilitate crew decision-making, leading to
remedial measures and alternate course of action. Overall,
a hierarchal team of collaborating software agents (i.e.,
AIAs (Hou et al. 2011)) has been identified as automation
aids included in the APWE prototype. These agents were
responsible for tasks such as monitoring mission conditions
and operator states; detecting anomalies, threats, or other
events of interest; generating notification messages and
other information sharing; and presenting options to the
operator. Additional automation logic was implemented
using a hierarchal state machine that captured the mission
logic and provided a link between the AIAs and the opera-
tors (McColl et al. 2017).
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3.3 IMPACTS-based APWE design

With the understanding of the requirements mentioned above
and the objective of APWE is to support a variety of opera-
tional roles and contexts, the IMPACTS trust model was ap-
plied in conceiving the structure, the functionalities, and the
interaction mechanisms of APWE along with the interaction-
centered design (ICD) principles (Hou et al. 2014; McColl
et al. 2017) for APWE prototype development. Since different
users require different functionalities from their APWE views,
a client server software architecture was used for the design so
that each view is a separate client application or configuration.
This approach allows all stakeholders to have a common un-
derstanding of shared mission goals and SA as well as their
own required views. There were basically five different views
developed for different users within a typical APWE proto-
type for a UAS target engagement mission.

1. The Shared SA View is for sharing the current status of
the target engagement activity with all users and accepts
no user input. As illustrated in Fig. 3, it displays the en-
gagement status in the form of a graphic that indicates
completed APWE steps and uncompleted steps with dif-
ferent color coding. The Shared SA View can be integrat-
ed into other applications, such as an overall mission SA
display, as shown in Fig. 4.

Figure 4 depicts APWE re-configurable HMI components
which display (1) the engagement procedure and the crew’s
current status in the state board (top left corner); (2) the

requirements to progress to the next step of the procedure;
(3) a map display focusing on the targeted location; (4) rele-
vant sensor feed; (5) a list of ROEs in effect; and (6) a sum-
mary of pertinent crew text chat.

2. The UASCrewView is intended for use by the UAS crew
members not performing the pilot or mission commander
roles (e.g., payload operator or intelligence analysts). In
addition to the Shared SA View, this view provides infor-
mation panels with a summary of the various steps (see
Fig. 5). The information panels also allow a crewmember
to request actions from other users or set reminder alarms.
When clicking on a specific information item, this view
offers a drill-down capability to access increasing levels
of detail. The information panels are related to another
important feature of the APWE checklists that crewmem-
bers must complete and submit as part of the authorization
request process.

3. The UAS Crew Commander View is intended for the
pilot, generally acting as a crew commander, i.e., the per-
son responsible for the mission and weapon engagements.
In addition to the functionality of the UAS Crew View,
this view allows the crew commander to validate check-
lists and submit kinetic response and weapon release au-
thorization requests to the TA.

4. The Tasking Authority/White Cell View is for use by the
TA but also for a role-player acting as the TA during an
experimental trial (referred as the White Cell for a syn-
thetic experimental setting). In addition to the read-only
access to the APWE status (Shared SA View) and infor-
mation panels, this view allows the dedicated user to grant

Fig. 3 APWE Shared SA View (an AI state board for increased process transparency, predictability, and communication (original by the authors))
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or deny authorizations from the pilot. This view allows
the user to review a checklist and to flag items that are
incomplete, missing, or otherwise inadequate. The user
can reject a request and provide instructions for rectifying
it for subsequent resubmission.

5. The Experimenter View is to support experimentation
purpose. The APWE prototype has a record and playback
capability for after-action review (AAR) that includes ob-
servations from experimenters. The Experimenter View
allows the user to generate events and comments for sub-
sequent review as part of the AAR. For example, the user
can identify specific instances during which Eyes on
Target were lost and then regained. Other Experimenter
View functions may include the capability to record ob-
servations concerning the operator’s state.

