
RESEARCH ARTICLE

Exploring Bayesian analyses of a small-sample-size factorial design
in human systems integration: the effects of pilot incapacitation

Daniela Schmid1
& Neville A. Stanton2

Received: 13 January 2020 /Accepted: 17 September 2020
# Springer Nature Switzerland AG 2020

Abstract
In contrast to many other areas of science, the highly-topical Bayesian statistics have not been adopted widely to Human Systems
Integration (HSI). These methods overcome the weaknesses of the frequentist null-hypothesis significance testing. Bayesian
probabilities reflect a direct and quantifiable evidence for either the null- or the alternative hypothesis given the data. A case study
on the effects of pilot incapacitation on workload and technology acceptance during different flight phases for single pilot
operations (SPO) compared to the contemporary dual crewing configuration demonstrates how Bayesian statistics produce much
more transparent and unambiguous results. For example, workload was higher during incapacitation than in normal flight as well
as during arrival than in other flight phases. These effects were independent from crew distribution encouraging further research
regarding SPO. Finally, Bayesian statistics remain robust against the sample size which is why they provide interpretable results
even for small-sample-size designs prevalent in many application domains of HSI.
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1 Introduction

During the past decade, the Bayesian approach to statistical
data analysis and hypothesis testing has become a reasonable
alternative to the classical frequentist null-hypothesis signifi-
cance testing (NHST) in several areas of science (Aczel et al.
2020; van de Schoot et al. 2017). Bayesian statistics are used
in a variety of disciplines and include several different statis-
tical procedures. Science, Technology, Engineering, and
Mathematics (so-called STEM subjects) have led this progress
in statistical hypothesis testing. By way of contrast, Human
Systems Integration (HSI) is still dominated by the traditional
frequentist NHST in its statistical applications. HSI is defined
briefly as the study of sociotechnical systems (Durso et al.
2015). It includes all interdisciplinary, technical, and manage-

ment processes to integrate human considerations within and
across all system elements (International Council on Systems
Engineering 2011). Hence, HSI spans across parts of several
disciplines such as engineering psychology, human factors
and ergonomics (HFE), and cognitive psychology. Within
those disciplines, Bayesian statistics have been applied to dif-
ferent extents (Boehm-Davis et al. 2015). In behavioural sci-
ences and psychology, the use of Bayesian statistics has in-
creased and broadened as an alternative approach to tradition-
al frequentist NHST in the context of different statistical
frameworks such as hypothesis testing, cognitive models,
structural equation modelling (SEM), and meta-analysis as
discussed in a special issue of the Psychonomic Bulletin and
Review (Vandekerckhove et al. 2018).

The application of Bayesian statistics is less widespread in
HSI than in classical scientific psychology (Boehm-Davis
et al. 2015; Cooper et al. 2012; Salvendy 2012; Stanton
et al. 2005; Stanton et al. 2013; van de Schoot et al. 2017).
In HSI, the Bayesian framework has only been used in a very
small number of cases to evaluate hypotheses independently
(Karpinsky et al. 2018; Körber et al. 2018a; Körber et al.
2018b; Lee and Kolodge 2019; Roth 2015; Rubin et al.
2020; Sato et al. 2019; Tear et al. 2020; Yamani and
McCarley 2016; Yamani and McCarley 2018) or as a
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supplement to NHST (Banducci et al. 2016; Chancey et al.
2017; Janczyk et al. 2019) during the last decade. Bayesian
methods are used less in HSI compared to other subject do-
mains. Based on these cited examples from HSI retrieved
from the most impactful academic journals (for example:
Applied Ergonomics, Human Factors, Safety Science), we
conclude that the Bayesian approach to hypothesis testing
has remained rather a niche methodological framework for
HSI. The main driver for applications in HSI was that the
Bayes factor (BF) quantifies the strength of the evidence for
the null hypothesis compared to the alternative hypothesis. In
doing so, Bayesian procedures represent inferential statistical
procedures to estimate parameters of an underlying distribu-
tion on the basis of the observed distribution (American
Psychological Association 2020). They include model speci-
fication, the descriptions of the distributions, the calculations
of the models, and reporting of the related BFs. In this sense,
we take a closer look at the rationale of Bayesian reasoning
and how its procedures represent an advantageous addition
and even alternative to frequentist NHST in HSI.

In the present paper, we demonstrate the benefits and ap-
plication of selected Bayesian statistical procedures compared
to the corresponding NHST procedures in a case study of HSI.
In doing so, we elaborate the main advantages of the emerging
trend of using Bayesian statistics in different areas of HSI for
different procedures. Furthermore, we focus on the general
rationale of the practical application of Bayesian statistics to
analyse experimental data. Their mathematical specific proce-
dures, foundations, and critiques are explained in detail else-
where (Kruschke 2015; Rouder et al. 2018).

2 The benefits of Bayesian statistics
for human systems integration

The Bayesian approach to statistical hypothesis testing is su-
perior to the classical NHST in three aspects that arise from
the weaknesses of the traditional use of p values (Hubbard and
Lindsay 2008) and consequently from two different ways of
statistical reasoning. First, in relying on traditional NHST, the
researcher aims to test the H0 given the data P(H0|D) but does
the opposite. Frequentist NHST considers the probability of
data given the H0, P(D|H0) ≠ P(H0|D), which does not equal
the probability of the H0 given the data. Latter statistical state-
ment is what the researcher aims to investigate but instead
they investigate its unequal statement of the data given the
H0. Hence, the NHST’s rationale of P(D|H0) contradicting
the researcher’s actual goal is called the inverse probability
error (Cohen 1994). Frequentists retrieve the p value from an
approach to probability that constitutes the data given the H0.
In other words, the sampling distribution is constructed in-
cluding the H0 by expecting hypothetical data under H0.
Hence, p values are based on data that were never observed

which is why they cannot quantify statistical evidence
(Wagenmakers 2007). Accordingly, the p values represent a
tail-area integral over these data that have never been ob-
served. The form of their distribution is dependent on, and
determined by, the respective test statistics. This is why the
rejection of theH0 is not equivalent to theHi becoming a more
likely entity. The other integral above the remaining area of
the distribution is likewise based on data that were never ob-
served. Hence, the data are always tested by assuming a dis-
tribution of unobserved data. Against this background, p-
values and their statistical significance do not measure the
size of an effect or importance of a result because they are
dependent upon sample size, effect size, power, and α error
probability (Wasserstein and Lazar 2016). Hence, the compa-
rability of their results suffers from these characteristics across
different samples and studies also known as the replicability
problem/crisis (Pashler and Harris 2012; Shrout and Rodgers
2018). Last but not the least, these characteristics have con-
tributed to an exploratory procedure of investigating experi-
mental results, in which the analysis is fine-tuned to the col-
lected data afterwards, instead of pursuing a confirmatory pro-
cedure of testing hypotheses (Wagenmakers et al. 2012).

In contrast, Bayesian statistics approach hypothesis testing
differently. First, the suggested hypotheses Hi and their corre-
sponding H0 are both tested on significance according to the
H0 given the data: P(H0|D). In the following, we provide a con-
cise overview over the logic of Bayesian hypothesis testing
(Masson 2011). Bayesian tests compare two hypotheses by
converting prior odds (representing the probability for an entity
before observation of data) to posterior odds by updating themby
the probabilistic information retrieved from the observed data.
The posterior odds estimated in this way represent the probability
for theH0 as well as theHi separately given the data. Hereby, the
conditional probabilities for H0 and Hi are used. A subjective
probability is updated when new information D is added:

p H jDð Þ � p Dð Þ ¼ p DjHð Þ

� p Hð Þ
p H jDð Þ ¼ p H∧Dð Þ

p Dð Þ →yieldsp H∧Dð Þ ¼ p H jDð Þ � p Dð Þ

p DjHð Þ ¼ p H∧Dð Þ
p Hð Þ →yields p D∧Hð Þ ¼ p DjHð Þ � p Hð Þ

8
>><

>>:
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In a next step, Bayes theorem is inserted1. In doing so, we
set both prior odds p(H0) = p(Hi) = 1 what represents common
practice when the experimenter cannot or does not make any
presumptions about the prior odds for a hypothesis. When
previous knowledge exists, this could be incorporated into
data analysis at this point. The posterior odds then represent
the Bayes factor (BF). This way of calculating BF01 is repre-
sented in (2). The predictive performance of theH0 divided by
the predictive performance of a Hi:

1 Bayes theorem:

P AjBð Þ ¼ P BjAð Þ�P Að Þ
P Bð Þ (F.1)
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Ω ¼ BF01 ¼ P H0jDð Þ
P HijDð Þ ¼

p DjH0ð Þ � p H0ð Þ
P Dð Þ

p DjHið Þ � p Hið Þ
P Dð Þ

¼ P DjH0ð Þ
P DjHið Þ �

P H0ð Þ
P Hið Þ ¼ P DjH0ð Þ

P DjHið Þ ð2Þ

Finally, the reverse of BF01 which is BF10 has become
standard measure (3) likewise.

BF10 ¼ P HijDð Þ
P H0jDð Þ ð3Þ

All Bayesian statistical procedures are based on this ratio-
nale of calculating B01 or B10. This Bayes factor represents a
relative metric of a hypothesis’ predictive quality what repre-
sents the second benefit of Bayesian statistics. The corre-
sponding unambiguous categorial evaluation of BF01 and
BF10 is defined in Jeffreys (1961) and cited in the relevant
literature of behavioural and social sciences (e.g. Wetzels
and Wagenmakers 2012).

Third, Bayesian inference is equally valid for all sample
sizes and can always be trusted (Wagenmakers et al. 2018b).
This benefit evolves from the fact that Bayesian estimation is
coherent referring to the characteristics of probability theory
that all inferential statements must be mutually consistent
(Lindley 2000). Under this claim, formal logic, mathematics,
and calculus of probability exclude any self-contradictions
(Eagle 2011). As the observations of Bayesian analyses addi-
tionally depend only on the observed data, they are interpret-
able regardless from their sampling characteristics such as
rigidity, flexibility, and size (Lindley 1993; Zondervan-
Zwijnenburg et al. 2017). Finally, with an increase in sample
size, the probability to discover the real hypothesis tends to-
ward 1 (Goldstein and Wooff 1997). In this sense, Bayesian
statistics achieve to overcome the sample size issue that rep-
resents an issue in many areas of HSI where experts are re-
quired for evaluation of a system (Boring 2006; Borsci et al.
2014; Lewis 1994; Lewis and Sauro 2006). Finally, compar-
isons have shown the Bayes factor calculation does not over-
estimate significances like the traditional NHST tends to
(Hubbard and Lindsay 2008; Wagenmakers 2007).

Of course, Bayesian analyses are applicable to all statistical
procedure such as the comparisons of means of ANOVAs and
t tests (Körber et al. 2018a; Körber et al. 2018b; Roth 2015;
Sato et al. 2019; Yamani and McCarley 2016; Yamani and
McCarley 2018), mediation analyses (Karpinsky et al. 2018),
linear (Lee and Kolodge 2019; Neyens et al. 2015; Rubin et al.
2020; Tear et al. 2020) and logistic regressions, correlations
(Wetzels and Wagenmakers 2012), Bayesian networks
(Regens et al. 2015), path analysis (Miranda 2018), structural
equation modelling (Smid et al. 2019), meta-analysis (Senior
et al. 2016), hierarchical (Bayesian) models (Zhou et al.

2014), and many more. Nonetheless, the general rationale
for the calculation of probabilities, the analysis, and its inter-
pretation remains comparable. In the present case study on
pilot incapacitation for a reduced-crew in commercial avia-
tion, we show and explain in detail how two exemplary
Bayesian statistical procedures can be efficiently applied to a
small-sample-size experimental design from HSI. In doing so,
we demonstrate the benefits of Bayesian statistics hypothesis
testing for HSI on its current state of science to show their
practicability for application.

3 A case study: the effects of pilot
incapacitation

Pilot incapacitation is one of the five main research challenges
in reducing the flight deck crew of an airliner from two to one
pilot onboard (Johnson et al. 2012). This possible future con-
cept of operations (ConOps) for commercial air transport has
been highly topical in academic research over the past decade
(Schmid and Stanton 2020). These so-called single pilot op-
erations (SPO) or reduced-crew operations (RCO), referring
to long-haul flight operations that include relief pilots on-
board, represent a viable option for future aviation although
the concept is currently only in early stages of the design
lifecycle and some way off from practical application in com-
mercial aviation (Vu et al. 2018). As such, a remote ground-
based support by a specialist operator is often included to
alleviate high workload on the pilot in critical phases of flight
(such as take-off, landing, and off-nominal and emergency
situations). There has been less research investigating pilot
incapacitation by using accident models and analyses of the
role of the remote-copilot who is involved as a harbour pilot in
such a dedicated support of the single-piloted aircraft (Schmid
and Stanton 2019). Dedicated support refers to one remote-
copilot supporting one single-pilot at a time. In the present
ConOps, the remote-copilot provides mandatory flight plan-
ning and navigation support during departure and arrival
whereas the single-pilot operates the aircraft on their own
during cruise, and only call for support in off-nominal and
emergency situations (Schmid et al. 2020; Schmid and
Stanton 2019). This ConOps is based on the distribution of
workload during the standard flight phases (Schmid 2017). In
general, the take-off run, take-off flight path, final approach,
missed approach, landing (including the landing roll), and any
other phases of flight as determined by the pilot-in-command
are defined as “critical” (European Commission 2015). This
matches the task demand pattern retrieved from the operating
procedure activities during flight. During arrival, the task re-
quirements and workload are highest followed by departure
(Federal Aviation Administration 2001). In contrast, cruise is
associated with lower task activities and workload. Hence,
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mandatory support of the single-pilot during departure and
arrival is required to distribute workload more evenly.

Pilot incapacitation is any reduction in the medical fitness
of a pilot which is likely to jeopardize flight safety
(International Civil Aviation Organization [ICAO], 2012, p.
I-3-1). This includes any physiological or psychological state
that is likely to adversely affect performance. In general, med-
ical certification regulations and checks, the “two communi-
cation” rule of communicating health issues (ICAO 2012, p.
I-3-6) as well as a specific emergency operating procedure for
flight crew incapacitation (Airbus 2011, p. PRO-ABN-
NECA-20) deal with this rather rare incident in current two-
crew members’ operational practice (Schmid and Stanton
2018; Schmid et al. 2018).

In RCO, a single-pilot incapacitation represents an emer-
gency because the sociotechnical system must overcome the
lost redundancy of the second pilot. Here, most ConOps em-
ploy a pilot health monitoring system to detect decreases in
psychological health when not self-reported (Lachter et al.
2017; Schmid et al. 2020; Stanton et al. 2016). In addition, a
system monitoring entries into aircraft systems will be re-
quired to detect abnormalities in system operations (such as
a decrease in safe performance due to subtle incapacitations of
the pilot). Schmid and Stanton (2019) suggest and discuss the
application of both types of monitoring systems in RCO and
worked out a dual-graded alert system to activate remote sup-
port. Either an alert for support as pilot monitoring (PM) or an
alert for support as pilot flying (PF) to resume command and
control is given to the remote-copilot. Such situations repre-
sent an emergency in RCO and the remote-copilot would land
the aircraft as soon as it is safe to do so.

In the present study, we considered this ConOps for reduc-
ing the cockpit crew (Koltz et al. 2015; Schmid et al. 2020) in
comparison to contemporary multi-crew operations (MCO) of
an Airbus A320’s cockpit crew. We investigated the effects of
a single-pilot’s incapacitation on the remote-copilot’s subjec-
tive mental workload during the three main flight phases of
departure, cruise, and arrival (Young et al. 2015) as well as
their technology acceptance regarding the respective ConOps.
The remote-copilot served as first officer (FO) and the single-
pilot as captain. Taken together with the assumption that in-
capacitation of the captain causes higher workload on the
remaining pilot we assume the following:

& H1: Pilot incapacitation increases the perceived workload
on the remaining co-pilot.

& H2: The workload for pilot incapacitation during arrival is
higher than during cruise.

& H3: The workload for pilot incapacitation during departure
is higher than during cruise.

Since previous research in RCO has shown no generaliz-
able trends in workload differences of a copilot operating at a

GS or on theMCO flight deck (Schmid and Stanton 2020), we
investigate the influence of crewing configuration on work-
load exploratively. We used the widely established and well-
acknowledged subjective measure of the raw NASA-TLX to
assess subjective workload (Hart 2006; Hart and Staveland
1988). The reader interested in workload measurement is re-
ferred to the current-state-of-science reference from Young
et al. (2015) since it is beyond the scope of the present paper
to discuss a standard measure from the field of HSI.

Furthermore, we considered the psychological construct of
technology acceptance as it represents a standard measure to
continuously inform systems design at all stages of its lifecycle
(Regan et al. 2014). In doing so, a human-centred perspective
enables to systematically integrate the later users of the system,
the pilots into evaluations of the work environment. Against
this background, technology acceptance refers to making tech-
nology acceptable to its users so that they find it usable in
practice. Therefore, we assessed technology acceptance as a
link to usage that materialises potential safety effects by satis-
fying the pilots needs and requirement (Adell et al. 2014; Van
der Laan et al. 1997). Hereby, we measured acceptance accord-
ing to this most used definition via the corresponding technol-
ogy acceptance scale (TAS; Van der Laan et al. 1997). The
scale consists of two subscales of usefulness and satisfaction.
It is partially based on the Technology Acceptance Model
(TAM) which describes acceptance as an attitude toward using
a system via the perceived usefulness and ease of use (Davis
1986; Davis 1989; Lee et al. 2003). In this sense, we measured
the attitude of the pilots to gauge the extent to which the pro-
totypical GS fulfils their perceived needs and requirements for
RCO, when compared to MCO. Familiarity with a system and
workspace should make the contemporary MCO easier to use
simply due to experience (Rahman et al. 2017; Rödel et al.
2014). Thus, we assume for technology acceptance regarding
RCO when compared to MCO:

& H4: The technology acceptance of the MCO cockpit is
higher than of the RCO’ workplace (GS).

Facing these hypotheses, the methodological aim of the
present article is to examine what can Bayesian inference sta-
tistics contribute to data analysis and interpretation in addition
and comparison to the traditional NHST. In the field of HSI,
Bayesian statistics have not been widely adopted yet (Boehm-
Davis et al. 2015; Durso et al. 2007; Lee and Kirlik 2013;
Salvendy 2012; Wickens et al. 2018). Here, they occupy a
methodological niche by being applied probabilistic decision
making, signal detection, and learning processes, but less to
solely test hypotheses. An assessment of the actual distribu-
tion of Bayesian statistics in HSI has not been undertaken until
now to the best of the authors’ knowledge. Therefore, we
apply them according to the recommended practices from be-
havioural sciences of Aczel et al. (2020), van den Berg et al.
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(2019), and van Doorn et al. (2019). In psychology, Bayesian
techniques are only referred to as “complex” inferential statis-
tical procedures (American Psychological Association 2020),
of which no specific reporting standards are available yet, not
even in the field of statistics (Matthews et al. 2017; Stark and
Saltelli 2018; Wasserstein and Lazar 2016).

4 Method

4.1 Participants

The sample consisted of N = 10 (Mage = 39.40; sage =
12.29; 1 woman, 9 men) commercial pilots holding an
active Commercial Pilots Licence (CPL) of which 6
additionally held an Aircraft Transport Pilot Licence
(ATPL). All of them possessed either a type rating on
an aircraft from Airbus or expertise in Airbus-specific
flight operations and procedures. Their flying experience
(Mt = 7,117.00 h, st = 6,651.62 h) ranged from 80 to
18,000 h. The participants took part in the study as FO
who took over the role of the Pilot Monitoring (PM)
during normal flight. In contrast, the captain was a con-
federate of the experimenters as pilot flying (PF) during
normal operations. They acted out the incident of a pilot
incapacitation in half of the trials in all three flight
phases according to script (laser attack during departure,
gastrointestinal illness in cruise, heart attack during ar-
rival) as well as he mocked up the verbal alert to the
copilot of the pilot health monitoring system in RCO.

4.2 Design

We employed a complete 2 × 2 × 3 within-subject design by
varying the crewing configuration (MCO × RCO), the type of
situation (normal × incapacitation), and the flight phase (de-
parture × cruise × arrival). The dependent variables were sub-
jective mental workload of each flight phase (raw NASA-
TLX; Hart 2006; Hart and Staveland 1988) and technology
acceptance of the two crewing conditions (Technology
Acceptance Scale [TAS]; Van der Laan et al. 1997).

4.3 Materials

The MCO were set up in a Generic Experimental Cockpit
(GECO) representing an Airbus A320 in its main systems
and operating panels except the overhead panel. In con-
trast, the GS consisted of a mock-up based on an un-
manned aerial vehicle’s control station called U-Fly. Its
main control panels and displays were kept whereas the
Primary Flight Display (PFD), the Navigation Display
(ND), and the Electronic Centralised Aircraft Monitor
(ECAM) status display were displayed on a second

screen. Functions unavailable at the current version of
the software U-Fly at the GS were mocked up by verbal
command into the speakers (to be realized by the confed-
erate captain). One of the experimenters acted as air traf-
fic controller (ATCo) providing the verbal communica-
tions with air traffic control (ATC) services via headsets
while controlling the whole simulation set up. Captain
and (remote-)copilot were interconnected by a hot-mike
headset channel whereas the communication with the
ATCo required a push-to-talk. Figure 1 depicts the whole
experimental setting: the remote-copilot at the GS and the
single-pilot on the mocked-up single-pilot GECO. All in-
teractions were recorded and synchronized. The technical
details of the modular simulation environment are de-
scribed elsewhere (Lenz and Schmid 2019).