The design of all these views allows APWE to automati-
cally present and update the status of each of the steps required

to release a weapon, based on the inputs from the UAS crew,
external TA, and AIAs when engaging with a target. APWE
provides not only the shared SA about the past and current
status of the target engagement process but also its intention of
the next step. APWE also provides a variety of means to users
to share their intentions so that the UAS crew and their TA
effectively and efficiently progress through the target engage-
ment procedure. Thus this capability exhibits the intention
attribute of the IMPACTS model.

With this configuration, APWE behaviors are measurable
against other components in the HMI. For example, with an
understanding of the UAS crew’s intention for target engage-
ment and decision-making, APWE includes mechanisms for
communicating requests for TA’s authorization along with
access to the completed checklists. The TA can authorize or
refuse a request based on his/her knowledge of the ROEs and
LOAC for the current mission situation. In the case of a re-
fused request, the checklist items that were incomplete, miss-
ing, or otherwise inadequate will be flagged and returned as

Fig. 4 An APWE reconfigurable state board within a UAS GCS HMI (top-left corner) (original by the authors)

Fig. 5 APWE information panel (Original by the authors)

91Hum.-Intell. Syst. Integr. (2021) 3:79–97



part of the response for an authorization request. In the case of
an approved request, additional information or guidance may
be provided as part of the response. Among other means, UAS
Crew View (Fig. 5), UAS Crew Commander View, and TA
View all allow the various users to have redundant informa-
tion to compare or as a backup if anything missing. Different
UAS crew members can also choose the components needed
for their tasks. These functionalities enable APWE to demon-
strate the measurability characteristic of the IMPACTS
model.

APWE provides an intelligent, adaptive “state board” in-
terface which is used to visualize the entire weapon engage-
ment sequence, as shown in Figs. 3 and 4. The state board
provides SA and feedback to all the UAS crew members and
external users (e.g., the TA), consistently outlining the current
step of the engagement, allowing them to easily and efficiently
determine target eligibility for weapon engagement. This IAI
technology (Hou et al. 2011, 2014) is not only a communica-
tion tool but also provides transparency and predictability for
the next steps on the checklist. This capability aids the UAS
crew with decision-making by supporting interactions with
the TA and estimating collateral damage during the target
engagement process. This support helps reliably prevent the
crew from inadvertently engaging a target before the TA has
granted proper permission to do so. AIAs within APME ex-
hibit consistent, predictable, and reliable behavior and inter-
actions with their human partner over time across different
situations. Thus, the demonstrated consistency, predictability,
and reliability are what the performance property of the
IMPACTS model requests.

APWE adapts its interface (e.g., different views) to the
UAS crew and other external users based on different ROE
and LOAC information and communication requirements.
Within APWE, target engagement procedures can vary as a
function of the operational context, the type of mission, and
the force structure. The steps involved in a TIC situation are
not the same as those required for engaging a target during a
POL mission. Also, it can be time-consuming for the UAS
crew to identify all of the applicable and relevant ROE for a
given situation. APWE address these concerns by being adap-
tive to the specific situation and generating appropriate check-
lists to guide the target engagement process, including facili-
tating the assessment of relevant ROE and other items related
to the LOAC. Thus, APWE has the adaptivity (to three “con-
text constraints” (Hou et al. 2014)) trait of the IMPACTS
model to (1) adapt to the mission type and UAS role, both
of which may vary over the course of the operation; (2) pro-
vide user-specific views (e.g., different UAS crew roles and
external TA); and (3) allow for the evolution of AI capability
consistent with future UAS requirements for additional semi-
automated crew functions related to target engagement.

APWE provides bi-directional communication capability
in a variety of ways (e.g., features provided by UAS Crew

View, UAS Crew Commander View, and TA View, etc.).
For example, authorization requests are made by the UAS
crew to the TA at two steps of the target engagement process:
(1) after the PID checklist has been completed and confirmed,
at which point the UAS crew requests authorization for a
kinetic response, and (2) once the weapon (engagement) plan-
ning and CDE steps have been completed and confirmed at
which time the UAS crew requests an authorization for weap-
on release (see Figs. 5 and 6.). The crew status displays are
equipped with a drill-down feature that allows the operators to
access increasing levels of detail concerning information
items of a given checklist or response to a request for autho-
rization of weapon release. All these features enable bi-
directional communications between the AIAs and their hu-
man partners. The automated alerts, notifications, and warn-
ings also contribute to increasing the responsiveness and
therefore facilitating the communications during a target en-
gagement. All these features demonstrate the communication
requirement of the IMPACTS model.