Each flight was flown from take-off from the departure
runway to the touch-down at the destination’s runway.
We altogether used six different flight scenarios, three
for each ConOps (MCO/RCO). One scenario represented
a practice run while the two remaining scenarios repre-
sented the experimental conditions of the situation (nor-
mal/incapacitation). Accordingly, the pilots received all
aeronautical charts related to the flight on their current
state. The four experimental scenarios were made up com-
parably. Each of them lasted about 30 min.

4.4 Procedure

The participation in the study lasted about 6 h. The
subjects, who took part on voluntary basis, were reim-
bursed financially for their participation and were in-
formed about the general time course of the study.
The flight plan of each scenario was pre-entered into
the flight management system (FMS). The runs of
MCO and RCO were divided into blocks and were
counterbalanced in sequence. The pilots were instructed
to fly safely from the departure (take-off) to the desti-
nation airport (touch-down on the runway). In RCO,
they supported the departure flight up to 10,000 ft.
(FL100) and were then instructed to read a neutral
newspaper of their choice (either news or travel maga-
zine) to keep them active in a standardized realistic
low-level task that is neutral to their flying activity.
When instructed by the captain, they should support
the same as either PF or PM.

At the end of each flight phase, the simulation was paused
and the copilot completed the NASA-TLX (Hart 2006; Hart
and Staveland 1988). Then, the crew were instructed to con-
tinue the flight under normal conditions. After each crewing
condition, the copilot completed the TAS (Van der Laan et al.
1997). Both questionnaires were administered on an iPad via
the web application LimeSurvey (LimeSurvey GmbH 2003).
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5 Results

We analysed the respective scale-sum values of the
NASA-TLX and the TAS ratings. To do so, we used
the statistic software JASP that provides a range of
frequentist NHST procedures and their Bayesian coun-
terparts (JASP Team 2019). Figure 2 summarises the
means and standard errors for workload and technology
acceptance nested by experimental condition. Both
scales showed a very good internal consistency as indi-
cated by their averaged Cronbach’s α: the NASA-
TLX’s α = 0.876 and the TAS’ α = 0.931. In general,
the Shapiro-Wilk test did not show a deviation from the
normal distribution for the workload as well as for the
technology acceptance data under all conditions. Bayesian
analyses require approximately normally distributed data.
The residual’s Q-Q-plots confirmed this requirement. Here,
we will analyse the data using traditional frequentist NHST
in comparison to their respective Bayesian procedures.
Parallel analyses of the workload data and the technology
acceptance data compared the results of each statistical ratio-
nale and explored their benefits and limitation.

5.1 The effects on mental workload: NASA-TLX

5.1.1 The frequentist repeated-measures ANOVA

Table 1 represents the results yielded by applying tradi-
tional null hypothesis testing to these data. A repeated
measures ANOVA for the complete experimental design
confirmed H1 in all aspects (Table 1). Workload is higher
on the copilot when the captain incapacitates during
flight. In contrast, the significant main effect of flight
phase can only be interpreted because a first-order inter-
action of crewing × flight phase only tends toward signif-
icance. Hence, situation and flight phase influence work-
load. The post-hoc comparisons confirmed following dif-
ferences between the levels of the factors. Arrival in-
creased workload when compared to cruise (t(9) =
3.543; pholm = 0.007**; Cohen’s d = 1.120) whereas
workload during cruise and departure (t(9) = 1.771; pholm
= 0.187; Cohen’s d = – 0.56) as well as during departure
and arrival did not differ (t(9) = – 1.771; p

holm
= 0.187;

Cohen’s d = – 0.56). This supports an acceptance of H2

and a rejection of H3. The tendency of the interaction

Fig. 2 Subjective ratings for
workload and technology
acceptance for multi- and
reduced-crew operations

Fig. 1 The two experimental conditions: (left) the remote-copilot at the ground station and (right) the Captain on the multi-crew flight deck (only one
pilot on the flight deck in RCO)
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crewing × flight phase indicates that crewing might affect
in combination with flight phase workload, but a conclu-
sion cannot be drawn because of the small sample size.
We do not interpret this tendency further.

At the end, when we meaningfully interpret the size
of the significant effects, we have to consider their ef-
fect sizes. The recommended effect size for a repeated
measures ANOVA is ηG

2 for two reasons. The ηP
2 ex-

cludes the subject variance which is included into its
generalised measure (ηG

2) and consequently neglects de-
sign features that affect the effect sizes (Bakeman 2005;
Olejnik and Algina 2003). This leads to an overestima-
tion of the effect size when using ηP

2 only and prevents
comparability and general classification. Hence, the ηG

2

(Table 1) gives the following interpretation of the
ANOVA ’s effects according to Cohen (1988) .
Accordingly, all ANOVA’s effects can be labelled as
small effects. When neglecting interindividual differ-
ences by looking at ηP

2, the main effect of situation
(H1) turns out to be medium (Funder and Ozer 2019).
In contrast, the ηP

2 of the two-way interaction as medi-
um represents an overestimation. Nonetheless, the con-
firmation of H2 stating workload in arrival was higher
than during cruise is a medium effect. Since previous
statistical knowledge on the effect size of a pilot inca-
pacitation and its effects in reduced-crewing are absent,
we deemed the broad categorisation as sufficient to la-
bel the statistical effects in size. Its practical relevance
cannot be retrieved from that categorisation (Ellis 2009).

5.1.2 The Bayesian Repeated-measures ANOVA

The data from the NASA-TLX were analysed using a
Bayesian repeated-measures ANOVA (van den Berg et al.
2019). The effect of pilot incapacitation on workload has not
been investigated before which is why no informative prior
effect sizes can be proposed. Both hypotheses are estimated as
equally likely in terms of their prior odds. Hence, the default
JASP prior for fixed effects were used (r scale prior width =
0.5). Table 2 summarises the results of the Bayesian ANOVA.
We tested the predictive performance of a particular hypothe-
sis against the null model (H0). The categorical predictor var-
iables were crewing, situation, and flight phase according to
the experimental design. Hereby, all plausible models were
considered in JASP. We excluded all models that showed
substantial evidence for H0 (Jeffreys 1961). Furthermore, we
excluded models that contain interactions without the corre-
sponding main effects because they are considered as implau-
sible2 (Rouder et al. 2016). Table 2 summarizes the 14 models
that are left over. We are interested in these models because
they show at least a substantial evidence (Jeffreys 1961) for
the hypothesis that the combination of effects is true. The best
of these 14models shown at the top consists of the main effect
of situation and flight phase (BF10 = 132,832.778). A separate
comparison of all other 13 models’ predictive performance in

Table 1 The results calculated according to the traditional frequentist approach of statistical inference testing

Measure Statistical procedure Inference statistics

Effect Test (df) p Effect size

ηp
2 ηG

2

Workload rating [raw NASA-TLX]a ANOVA (2 × 2 × 3)
for repeated measures

Situation F(1,9) = 8.98 .015* .50 .15

Flight phase F(1,9) = 6.28 .009** .41 .05

Crewing × flight phase F(2,18) = 2.78 .089 .24 .01

Crewing × situation × flight phase F(2,18) = 12.65 < .001** .58 .05

Durbin Test (2 × 2 × 3)b Situation X2(1,10) = 11.39
F(11,109) = 12.60

< .001**
< .001**

– –

Flight phase X2(2,10) = 7.07
F(11,108) = 3.71

.029*
< .001**

– –

Technology acceptance [TAS] Cohen’s d

Paired-sample t test MCO > RCO t(9) = 2.358 0.021* .746

rrb
Wilcoxon signed-rank test MCO > RCO Z = 40.000 .022** .778

Tendencies toward significance were included into the table starting at p < .10
a The assumption of normality is met (the distributions of the workload and acceptance rating data showed all non-significant pi > .05. according to the
Shapiro-Wilk test)
b None of the Conover’s post-hoc tests yielded significant results (pi > .05)

2 Implausible models include an interaction but not the corresponding main
effects (Rouder et al. 2016). They are considered implausible because they rely
on picking the exact levels so that the true main effects perfectly cancel.
Implausible effects are not considered in JASP as well as in the present paper.
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terms of BFs to this best model showed at least a substantial
evidence for lacking in predictive value when compared to it
(their BF10 ≤ 0.33; not presented here for reasons of space).
Thus, we chose the models that are interpretable and further
analysed the single effects’ contributions to Bayesian
significance.

In a second step, we analysed the Bayesian ANOVA’s
effects in Table 3. The results were averaged across all models
to examine for each predictor the prior and posterior inclusion
probabilities represented by the inclusion Bayes factor
(BFincl). In doing so, we are able to evaluate the effect of main
effects and interactions on the calculation of BF10 of Table 2.
Based on a categorial analysis (Jeffreys 1961), we only

interpret the main effect of situation and flight phase because
all other effect substantially support H0 (their BFincl

[0.123;0.295]). They have not changed the odds in favour of
the model that include them as possible predictor. The main
effect of situation decisively changes the posterior odds in
favour for the alternative hypothesis whereas the main effect
of flight phase only anecdotally contributes to it.

As third step, we analysed the Bayesian ANOVA’s effects
across all matched models which is referred to as the Baws
factor (Mathôt 2017). This strengthens the claim of analysing
only plausible effects. Hereafter, we call the BF for inclusion
of matched models’ effects BFBaws to avoid confusion. In
general, the BFBaws presented in Table 4 lead to the slightly

Table 2 Model comparison of the Bayesian ANOVA for the NASA-TLX

No. Models P(M) P(M|data) BFM BF10 Error
%

1 Situation + Flight phase 0.053 0.500 17.979 132,832.778 9.148

2 Situation 0.053 0.138 2.881 36,672.798 0.627

3 Crewing + Situation + Flight phase 0.053 0.121 2.484 32,232.365 2.388

4 Situation + Flight phase + Situation × Flight phase 0.053 0.077 1.499 20,434.904 1.766

5 Crewing + Situation 0.053 0.038 0.704 10,000.065 2.897

6 Crewing + Situation + Flight phase + Crewing × Situation 0.053 0.034 0.641 9,134.365 4.254

7 Crewing + Situation + Flight phase + Crewing × Flight phase 0.053 0.031 0.567 8,118.091 2.873

8 Crewing + Situation + Flight phase + Situation × Flight phase 0.053 0.023 0.417 6,023.819 4.269

9 Crewing + Situation + Crewing × Situation 0.053 0.010 0.188 2,750.336 2.856

10 Crewing + Situation + Flight phase + Crewing × Situation + Crewing × Flight phase 0.053 0.008 0.152 2,226.171 2.571

11 Crewing + Situation + Flight phase + Crewing × Situation + Crewing
× Flight phase + Situation × Flight phase + Crewing × Situation × Flight phase

0.053 0.008 0.145 2,129.507 6.771

12 Crewing + Situation + Flight phase + Crewing × Situation + Situation × Flight phase 0.053 0.005 0.096 1,412.642 1.927

13 Crewing + Situation + Flight phase + Crewing × Flight phase + Situation × Flight phase 0.053 0.005 0.095 1,394.805 2.578

14 Crewing + Situation + Flight phase + Crewing × Situation + Crewing × Flight phase +
Situation × Flight phase

0.053 0.002 0.031 452.204 12.633

According to Jeffreys (1961) categorisation, BF10 = [0.3;1] are excluded because they show anecdotal evidence forH0 orHi. Those models with BF10 <
0.3 are excluded as well because they show substantial to decisive evidence for H0. The order is “compare to null model”

Table 3 Effect analysis of the
Bayesian ANOVA for the
NASA-TLX across all models

Effects P(incl)a P(incl|data)b BFinclc

Crewing 0.737 0.285 0.143

Situation 0.737 1.000 30,451.033

Flight phase 0.737 0.814 1.564

Crewing × Situation 0.316 0.068 0.158

Crewing × Flight phase 0.316 0.054 0.123

Situation × Flight phase 0.316 0.120 0.295

Crewing × Situation × Flight phase 0.053 0.008 0.145

a Probability that a predictor is included into the model before seeing the data
b Probability that a predictor is included into the model after seeing the data
c A quantification of the change from the prior inclusion odds to the posterior inclusion odds. It can be interpreted
as the evidence from the data for including a predictor
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different conclusions as when considering all models as
above. Here, the situation (BFBaws = 70,521.142) decisively
influences workload as well but flight phase (BFBaws = 3.525)
influences workload anecdotally to decisively. Therefore, we
have to consider single comparisons regarding the flight
phases to examine this hint for a possible predictive value of
some flight phase on workload.