APWE exhibits transparency of the IMPACTS model in
different formats. The most prominent feature of APWE is the
intelligent adaptive target engagement state board, as shown
in Figs. 3 and 4. This IAI provides an unambiguous and in-
stantaneous view of the target engagement process status. This
view serves two major purposes: (1) it contributes to the over-
all mission SA so that the UAS crew is aware of the current
step in the process; and (2) it facilitates any necessary remedial
actions by clearly indicating why a given step is stalled or why
a request for authorization has been denied. Basically, this
view provides information with a summary of the various
steps and allows a crew member to request actions from other
users or set reminder alarms. When clicking on a specific
information item (e.g., on the APWE information panel, as
shown in Fig. 5), this view offers a drill-down capability to
access increasing levels of detail. The state board is also relat-
ed to another important feature of APWE—checklists that
UAS crew members must complete and submit as part of the
authorization request process.

APWE demonstrates the security property of the IMPACTS
model by providing explanation-for-confidence and thus trust.
Due to the complex and dynamic nature of the APWE process
in the operational tempo, AI agents were designed and devel-
oped to assist decision-making, and the operator does not need
to know the detailed inner workings of the black box (i.e., the
target engagement process). Upon receiving an order to launch
a lethal weapon, it automatically gathers information from all
sources about the target area including assets being considered
for engagement of the target and their capabilities (for potential
civilian casualties, etc.), checks the status of the weapon plan-
ning process, and finds related ROEs, LOAC, and SOPs pre-
programmed in the system. Then the CDE process is conducted
to check whether the potential strike follows the appropriate
ROEs, LOAC, and SOPs (e.g., lethal vs. non-lethal). If not, it
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will refuse the launch of the lethal weapon with a suggested
solution (e.g., non-lethal) to the TA so that the TA can alter or
stop the launch. This explanation-for-confidence capability
provides APWE secured protection against accidental or mali-
cious use of the system or even deliberate cyber-attacks to
facilitate trust. Figure 6 illustrates “the explanation of AI deci-
sions” as a step of APWE security process after successful
completion of weapon planning and CDE process based on
built-in ROEs, LOAC, and SOPs.

4 APWE field test

To assess its military utility and effectiveness, investigate
interoperability amongmultiple military systems, and increase
the expanded (multinational) crew’s SA concerning a specific
weapon engagement authorization process, APWE was
modified and integrated into a joint C2 system which has a
variety of highly disruptive technologies from three of The
Technical Cooperation Program (TTCP) nations: Australia,
the UK, and the USA. One of the C2 technologies is also
called IMPACT (but has no relationship with current model),
which is a C2 system for controlling multiple unmanned sys-
tems (Draper et al. 2017). This allied IMPACTC2 systemwas
then referred to as AIM. The AIM was successfully evaluated
through a large joint service TTCP Autonomy Strategic
Challenge milestone demonstration and evaluation exercise
“Autonomous Warrior 2018” (AW2018) in Australia in
November 2018 (Frost et al. 2019; Bartik et al. 2020).
During the AW2018 exercise, APWE automatically conduct-
ed CDE by monitoring the data feeds from the AIM to keep
track of vehicle capabilities and monitoring automatic asset

planning to understand which vehicles are being considered
for engagement of the target. During the asset planning, re-
strictions are checked to determine if the desired effect is
being triggered (lethal vs. non-lethal). Figure 6 shows an
AIM operator working with APWE which was integrated
within the AIM during the AW2018 exercise.

AW2018 exercise included both live and synthetic trials,
both run in parallel over the trial period, and both involving
extensive data collections. In the live trials, a team of seven
trained military subject matter experts (SMEs) observed an
experienced AIM operator tasking both live and simulated
assets over three different well-designed use cases. SMEs
captured their observations during the scenario using a real-
time data logging system. The evaluation team then used
the after-action report to facilitate discussion of key events
in the use case scenario with the SME group, extracting key
observations for later analysis.