In a fourth step, the post-hoc tests’ results specified the
influence of flight phase on workload. Table 5 represents
those results which show at least an anecdotal evidence for
an alternative hypothesis. The results that show no evidence
(BF10,U) or at least anecdotal evidence for H0 were omitted
because their interpretation is that there is no evidence for a
difference between the posterior odds’ distributions of the
predictor’s levels. According to Table 5, we conclude that
pilot incapacitation decisively increases workload compared
to normal flight. Above all, there is very strong evidence for
H2 that workload is higher during arrival than during cruise.
Nonetheless, there remains only anecdotal evidence that
workload during departure is higher than during cruise (H3).

In the end, we investigated the magnitude of the rela-
tions by considering the posterior distributions of the ef-
fects. The model-averaged posterior distributions of each
level of the effects can be described by using four statis-
tics: posterior mean, posterior standard deviation, and the

lower and upper bound of the 95% credible interval. The
posterior distributions for the main effect of situation on
workload are shown in Fig. 3. Consequently, the effect of
situation is for normal flight MNormal = 5.776 (95% CI [–
7.990; – 3.641] and for incapacitation MIncapacitation = –
5.776 (95% CI [3.542; 7.868]). The effect of arrival with-
in flight phase is only about MArrival = 3.434 (95% CI
[0.471; 6.407]) whose posterior distribution is displayed
in Fig. 4. For example, a posterior estimate for the sub-
jective workload ratings of a particular condition can be
calculated by adding the posterior mean of the intercept
Mintercept = 23.706 to the Mi of the particular no-effect
condition. For example, the posterior estimate for the in-
capacitation condition is 29.482 whereas the posterior es-
timate for the normal condition is 17.93. In this way, we
can estimate the subjective workload of each condition
under the given model obtained from the data. This leads
us to question the model fit in general. Overall, the model
averaged posterior R2 = 0.485 with a 95% CI [0.357;
0.584] represents a strong model fit. R2 is an accurate
measure in the Bayesian context although the predictive
value for new data is less accurate than for the data that
were used to fit the model (Gelman et al. 2019).

In sum, the Bayesian repeated-measures ANOVA revealed
that the situation independently affected the remote-copilot’s

Table 4 Baws factor (= inclusion
probabilities for matched models
only) analysis of the concerned
effects of the Bayesian ANOVA
for the NASA-TLX

Term P(incl)a P(incl|data)b Baws factorc

Crewing 0.263 0.182 0.254

Situation 0.263 0.827 70,521.142

Flight phase 0.263 0.655 3.525

Crewing × Situation 0.263 0.060 0.277

Crewing × Flight phase 0.263 0.046 0.250

Situation × Flight phase 0.263 0.112 0.161

Crewing × Situation × Flight phase 0.053 0.008 4.709

aModels that contain the effect of interest, but no interactions with the effect of interest
bModels that contain the effect of interest and interactions with the effect of interest.
c The Baws factor is the probability for inclusion of matched models only. Hereby, matched models refer to
models that include the effect of interest but no interactions with the effect of interest calculated by JASP

Table 5 Post-hoc comparisons
for the repeated-measures
ANOVA that contain an evidence
for a Hi (BF10,U ≥ 1)

Comparisons Prior odds Posterior odds BF10,U Error %

Normal Incapacitation 1.000 9304.094 9304.094 1.688e–7

Departure Cruise 0.587 1.300 2.213 1.443e–7

Departure Arrival 0.587 0.473 0.805 1.424 e–6

Cruise Arrival 0.587 0.473 35.706 3.157e–5

The posterior odds have been corrected for multiple testing by fixing to 0.5 the prior probability that the null
hypothesis holds across all comparisons (Westfall et al. 1997). Individual comparisons are based on the default t
test with a Cauchy (0, r = 1/sqrt(2)) prior. The “U” in the Bayes factor denotes that it is uncorrected
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workload (BFincl = 30,451.033; BFBaws = 70,521.142; BF10,U
= 9304.094) which is higher when an incapacitation occurred.
Flight phase on its own just had a marginal influence (BFincl =
1.564; BFBaws = 3.525) as further elaborated in post-hoc tests.
The flight phase of arrival very strongly increased workload

when compared to cruise (BF10,U = 35.706) but not when
compared to departure (BF10,U = 0.805). In contrast, departure
only anecdotally increased workload when compared to cruise
(BF10,U = 2.213) which is why we do not interpret this partic-
ular difference further. In this sense, H1 and H2 are supported
whereas H3 is rejected.

5.1.3 A comparison of the Frequentist and Bayesian
repeated-measures ANOVA

Table 6 shows the summary on the frequentist NHST
repeated-measures ANOVA. Although there are no dif-
ferences in the final conclusion regarding the hypothe-
ses, both types of ANOVAs differ in their reliability
and validity. NHST yielded simple and all-or-nothing
results on significances of workload by the use of p-
values: accept H1 (incapacitation > normal) and H2

(arrival > cruise), reject H3 (departure > cruise). The
effect size cannot be interpreted on their own in the
present study due to the lack of reference for practice.
Hence, we remain uncertain about the robustness of the
results. This is mainly due to the characteristics of
NHST judging the test statistics on the base of whether
they fall into a prespecified region defined by two error
rates (type 1, α, false positive; type 2, β, false nega-
tive). This estimation does not represent the data that
were observed because it is constructed on the base of
assuming hypotheses.

Hence, the Bayesian ANOVAoutperformed the frequentist
equivalent. The Bayes factors directly quantified how much
each factor’s level contributed to the posterior distributions of
each model of the possible hypotheses. Thus, they directly
provide an evidence for the size of an effect by quantifying
an updated state of belief by the observed data regarding a
hypothesis. Accordingly, H1 and H2 are decisively assumed
as true whereas H3 merely shows anecdotal evidence that
cannot be interpreted further.

5.2 The effects on technology acceptance: the
technology acceptance scale

5.2.1 The Frequentist paired-sample t test

A paired-sample t test and the Wilcoxon signed-rank test were
conducted to examine the effects of crewing on the technolo-
gy acceptance measured by the TAS. Table 1 shows the re-
sults that technology acceptance of MCO is higher than for
RCO (t(9) = 2.358; p = 0.021*; Cohen’s d = .746) which is
why the H4 can be accepted. Crewing influences technology
acceptance. This effect is interpreted as medium (Cohen 1988;
Funder and Ozer 2019).

Fig. 3 The posterior distributions and confidence intervals (95%) for the
main effect of situation on workload

Fig. 4 The posterior distributions and confidence intervals (95%) for the
main effect of flight phase on workload
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5.3 The Bayesian paired-sample t test

A Bayesian directional paired-sample t test using default
priors3 for the TAS’ sum values of MCO and RCO was also
conducted. The BF10 is used to describe the effect whose prior
and posterior distribution are represented in Fig. 5. We found
low substantial evidence for H4 that technology acceptance is
higher for MCO than for RCO (BFH4 = 3.848; error % = ~
7.099e–5, 95% CI [0.086; 1.313]; Mdn = 0.618).

A robustness check of the BF was performed to assess the
impact of possible variations in the prior distribution on the
posteriors and the BFH4. Figure 6 shows the extent to which
the results are affected by variations of the prior distributions.
The Bayes factor is less robust to changes in the priors (max
BFH4 = 3.948 at r = 0.5379; wide prior BFH4 = 3.498; ultra-
wide prior BFH4 = 2.963). Accordingly, if we had measured
technology acceptance of both flight ConOps before the study
and updated the priors by the state of beliefs, we had received
similar results. Choosing an ultrawide prior leading
(BFH4ultrawide = 2.964) had not altered the conclusions of a
moderate to anecdotal evidence for H4. In the end, the inter-
pretation of a moderate evidence for H4 remains.

5.3.1 A comparison of the Frequentist and Bayesian t test

Table 6 also summarizes the two different t tests and their
results for technology acceptance sorted by statistical ratio-
nale. The frequentist NHST t test yielded a significant effect
of technology acceptance being higher for MCO than RCO.
According to this statistical rationale, we can accept H4 with-
out further concerns. In contrast, the Bayesian approach only
found a moderate evidence for the same effect. Therefore,
Bayesian reasoning benefits in application from quantifying
the evidence of a particular hypothesis. As a consequence, we
must not overestimate the influence of MCO leading to a
higher technology acceptance when compared to RCO. The
effect still remains moderate at the lower bound to anecdotal
evidence when the priors would be updated by pre-knowledge
on technology acceptance (Fig. 4). Hence, we assume that
other factors which we have not included into the model in-
fluence the variable. This is why the Bayesian t test has
outperformed its frequentist counterpart in estimating the
strength of the effect of acceptance as well as when updating
the prior data by additional evidence.

6 Discussion

Pilot incapacitation increased the copilot’s workload when
compared to normal flight operations (H1). This effect was
independent from flight phase and crewing. Nonetheless, the
flight phase arrival resulted in a higher workload on the copi-
lot than cruise (H2). When compared to departure, the flight
phase cruise just revealed a slightly higher workload based on
anecdotal evidence which is why we do not interpret this
effect further (rejection ofH3). In contrast, the higher technol-
ogy acceptance of MCO than RCO by the pilots (H4) revealed
to be of moderate evidential quality.

At first, we integrate these results into their applicational con-
text of RCO of an airliner before we proceed with the beneficial
characteristics the Bayesian approach has added to the data anal-
ysis. In general, the effects of pilot incapacitation on workload of
the copilot coincide with the manufacturer’s (e.g. Airbus 2011)
and regulator’s (ICAO 2012) classification of the event as an
emergency for MCO. The event requires an immediate landing
at an adjacent airport in MCO and RCO for two reasons. In both
crew compositions, the loss of the second pilot as human redun-
dancy and support during flight operations increased the work-
load on the remaining pilot. This finding is a consequence of
more tasks simultaneously loading on the copilot without another
pilot as back-up (Schmid et al. 2020; Stanton et al. 2016). Thus,
the reduced-crew concept of the remote harbour pilot is based on
the workload differences during the standard flight phases (Koltz
et al. 2015; Schmid 2017). The dedicated support makes sense
because workload is in fact higher during arrival while incapac-
itation increased workload in all flight phases.