In the synthetic trials, evaluation team members observed
as these same SMEs took turns to serve as the AIM operator,
directly tasking simulated assets in a single scenario based on
a use case involved an infrastructure protection against unlaw-
ful entry and attack by hostile actors. The evaluation team also
collected extensive data on the overall mission and task effec-
tiveness, workload, SA, trust, system usability, and human-
autonomy teaming performance. The trustworthiness of the
AIM system was assessed by the SMEs via a questionnaire
twice over the course of the exercise, once after acting as the
operator in the synthetic trial and once at its completion.
SMEs rated the AIM system on a scale from 1 to 7 (1 = low,
7 = high) across seven known trust dimensions and provided
some clarifying comments associated with their scores (Bartik
et al. 2020). The trust dimensions are:

Fig. 6 An UAS operator working with APWE in the AIM System during TTCP “Autonomous Warrior 2018” Joint Exercise (Original by the authors)
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& Reliability, the ability of the system to operate on mis-
sions, perform tasks, and deliver effects as specified

& Dependability, the ability of the system to be relied upon
to operate on missions, perform tasks, and deliver effects
as specified

& Predictability, the ability of the system to respond to
events and to operate, perform, and deliver effects consis-
tently and reliably as planned and anticipated

& Availability, the ability of the system to operate on mis-
sions, perform tasks, and deliver effects when requested

& Resilience, the ability of the system to transform, renew,
and recover in timely response to events

& Safety, the ability of the system to operate without harmful
states

& Security, the ability of the system to remain protected
against accidental or deliberate attacks.

The AW2018 was a large-scale exercise and extremely
complex. It involved multiple prototype C2 technologies
from four different TTCP nations, who integrated, dem-
onstrated, and evaluated the technologies over the course
of three weeks. As a result, individual technologies could
not be assessed separately against each of the individual
experimental measures including those trust dimensions.
However, empirical results relating directly to the evalu-
ation of APWE, such as SME responses to questionnaires
completed immediately after the conduct of live and syn-
thetic use cases, and information collected during de-
briefing sessions with the SMEs were still analyzed to
inform the utility, effectiveness, and interoperability of
the technology.

First, regarding trust dimensions, APWE directly contrib-
uted to system reliability and security because “it doesn’t let
you inadvertently engage before you have permission” and
“prevented casualties” by conducting CDE in support of
weapon engagements. SMEs reported that it “helps prompt
what needs to be done,” “is very easy to use,” “is a good
model; logical and assuring,” and “love[d] the Authority
Pathway function and reliability.”

Second, it provided transparency about the status of the
target engagement process and predictability of the current
and next steps on its state board based on lawful ROEs. A
SME reported that APWE was “helpful in prompting the op-
erator” and commented himself as “massive fan (of APWE),
logical and great visibility of engagement status.”

Third, APWE was identified as a contributor to calibrated
trust, information presentation, and adaptability factors to sup-
port human-autonomy teaming due to its communication ca-
pability to make the status of target engagement readily avail-
able when needed and stop engagement whenever CDE
failed.

Overall, APWE was reported to be a significant factor be-
hind the success of the AIM system. SMEs were enthusiastic

about the APWE application, with four out of the seven
reporting that APWE was one of the top three strengths of
the AIM system. The implementation of APWE within AIM
was considered “exemplary, with major enhancements” be-
cause it “could seriously benefit future operations.” In partic-
ular, APWE “takes a lot of stress away from the operator,” and
most importantly it was “the most trustworthy of the whole
thing (the AIM system) because the increased SA and reduced
workload and potential human error…”.

As an intelligent decision aid, APWE automatically
streamlines engagement processes and displays the engage-
ment status dynamically and intuitively, thereby reducing en-
gagement times and errors while enhancing the operators’ SA.
The evaluation results and feedback from SMEs at the
AW2018 exercise clearly demonstrated the utility, effective-
ness, and interoperability of APWE concept and technology to
support human-autonomy teaming. Indirectly, it provided em-
pirical evidence of the logic (i.e., built-in capabilities and in-
tegrity) behind the design of the system, which is the concept
and model of the IMPACTS for enabling the trust between
human and autonomous systems.