Surprisingly, crewing and the setup of the workstation did
not influence the level of perceived workload. This finding is
worthy to consider further. We employed a medium-fidelity
prototype as the remote-copilot’s GS at early stages in the
user-centred design lifecycle. In this setting, as already

3 In the calculation of the t test, the default Cauchy is centred on 0 and has a
scale factor called r that determines its width. The scale factor can equal the
interquartile range as in the present example. Here, r = 0.707 refers to that 50%
of the prior mass lies in the interval [– 0.707, 0.707]. Hence, the Cauchy
(center = 0, r = 0.707) prior is used. The statistical formalities are described
in detail in Gronau et al. (2020).

Fig. 5 The inferential plot of the prior odds and the posterior odds for the
Bayesian t test of H4 regarding technology acceptance would be MCO >
RCO
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confirmed by previous studies, the remote-copilot can quickly
enough get into the situation by being provided with the main
information on aircraft systems status, flight status, and the
environment (Brandt et al. 2015). Each copilot was able to
land the aircraft safely at the destination airport (which was
the airport of choice due to its adjacent location in the 30-min
flight scenarios). The absence of an increase in workload dur-
ing the incapacitation event in RCO (and in MCO) is worthy
of note and should be investigated further to explore the con-
tributing design factors. Our data suggest that it seems possi-
ble to overcome a single-pilot incapacitation by employing a
ground-based dedicated support of a remote-copilot to take
over command and control. It is unclear if the unambiguous
alert to the copilot on an incapacitation by either the single-
pilot, or the pilot health monitoring system, in RCO contrib-
uted to keeping the workload level comparable to normal
flight or if it compensated issues with the GS’ prototypical
design. We cannot be sure which factors contributed to the
remaining copilot’s workload because the interfaces’ and
alerts’ effects are confounded in RCO. In general, pilot inca-
pacitation in RCO remains under-explored in terms of which
factors positively affect recovering the aircraft by a remote GS
(Schmid and Stanton 2019; Schmid and Stanton 2020).

The pilots’ preference for MCO, in terms of technology ac-
ceptance, must not be overinterpreted because it is moderate
(Wagenmakers et al. 2018b). The BFH4 reliably demonstrated
an effect in that range even when altering the priors. Crewing
partially affected their technology acceptance of MCO over pro-
totypical RCO, but there are also other factors at play. Possible
examples are age, gender, and flight experience. It is beyond the
scope of the present article to investigate the TAS’ two sub-scales
of usefulness and satisfaction which lead to this subjective atti-
tude toward both workstation setups. The pilots’ familiarity with
the setup of controls and interfaces of the standardAirbus cockpit
in MCO might have caused this moderate preference.

Applying Bayesian statistics to the case study enabled us to
draw more specific conclusions that are advantageous over
frequentist NHST in following terms (Wasserstein and Lazar
2016). Firstly, the evidence forH0 as well as for the alternative
hypothesis Hi are quantifiable and give more information on
the dimensional characteristics of an effect. It means that the
Bayes factor represents a relational odds ratio that either sup-
ports one or another alternative model. The model quantifies a
current state of belief under the given information. Bayesian
statistics model P(Hi|D) by updating the prior distribution by
the observed data to estimate the posterior distribution.

In contrast, the p value merely describes the data in relation
to a specified hypothetical explanation. As such, it does not
permit a statement about this explanation. The model which is
examined regarding the p value’s level is constructed by mak-
ing pre-assumptions like including the null-hypothesis. This is
why P(D|H0) is tested based on data that were not observed.
More precisely, the p value only measures how incompatible
the data are with the null-hypothesis which is pre-defined by a
distribution under specific assumptions. In the same, the p
value represents a threshold to balance between two error
rates. It is currently at p = .05 to for the type I, α-error.
Hence, the distribution as well as its identified test, and related
p value, are based on data that were never observed. Neither
the size of an effect nor the importance of the result is calcu-
lated whereas only a complete report on all details can add a
framework for transparency. Nonetheless, latter practices do
not solve the issues related to the p values. Therefore, the
conclusions that are drawn present questionable scientific
practice (Goodman 2016).

Secondly, NHST often overestimates the significance of an
effect (Hubbard and Lindsay 2008; Wagenmakers 2007). In
the present study, the interaction of “crewing × flight phase”
(p = .089; BFincl = 0.123), the second order interaction of
“crewing × situation × flight phase” (p < .001**; BFincl =
0.145) for workload show a tendency for significance and a
high significance in NHST. By means of contrast, they
yielded anecdotal evidence forH0 close to no evidence viewed
in the Bayesian approach. The significant effect of crewing on
acceptance in NHSTwas partially overestimated as well when
compared to its BFH4 = 3.848 remaining robust as low mod-
erate evidence forH4. This pattern of overestimating Bayesian
anecdotal evidence is common when comparing frequentist
NHST to the corresponding Bayesian procedures as found
for 70% of a sample of 855 studies reporting t tests in psy-
chology (Wetzels et al. 2011).

Thirdly, Bayesian statistics are robust against small sample
sizes as demonstrated in the case study presented within this
paper (Aczel et al. 2020). The strength of evidence is
interpreted against the research context in which each sample
size can meaningfully contribute. Thresholds are not available
such as the p value’s 0.05 because the Bayes factor represents
an interpretable dimensional measure. As a consequence,

Fig. 6 The Bayes factor robustness check for the Bayesian t test of H4

regarding that technology acceptance would be MCO > RCO
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Bayesian statistics are a powerful tool to synthetise research
and conduct meta-analyses. The Bayes factors represent a
consistent measure of evidence for different sample sizes that
can be compared when considering differences in designs
(Kruschke and Liddell 2018).

In these ways, the Bayesian approach currently extends the
repertoire of statistical evaluation methods in HSI by provid-
ing a real and quantifiable evidence for H0 or an Hi even for
small sample size designs. An overestimation of significant
results from NHST is prevented, which is a well-known issue,
but to major part neglected for reasons of poor statistical ed-
ucation and practice in science (Matthews et al. 2017; Stark
and Saltelli 2018). In doing so, the transparency in communi-
cating and interpreting Bayesian results is superior to
frequentist methods, which merely can report all complete
data analyses, their effect sizes, and decisions in this proce-
dure. This is how NHST can avoid cherry-picking piecemeal
significance findings but still produce less reliable and less
valid data analyses than their Bayesian equivalents, as de-
scribed previously (Nuzzo 2014). Hence, Bayesian statistics
improve the overall reliability and validity of results, not only
in HSI, and catch up with other areas of science in methodo-
logical terms (Stanton and Young 1999).

Furthermore, the well-known replicability problem of em-
pirical science is addressed in HSI as well (Kelling et al.
2017). This issue refers to results that were obtained under
traditional frequentist NHST being often not replicable. In
general, only between < 30 and 50% of studies in psychology,
and occasionally up to 67% in prestigious journals such as
Nature and Science, are replicable (Camerer et al. 2018;
Lewandowsky and Oberauer 2020). This phenomenon is
due to the issues related to frequentist NHST as presented
here. Bayesian inference is only one suggestion on how the
replicability problem could be solved by understanding why
replication varies in its results (Shrout and Rodgers 2018).
Thereto, the Bayesian approach updates the prior knowledge
quantified as the prior distribution by empirical data to gener-
ate revised knowledge whose odds are described by the pos-
terior distribution. In this way, the Bayesian procedure in-
cludes further emerging data into past results to assess the
current evidence for a hypothesis in a replication study.
Verhagen and Wagenmakers (2014) developed a methodolo-
gy for a specific Bayesian replication test to compare the ad-
equacy of 2 competing hypotheses in a replication attempt.
The interested reader is referred to the literature regarding
the replicability issues in psychology (Pashler and Harris
2012) and science in general (Peng 2015).

Due to all these advantages over frequentist NHST,
Bayesian statistics have become a true alternative for testing
hypotheses on significance to the classical frequentist methods
not only for psychology during the last two decades (van de
Schoot et al. 2017). Because this subject is closely related to
HSI, we would appreciate the statistical evaluation of not only

experimental results becoming more Bayesian here, no matter
if in comparison or in use on their own as current examples
including ours demonstrate (Banducci et al. 2016; Chancey
et al. 2017; Karpinsky et al. 2018; Körber et al. 2018a; Körber
et al. 2018b; Lee and Kolodge 2019; Neyens et al. 2015; Roth
2015; Rubin et al. 2020; Sato et al. 2019; Tear et al. 2020;
Yamani and McCarley 2016; Yamani and McCarley 2018).
Bayesian statistics in HSI essentially improve the reliability
and validity of the statistical data analysis which is why they
contribute to the overall worth of the field’s research results
(Stanton and Young 1999) by keeping pace with current ad-
vances in statistics (Wasserstein and Lazar 2016).

The practical implementation and applicability of Bayesian
statistics has become more elaborated during the last decade
and is currently promising (Kruschke 2015; Wagenmakers
et al. 2018b). Several up-to-date software tools and packages
are available to calculate the Bayes factor for a series of sta-
tistical procedures. We analysed the data with the well-
established open-source software JASP providing a graphical
and intuitive user interface, a spreadsheet and drag-and-drop
layout, as well as a dynamic update of all results (JASP Team
2019; Marsman and Wagenmakers 2017). JASP offers the
standard analysis procedure for both the frequentist and
Bayesian methods to test hypotheses. Furthermore, it is simul-
taneously based on the R-package BayesFactor that provides
the calculation of the BF for common research designs (Morey
and Rouder 2018). The system JAGS implements automatic
Markov chain Monte Carlo (MCMC) samplers for complex
hierarchical models (Kruschke 2015; Plummer 2017). The
software package Stan does the same and creates representa-
tive samples of parameter values from a posterior distribution
for complex hierarchical models (Kruschke 2015; Stan
Development Team 2019). IBM has recently begun to inte-
grate seven native Bayesian procedures into its standard edi-
tion of IBM SPSS Statistics (IBM 2018a; IBM 2018b). These
efforts in implementing Bayesian methods into software ap-
plication have contributed to the growing popularity of the
methods (van de Schoot et al. 2017).

We have identified the crucial issues of Bayesian statistics
that are relevant for HSI. Since the main aim of the present
work is to demonstrate the main advantages of the Bayesian
statistics in an exemplary small-sample-size experimental
study, we have reached our goal to raise awareness for a
promising development in statistical methods of the empirical
sciences (Ashby 2006; König and van de Schoot 2018;
Kruschke and Liddell 2018; Lynch and Bartlett 2019).
Nevertheless, HSI is slow to adopt the Bayesian approaches
(Wasserstein et al. 2019). Since Bayesian procedures repre-
sent a different approach to statistical thinking, a wide range of
literature on its foundations and application exists
(Vandekerckhove et al. 2018). The systematic reviews from
psychology (van de Schoot et al. 2017) as well as from other
fields such as medicine (Ashby 2006), physics (von Toussaint
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2011), and sociology (Lynch and Bartlett 2019) show
this variety. It is beyond the scope of the present article
to systematically assess the HSI literature on its use of
Bayesian statistics.

We hope to have encouraged the reader to include
Bayesian statistics into their own research. The scientific lit-
erature provides very good introductions to Bayesian founda-
tions, reasoning, and calculation of the Bayes factor (Etz et al.
2018; Kruschke 2015; Matzke et al. 2018; Rouder et al. 2018;
Wagenmakers et al. 2018a; Wagenmakers et al. 2018b) to-
gether with practicable software tools for data analysis such
as JASP (Marsman and Wagenmakers 2017). Extensive work
on establishing Bayesian statistics as a firm method in social
and behavioural sciences has shaped the last two decades.
Thereafter, we have shown how Bayesian statistics foster
interpreting quantitative results unambiguously to achieve a
higher reliability and validity. These benefits favour a more
transparent communication of research results and their inter-
pretation in HSI.

Funding This research received an internal institutional funding for the
PhD project “Remote-Copilot-Center: Concept, Development, and
Validation” from the German Aerospace Center (DLR) from 10/2015–
12/2019.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Abbreviations ATC, air traffic control; ATCo, air traffic controller;
ATPL, Aircraft Transport Pilot Licence; BF, Bayes factor; ConOps, con-
cept of operations; CPL, Commercial Pilots Licence; FMS, Flight
Management System; FO, first officer; GECO, generic experimental
cockpit; GS, ground station; HFE, human factors and ergonomics; HSI,
human systems integration; MCO, multi-crew operations; NHST,
(Frequentist) null-hypothesis significance testing; PF, pilot Fflying; PM,
Pilot Monitoring; RCO, reduced-crew operations; SEM, structural equa-
tion modelling; SPO, single pilot operations; TAM, Technology
Acceptance Model; TAS, Technology Acceptance Scale

References

Aczel B, Hoekstra R, Gelman A, Wagenmakers EJ, Klugkist IG, Rouder
JN, Vandekerckhove J, LeeMD, Morey RD, VanpaemelW, Dienes
Z, van Ravenzwaaij D (2020) Discussion points for Bayesian infer-
ence. Nat Hum Behav 4:561–563. https://doi.org/10.1038/s41562-
019-0807-z

Adell E, Várhelyi A, Nilsson L (2014) The definition of acceptance and
acceptability. In: Regan MA, Horberry T, Stevens A (eds) Driver
acceptance of new technology: theory, measurement and optimisa-
tion. Ashgate, Farnham, pp 11–21

Airbus (2011) Airbus A380 Flight crew operating manual. Airbus S.A.S,
Blagnac Cedex

American Psychological Association (2020) Publication manual of the
American Psychological Association, 7th edn. American
Psychological Association, Washington, D.C.

Ashby D (2006) Bayesian statistics in medicine: a 25 year review. Stat
Med 25:3589–3631. https://doi.org/10.1002/sim.2672

Bakeman R (2005) Recommended effect size statistics for repeated mea-
sures designs. Behav Res Methods 37:379–384. https://doi.org/10.
3758/BF03192707

Banducci SE, Ward N, Gaspar JG, Schab KR, Crowell JA, Kaczmarski
H, Kramer AF (2016) The effects of cell phone and text message
conversations on simulated street crossing. Hum Factors 58:150–
162. https://doi.org/10.1177/0018720815609501

Boehm-Davis DA, Durso FT, Lee JD (eds) (2015) APA handbook of
human systems integration. APA handbooks in psychology.
American Psychological Association, Washington, D.C., USA.
https://doi.org/10.1037/14528-000

Boring RL (2006) Statistical considerations for the number of participants
in human factors scaling studies. Proc HumFactors Ergon Soc Annu
M e e t 5 0 : 1 9 4 9 – 1 9 5 3 . h t t p s : / / d o i . o r g / 1 0 . 1 1 7 7 /
154193120605001750

Borsci S, Macredie RD, Martin JL, Young T (2014) How many testers
are needed to assure the usability of medical devices. Expert Rev
Med Dev 11:513–525. https://doi.org/10.1586/17434440.2014.
940312

Brandt SL, Lachter J, Battiste V, JohnsonW (2015) Pilot situation aware-
ness and its implications for single pilot operations: analysis of a
human-in-the-loop study. Procedia Manuf 3:3017–3024. https://doi.
org/10.1016/j.promfg.2015.07.846

Camerer CF, Dreber A, Holzmeister F, Ho TH, Huber J, Johannesson M,
Kirchler M, Nave G, Nosek BA, Pfeiffer T, Altmejd A, Buttrick N,
Chan T, Chen Y, Forsell E, Gampa A, Heikensten E, Hummer L,
Imai T, Isaksson S, Manfredi D, Rose J, Wagenmakers EJ, Wu H
(2018) Evaluating the replicability of social science experiments in
nature and science between 2010 and 2015. Nat HumBehav 2:637–
644. https://doi.org/10.1038/s41562-018-0399-z

Chancey ET, Bliss JP, Yamani Y, Handley HAH (2017) Trust and the
compliance-reliance paradigm: The effects of risk, error bias, and
reliability on trust and dependence. Hum Factors 59:333–345.
https://doi.org/10.1177/0018720816682648

Cohen J (1988) Statistical power for the behavioral sciences. Erlbaum,
Hillsdale

Cohen J (1994) The earth is round (p < .05). Am Psychol 49:997–1003.
https://doi.org/10.1037/0003-066X.49.12.997

Cooper H, Camic PM, Long DL, Panter AT, Rindskopf D, Sher KJ (eds)
(2012) APA handbook of research methods in psychology.
Research designs: Quantitative, qualitative, neuropsychological,
and biological, vol 2. APA handbooks in psychology. American
Psychological Association, Washington, D.C. https://doi.org/10.
1037/13620-000

Davis FD (1986) A technology acceptance model for empirically testing
new end-user information systems: Theory and results. Doctoral
dissertation, Massachusetts Institute of Technology

Davis FD (1989) Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q 13:319–340. https://
doi.org/10.2307/249008

Durso FT, Boehm-Davis DA, Lee JD (2015) A view of human systems
integration from the academy. In: Boehm-Davis DA, Durso FT, Lee
JD (eds) APA handbook of human systems integration. American
Psychological Association, Washington, D.C., USA, pp 5–19.
https://doi.org/10.1037/14528-001

Durso FT, Nickerson RS, Dumais ST, Lewandowsky S, Perfect TJ (eds)
(2007) Handbook of applied cognition, 2nd edn. Wiley, Sussex

Eagle A (ed) (2011) Philosophy of probability: Contemporary readings.
Routledge, New York

Ellis KKE (2009) Eye tracking metrics for workload estimation in flight
deck operations. Master thesis, University of Iowa

Etz A, Gronau QF, Dablander F, Edelsbrunner PA, Baribault B (2018)
How to become a Bayesian in eight easy steps: an annotated reading
list. Psychon Bull Rev 25:219–234. https://doi.org/10.3758/s13423-
017-1317-5

85Hum.-Intell. Syst. Integr. (2019) 1:71–88

https://doi.org/10.1038/s41562-019-0807-z
https://doi.org/10.1038/s41562-019-0807-z
https://doi.org/10.1002/sim.2672
https://doi.org/10.3758/BF03192707
https://doi.org/10.3758/BF03192707
https://doi.org/10.1177/0018720815609501
https://doi.org/10.1037/14528-000
https://doi.org/10.1177/154193120605001750
https://doi.org/10.1177/154193120605001750
https://doi.org/10.1586/17434440.2014.940312
https://doi.org/10.1586/17434440.2014.940312
https://doi.org/10.1016/j.promfg.2015.07.846
https://doi.org/10.1016/j.promfg.2015.07.846
https://doi.org/10.1038/s41562-018-0399-z
https://doi.org/10.1177/0018720816682648
https://doi.org/10.1037/0003-066X.49.12.997
https://doi.org/10.1037/13620-000
https://doi.org/10.1037/13620-000
https://doi.org/10.2307/249008
https://doi.org/10.2307/249008
https://doi.org/10.1037/14528-001
https://doi.org/10.3758/s13423-017-1317-5
https://doi.org/10.3758/s13423-017-1317-5


European Commission (2015) Commission Regulation (EU) No 965/
2012. Off J Eur Union 55

Federal Aviation Administration (2001) Instrument flying handbook.
FAA-H-8083-15 edn. U.S. Department of Transportation,
Washington, D.C., USA

Funder DC, Ozer DJ (2019) Evaluating effect size in psychological re-
search: Sense and nonsense. AdvMethods Pract Psychol Sci 2:156–
168. https://doi.org/10.1177/2515245919847202

Gelman A, Goodrich B, Gabry J, Vehtari A (2019) R-squared for
Bayesian regression models. Am Stat 73:307–309. https://doi.org/
10.1080/00031305.2018.1549100

Goldstein M, Wooff DA (1997) Choosing sample sizes in balanced ex-
perimental designs: a Bayes linear approach. J R Stat Soc: Ser D
(The Statistican) 46:167–183. https://doi.org/10.1111/1467-9884.
00074

Goodman SN (2016) Aligning statistical and scientific reasoning. Sci
352:1180–1181. https://doi.org/10.1126/science.aaf5406

Gronau QF, Ly A, Wagenmakers E-J (2020) Informed Bayesian t-tests.
Am Stat 74:137–143. https://doi.org/10.1080/00031305.2018.
1562983

Hart SG (2006) NASA-Task Load Index (NASA-TLX): 20 years later.
Proc Hum Factors Ergon Soc Annu Meet 50:904–908. https://doi.
org/10.1177/154193120605000909

Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load
Index): results of empirical and theoretical research. In: Hancock
PA, Meshkati N (eds) Human mental workload. Advances in
Psychology, vol 52. North Holland, Amsterdam, pp 139–183.
https://doi.org/10.1016/S0166-4115(08)62386-9

Hubbard R, Lindsay RM (2008)Why p values are not a useful measure of
evidence in statistical significance testing. Theor Psychol 18:69–88.
https://doi.org/10.1177/0959354307086923

IBM (2018a) IBM SPSS Advanced Statistics 25. IBM, Armonk
IBM (2018b) IBM SPSS Statistics, 25.0 edn. IBM, Armonk, NY, USA
International Civil Aviation Organization (2012) Manual of civil aviation

medicine. Doc 8984. Author, Montréal, Canada
International Council on Systems Engineering (2011) Systems engineer-

ing handbook – a guide for system life cycle processes and activities.
Author, San Diego

Janczyk M, Xiong A, Proctor RW (2019) Stimulus-response and
response-effect compatibility with touchless gestures and moving
action effects. Hum Factors 61:1297–1314. https://doi.org/10.
1177/0018720819831814