5 Conclusion

How to build a trusted relationship between human and their
intelligent machine partners (i.e., IAS, Hou et al. 2014) is
becoming increasingly challenging to system designers when
technologies like AI and autonomous systems advance at an
ever-rapid pace. Trust can be defined as an attitude or belief
that an operator is confident and willing to act based on the
recommendations, actions, and decisions of an autonomous
system or a group of agents. Given its importance to the de-
sign and implementation of human-autonomy teaming tech-
nologies, a review of the state-of-the-art of theoretical, math-
ematical, and performance-based models and measures of
trust and how they might inform the deployment of suitable
trust metrics during human-in-the-loop (HTIL) trials has been
conducted in detail. The review identified the main theoretical
and practical approaches to studying human-autonomy trust
(e.g., human factors, psychology, cognitive science, computer
science, human-computer interaction), as well as the linkages
among them. Although there are many trust models from dif-
ferent fields and their efficacy has been investigated in a
laboratory-based environment, little has been done to assess
their effectiveness for the operational environment. They are
helpful to understand trust factors, but few are practically use-
ful or are too complex for system designers to build up an
assured trust relationship between human and autonomous
systems. However, the review of these trust models and met-
rics was used to identify seven critical and applicable charac-
teristics of a conceptual and practical trust model: IMPACTS
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(intention, measurability, performance, adaptivity, communi-
cation, transparency, and security).

The IMPACTS model focuses on the most critical princi-
ples for practically building human trust in autonomous sys-
tems when teaming up these two partners together towards
achieving the team’s common goals. The model was used to
guide the design and development of an intelligent adaptive
decision aid for assisting a UAS crew in decision-making
during complex, lengthy, and error-prone target engagement
processes. The APWE decision aid exhibits the seven charac-
teristic elements of the IMPACTS model: intention (shared
mental model of team intents), measurability (observable be-
haviors and measurable actions to demonstrate the under-
standing of common goals), performance (consistent and reli-
able behaviors with predictable outcomes to support the
shared intention), adaptivity (agile to changing context and
environment as well as human needs), communication (bi-
directional interactions to facilitate joint decision-making),
transparency (status of various agent tasks), and security (pro-
tection against accidental or deliberate attacks). To assess the
utility of the IMPACTS model in design, an APWE prototype
was then designed, developed, integrated, demonstrated, and
evaluated during an international autonomy and AI technolo-
gy demonstration and evaluation exercise. Positive feedback
on APWE’s usability, utility, effectiveness, and interoperabil-
ity to support human-autonomy teaming indicated the poten-
tial for the IMPACTS model to guide the system design to
inspire users’ confidence and instill trust. If designed well,
based on the IMPACTS principles, a trusted and collaborative
partnership between human and autonomous systems can be
enabled and assured.

Since trust is an abstract construct and a dynamic psycho-
logical state with multiple affecting factors from human limi-
tations, technology capabilities, and environment constraints,
the critical trust properties are still a context-dependent issue.
Although many trust studies have been conducted in multiple
research fields over many decades, still very little is empiri-
cally known about trust within the context of human-
autonomy teaming especially in an operational environment.
This reality limits the scope of this research that focuses on
meaningful and practical guidance for the designers of IASs.
However, with the rapid advancement and applications of AI
and autonomous systems in our society, it demands a compre-
hensive set of global standards for all stakeholders to follow.
Thus, only the seven characteristics are chosen to formulate
the essential properties of IMPACTS model here for the sys-
tem design process to enable trust between the user and the
autonomous system. These seven characteristics need to be
empirically validated further for their efficacy and effective-
ness to provide a theoretical foundation of the IMPACTS
model.

Given that the validity of IMPACTS model was only indi-
rectly assessed through APWE experiments during the

AW2018 exercise, the model needs to be further validated
directly and/or modified/refined accordingly through human-
autonomy teaming HTIL trials. More detailed instructions for
system designers also need to be developed to guide their
design activities so that the IMPACTS model can be applied
broadly for effective human-technology interactions in ad-
dressing trust, accountability, legal, ethical, policy, regulation
issues, etc.
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