JASP Team (2019) JASP, 0.11.1 edn., Amsterdam, Netherlands
Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University

Press, Oxford
Johnson WW, Lachter J, Feary M, Comerford D, Battiste V, Mogford R

(2012) Task allocation for single pilot operations: a role for the
ground. In: Proceedings of the International Conference on
Human-Computer Interaction in Aerospace. HCI-Aero ‘12. ACM,
New York, NY, USA,

Karpinsky ND, Chancey ET, Palmer DB, Yamani Y (2018) Automation
trust and attention allocation in multitasking workspace. Appl Ergon
70:194–201. https://doi.org/10.1016/j.apergo.2018.03.008

Kelling N,Ward C,Malin D, BurasW, Hetherington S (2017) The use of
human factors to address medical research replicability through the
development of software based solution. Proc Hum Factors Ergon
Soc Annu Meet 61:597–601. ht tps:/ /doi .org/10.1177/
1541931213601633

KoltzMT, Roberts ZS, Sweet J, Battiste H, Cunningham J, Battiste V, Vu
KPL, Strybel TZ (2015) An investigation of the harbor pilot concept
for single pilot operations. Procedia Manuf 3:2937–2944. https://
doi.org/10.1016/j.promfg.2015.07.948

König C, van de Schoot R (2018) Bayesian statistics in educational re-
search: a look at the current state of affairs. Educ Rev 70:486–509.
https://doi.org/10.1080/00131911.2017.1350636

Körber M, Baseler E, Bengler K (2018a) Introduction matters: manipu-
lating trust in automation and reliance in automated driving. Appl
Ergon 66:18–31. https://doi.org/10.1016/j.apergo.2017.07.006

Körber M, Prasch L, Bengler K (2018b) Why do I have to drive now?
Post hoc explanations of takeover requests. Hum Factors 60:305–
323. https://doi.org/10.1177/0018720817747730

Kruschke JK (2015) Doing Bayesian data analysis: A tutorial with R,
JAGS, and Stan, 2nd edn. Elsevier, London

Kruschke JK, Liddell TM (2018) The Bayesian new statistics: hypothesis
testing, estimation, meta-analysis, and power analysis from a
Bayesian perspective. Psychon Bull Rev 25:178–206. https://doi.
org/10.3758/s13423-016-1221-4

Lachter J, Brandt SL, Battiste V, Matessa M, Johnson WW (2017)
Enhanced ground support: lessons from work on reduced crew op-
erations. Cogn Tech Work 19:279–288. https://doi.org/10.1007/
s10111-017-0422-6

Lee JD, Kirlik A (eds) (2013) The Oxford handbook of cognitive engi-
neering. Oxford Library of Psychology. Oxford University Press,
New York

Lee JD, Kolodge K (2019) Exploring trust in self-driving vehicles
through text analysis. Hum Factors 62:1–18. https://doi.org/10.
1177/0018720819872672

Lee Y, Kozar KA, Larsen KRT (2003) The technology acceptance mod-
el: past, present, and future. Commun Assoc Inf Syst 12:50. https://
doi.org/10.17705/1CAIS.01250

Lenz H, Schmid D (2019) Simulation platform for reduced crew opera-
tions – a case study. Paper presented at the IEEE/AIAA 38th Digital
Avionics Systems Conference (DASC), San Diego, CA, USA,
September 8–12

Lewandowsky S, Oberauer K (2020) Low replicability can support robust
and efficient science. Nat Commun 11:358. https://doi.org/10.1038/
s41467-019-14203-0

Lewis JR (1994) Sample sizes for usability studies: additional consider-
ations. Hum Factors 36:368–378. https://doi.org/10.1177/
001872089403600215

Lewis JR, Sauro J (2006) When 100% really isn’t 100%: improving the
accuracy of small-sample estimates of completion rates. J Usability
Stud 1:136–150

LimeSurvey GmbH (2003) LimeSurvey, 3.17.15 edn. LimeSurvey
GmbH, Hamburg, Germany

Lindley DV (1993) The analysis of experimental data: The appreciation
of tea and wine. Teach Stat 15:22–25. https://doi.org/10.1111/j.
1467-9639.1993.tb00252.x

Lindley DV (2000) The philosophy of statistics. J R Stat Soc: Ser D (The
Statistican) 49:293–337. https://doi.org/10.1111/1467-9884.00238

Lynch SM, Bartlett B (2019) Bayesian statistics in sociology: past, pres-
ent, and future. Annu Rev Sociol 45:47–68. https://doi.org/10.1146/
annurev-soc-073018-022457

MarsmanM,Wagenmakers E-J (2017) Bayesian benefits with JASP. Eur
J Dev Psychol 14:545–555. https://doi.org/10.1080/17405629.
2016.1259614

MassonMEJ (2011) A tutorial on a practical Bayesian alternative to null-
hypothesis significance testing. Behav Res Methods 43:679–690.
https://doi.org/10.3758/s13428-010-0049-5

Mathôt S (2017) Bayes like a baws: Interpreting Bayesian repeated mea-
sures in JASP. https://www.cogsci.nl/blog/interpreting-bayesian-
repeated-measures-in-jasp. Accessed 24 June 2020

Matthews R, Wasserstein R, Spiegelhalter D (2017) The ASA’s p-value
statement, one year on. Significance 14:38–41. https://doi.org/10.
1111/j.1740-9713.2017.01021.x

Matzke D, Boehm U, Vandekerckhove J (2018) Bayesian inference for
psychology, part III: Parameter estimation in nonstandard models.
Psychon Bull Rev 25:77–101. https://doi.org/10.3758/s13423-017-
1394-5

86 Hum.-Intell. Syst. Integr. (2019) 1:71–88

https://doi.org/10.1177/2515245919847202
https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1111/1467-9884.00074
https://doi.org/10.1111/1467-9884.00074
https://doi.org/10.1126/science.aaf5406
https://doi.org/10.1080/00031305.2018.1562983
https://doi.org/10.1080/00031305.2018.1562983
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1177/0959354307086923
https://doi.org/10.1177/0018720819831814
https://doi.org/10.1177/0018720819831814
https://doi.org/10.1016/j.apergo.2018.03.008
https://doi.org/10.1177/1541931213601633
https://doi.org/10.1177/1541931213601633
https://doi.org/10.1016/j.promfg.2015.07.948
https://doi.org/10.1016/j.promfg.2015.07.948
https://doi.org/10.1080/00131911.2017.1350636
https://doi.org/10.1016/j.apergo.2017.07.006
https://doi.org/10.1177/0018720817747730
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.1007/s10111-017-0422-6
https://doi.org/10.1007/s10111-017-0422-6
https://doi.org/10.1177/0018720819872672
https://doi.org/10.1177/0018720819872672
https://doi.org/10.17705/1CAIS.01250
https://doi.org/10.17705/1CAIS.01250
https://doi.org/10.1038/s41467-019-14203-0
https://doi.org/10.1038/s41467-019-14203-0
https://doi.org/10.1177/001872089403600215
https://doi.org/10.1177/001872089403600215
https://doi.org/10.1111/j.1467-9639.1993.tb00252.x
https://doi.org/10.1111/j.1467-9639.1993.tb00252.x
https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1146/annurev-soc-073018-022457
https://doi.org/10.1146/annurev-soc-073018-022457
https://doi.org/10.1080/17405629.2016.1259614
https://doi.org/10.1080/17405629.2016.1259614
https://doi.org/10.3758/s13428-010-0049-5
https://www.cogsci.nl/blog/interpretingayesian-epeatedeasuresnasp
https://www.cogsci.nl/blog/interpretingayesian-epeatedeasuresnasp
https://doi.org/10.1111/j.1740-9713.2017.01021.x
https://doi.org/10.1111/j.1740-9713.2017.01021.x
https://doi.org/10.3758/s13423-017-1394-5
https://doi.org/10.3758/s13423-017-1394-5


Miranda AT (2018) Understanding human error in naval aviation mis-
haps. Hum Factors 60:763–777. https://doi.org/10.1177/
0018720818771904

Morey RD, Rouder JN (2018) Package ‘BayesFactor’:computation of
Bayes factors for common designs, 0.9.12-4.2 edn. CRAN,

Neyens DM, Boyle LN, Schultheis MT (2015) The effects of driver
distraction for individuals with traumatic brain injuries. Hum
Factors 57:1472–1488. https://doi.org/10.1177/0018720815594057

Nuzzo R (2014) Scientific method: Statistical errors. Nature 506:150–152
Olejnik S, Algina J (2003) Generalized eta and omega squared statistics:

measures of effect size for some common research designs. Psychol
Methods 8:434–447. https://doi.org/10.1037/1082-989X.8.4.434

Pashler H, Harris CR (2012) Is the replicability crisis overblown? Three
arguments examined. Perspect Psychol Sci 7:531–536. https://doi.
org/10.1177/1745691612463401

Peng R (2015) The reproducibility crisis in science: a statistical counter-
attack. Significance 12:30–32. https://doi.org/10.1111/j.1740-9713.
2015.00827.x

Plummer M (2017) JAGS, 4.3.0 edn.,
Rahman MM, Lesch MF, Horrey WJ, Strawderman L (2017) Assessing

the utility of TAM, TPB, and UTAUT for advanced driver assis-
tance systems. Accid Anal Prev 108:361–373. https://doi.org/10.
1016/j.aap.2017.09.011

Regan MA, Horberry T, Stevens A (2014) Driver acceptance of new
technology: theory, measurement and optimisation. Human factors
in road and rail transport. Ashgate, Farnham

Regens JL, Mould N, Jensen CJ, Graves MA, Edger DN (2015)
Probabilistic graphical modeling of terrorism threat recognition
using Bayesian networks and monte carlo simulation. J Cogn Eng
Decis Mak 9:29–5311. https://doi.org/10.1177/1555343415592730

Rödel C, Stadler S, Meschtscherjakov A, Tscheligi M (2014) Towards
autonomous cars: The effect of autonomy levels on acceptance and
user experience. Paper presented at the Proceedings of the 6th
International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, Seattle, WA, USA,

Roth W-M (2015) Cultural practices and cognition in debriefing: The
case of aviation. J Cogn Eng Decis Mak 9:263–278. https://doi.
org/10.1177/1555343415591395

Rouder JN, Engelhardt CR, McCabe S, Morey RD (2016) Model com-
parison in ANOVA. Psychon Bull Rev 23:1779–1786. https://doi.
org/10.3758/s13423-016-1026-5

Rouder JN, Haaf JM, Vandekerckhove J (2018) Bayesian inference for
psychology, part IV: Parameter estimation and Bayes factors.
Psychon Bull Rev 25:102–113. https://doi.org/10.3758/s13423-
017-1420-7

Rubin M, Giacomini A, Allen R, Turner R, Kelly B (2020) Identifying
safety culture and safety climate variables that predict reported risk-
taking among Australian coal miners: an exploratory longitudinal
study. Saf Sci 123:104564. https://doi.org/10.1016/j.ssci.2019.
104564

Salvendy G (ed) (2012) Handbook of human factors and ergonomics, 4th
edn. Wiley, Hoboken. https://doi.org/10.1002/9781118131350

Sato T, Yamani Y, Liechty M, Chancey ET (2019) Automation trust
increases under high-workload multitasking scenarios involving
risk. Cogn Tech Work 22:399–407. https://doi.org/10.1007/
s10111-019-00580-5

Schmid D (2017) A workload-centered perspective on reduced crew op-
erations in commercial aviation. Paper presented at the H-Workload
2017: The first international symposium on human mental work-
load, Dublin, Ireland, June 28-30

Schmid D, Korn B, Stanton NA (2020) Evaluating the reduced flight
deck crew concept using cognitive work analysis and social network
analysis: Comparing normal and data-link outage scenarios. Cogn
Tech Work 22:109–124. https://doi.org/10.1007/s10111-019-
00548-5

Schmid D, Stanton NA (2018) How are laser attacks encountered in
commercial aviation? A hazard analysis based on systems theory.
Saf Sci 110:178–191. https://doi.org/10.1016/j.ssci.2018.08.012

Schmid D, Stanton NA (2019) A future airliner’s reduced-crew: model-
ling pilot incapacitation and homicide-suicide with systems theory.
Hum-Intell Syst Integr 1:27–42. https://doi.org/10.1007/s42454-
019-00001-y

Schmid D, Stanton NA (2020) Progressing toward airliners’ reduced-
crew operations: A systematic literature review. Int J Aerosp
Psychol 30:1–24. https://doi.org/10.1080/24721840.2019.1696196

Schmid D, Vollrath M, Stanton NA (2018) The System Theoretic
Accident Modelling and Process (STAMP) of medical pilot
knock-out events: pilot incapacitation and homicide-suicide. Saf
Sci 110:58–71. https://doi.org/10.1016/j.ssci.2018.07.015

Senior AM, Grueber CE, Kamiya T, LagiszM, O’Dwyer K, Santos ESA,
Nakagawa S (2016) Heterogeneity in ecological and evolutionary
meta-analyses: its magnitude and implications. Ecol 97:3293–3299.
https://doi.org/10.1002/ecy.1591

Shrout PE, Rodgers JL (2018) Psychology, science, and knowledge con-
struction: Broadening perspectives from the replication crisis. Annu
Rev Psychol 69:487–510. https://doi.org/10.1146/annurev-psych-
122216-011845

Smid SC, McNeish D, Miočević M, van de Schoot R (2019) Bayesian
versus frequentist estimation for structural equation models in small
sample contexts: A systematic review. Struct Equ Model
Multidiscip J 27:1–31. https://doi.org/10.1080/10705511.2019.
1577140

StanDevelopment Team (2019) Stan, 2.21 edn. Stan Development Team,
Stanton NA, Harris D, Starr A (2016) The future flight deck: Modelling

dual, single and distributed crewing options. Appl Ergon 53:331–
342. https://doi.org/10.1016/j.apergo.2015.06.019

Stanton NA, Hedge A, Brookhuis K, Salas E, Hendrick H (eds) (2005)
Handbook of human factors and ergonomics methods. CRC Press,
Boca Raton

Stanton NA, Salmon PM, Rafferty LA,Walker GH, Baber C, Jenkins DP
(2013) Human factors methods: a practical guide for engineering
and design, 2nd edn. Ashgate, Farnham

Stanton NA, YoungMS (1999)What price ergonomics. Nature 399:197–
198. https://doi.org/10.1038/20298

Stark PB, Saltelli A (2018) Cargo-cult statistics and scientific crisis.
Significance 15:40–43. https://doi.org/10.1111/j.1740-9713.2018.
01174.x

Tear MJ, Reader TW, Shorrock S, Kirwan B (2020) Safety culture and
power: Interactions between perceptions of safety culture,
organisational hierarchy, and national culture. Saf Sci 121:550–
561. https://doi.org/10.1016/j.ssci.2018.10.014

van de Schoot R, Winter SD, Ryan O, Zondervan-Zwijnenburg M,
Depaoli S (2017) A systematic review of Bayesian articles in psy-
chology: The last 25 years. Psychol Methods 22:217–239. https://
doi.org/10.1037/met0000100

van den Berg M et al. (2019) A tutorial on conducting and interpreting a
Bayesian ANOVA in JASP. OSF Storage (Germany – Frankfurt).
doi:10.31234/osf.io/spreb

Van der Laan JD, Heino A, De Waard D (1997) A simple procedure for
the assessment of acceptance of advanced transport telematics.
Transp Res Part C Emerg Technol 5:1–10. https://doi.org/10.1016/
S0968-090X(96)00025-3

van Doorn BA et al. (2019) The JASP guidelines for conducting and
reporting a Bayesian analysis. PsyArXiv. doi:10.31234/osf.io/yqxfr

Vandekerckhove J, Rouder JN, Kruschke JK (2018) Editorial: Bayesian
methods for advancing psychological science. Psychon Bull Rev 25:
1–4. https://doi.org/10.3758/s13423-018-1443-8

Verhagen J, Wagenmakers E-J (2014) Bayesian tests to quantify the
result of a replication attempt. J Exp Psychol Gen 143:1457–1475.
https://doi.org/10.1037/a0036731

87Hum.-Intell. Syst. Integr. (2019) 1:71–88

https://doi.org/10.1177/0018720818771904
https://doi.org/10.1177/0018720818771904
https://doi.org/10.1177/0018720815594057
https://doi.org/10.1037/1082-989X.8.4.434
https://doi.org/10.1177/1745691612463401
https://doi.org/10.1177/1745691612463401
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://doi.org/10.1016/j.aap.2017.09.011
https://doi.org/10.1016/j.aap.2017.09.011
https://doi.org/10.1177/1555343415592730
https://doi.org/10.1177/1555343415591395
https://doi.org/10.1177/1555343415591395
https://doi.org/10.3758/s13423-016-1026-5
https://doi.org/10.3758/s13423-016-1026-5
https://doi.org/10.3758/s13423-017-1420-7
https://doi.org/10.3758/s13423-017-1420-7
https://doi.org/10.1016/j.ssci.2019.104564
https://doi.org/10.1016/j.ssci.2019.104564
https://doi.org/10.1002/9781118131350
https://doi.org/10.1007/s10111-019-00580-5
https://doi.org/10.1007/s10111-019-00580-5
https://doi.org/10.1007/s10111-019-00548-5
https://doi.org/10.1007/s10111-019-00548-5
https://doi.org/10.1016/j.ssci.2018.08.012
https://doi.org/10.1007/s42454-019-00001-y
https://doi.org/10.1007/s42454-019-00001-y
https://doi.org/10.1080/24721840.2019.1696196
https://doi.org/10.1016/j.ssci.2018.07.015
https://doi.org/10.1002/ecy.1591
https://doi.org/10.1146/annurev-psych-122216-011845
https://doi.org/10.1146/annurev-psych-122216-011845
https://doi.org/10.1080/10705511.2019.1577140
https://doi.org/10.1080/10705511.2019.1577140
https://doi.org/10.1016/j.apergo.2015.06.019
https://doi.org/10.1038/20298
https://doi.org/10.1111/j.1740-9713.2018.01174.x
https://doi.org/10.1111/j.1740-9713.2018.01174.x
https://doi.org/10.1016/j.ssci.2018.10.014
https://doi.org/10.1037/met0000100
https://doi.org/10.1037/met0000100
https://doi.org/10.1016/S0968-090X(96)00025-3
https://doi.org/10.1016/S0968-090X(96)00025-3
https://doi.org/10.3758/s13423-018-1443-8
https://doi.org/10.1037/a0036731


von Toussaint U (2011) Bayesian inference in physics. Rev Mod Phys
83:943–999. https://doi.org/10.1103/RevModPhys.83.943

Vu K-PL, Lachter J, Battiste V, Strybel T (2018) Single pilot operations
in domestic commercial aviation. Hum Factors 60:755–762. https://
doi.org/10.1177/0018720818791372

Wagenmakers E-J (2007) A practical solution to the pervasive problems
of p values. Psychon Bull Rev 14:779–804. https://doi.org/10.3758/
bf03194105

Wagenmakers E-J, Love J, Marsman M, Jamil T, Ly A, Verhagen J,
Selker R, Gronau QF, Dropmann D, Boutin B, Meerhoff F,
Knight P, Raj A, van Kesteren EJ, van Doorn J, Šmíra M,
Epskamp S, Etz A, Matzke D, de Jong T, van den Bergh D,
Sarafoglou A, Steingroever H, Derks K, Rouder JN, Morey RD
(2018a) Bayesian inference for psychology. Part II: Example appli-
cations with JASP. Psychon Bull Rev 25:58–76. https://doi.org/10.
3758/s13423-017-1323-7

Wagenmakers E-J, Marsman M, Jamil T, Ly A, Verhagen J, Love J,
Selker R, Gronau QF, Šmíra M, Epskamp S, Matzke D, Rouder
JN, Morey RD (2018b) Bayesian inference for psychology. Part I:
Theoretical advantages and practical ramifications. Psychon Bull
Rev 25:35–57. https://doi.org/10.3758/s13423-017-1343-3

Wagenmakers E-J, Wetzels R, Borsboom D, van der Maas HLJ, Kievit
RA (2012) An agenda for purely confirmatory research. Perspect
P s y c h o l S c i 7 : 6 32–638 . h t t p s : / / d o i . o r g / 1 0 . 1 1 77 /
1745691612463078

Wasserstein RL, Lazar NA (2016) The ASA statement on p-values:
Context, process, and purpose. Am Stat 70:129–133. https://doi.
org/10.1080/00031305.2016.1154108

Wasserstein RL, SchirmAL, Lazar NA (2019)Moving to a world beyond
“p < 0.05”. Am Stat 73:1–19. https://doi.org/10.1080/00031305.
2019.1583913

Westfall PH, JohnsonWO,Utts JM (1997)ABayesian perspective on the
Bonferroni adjustment. Biometrika 84:419–427. https://doi.org/10.
1093/biomet/84.2.419

Wetzels R,MatzkeD, LeeMD, Rouder JN, Iverson GJ,Wagenmakers E-
J (2011) Statistical evidence in experimental psychology: an empir-
ical comparison using 855 t tests. Perspect Psychol Sci 6:291–298.
https://doi.org/10.1177/1745691611406923

Wetzels R, Wagenmakers E-J (2012) A default Bayesian hypothesis test
for correlations and partial correlations. Psychon Bull Rev 19:1057–
1064. https://doi.org/10.3758/s13423-012-0295-x

Wickens CD, Hollands JG, Banbury S, Parasuraman R (2018)
Engineering psychology and human performance, 4th edn.
Pearson, London

Yamani Y, McCarley JS (2016) Workload capacity: a response time-
based measure of automation dependence. Hum Factors 58:462–
471. https://doi.org/10.1177/0018720815621172

Yamani Y, McCarley JS (2018) Effects of task difficulty and display
format on automation usage strategy: a workload capacity analysis.
Hum Fac to r s 60 :527–537 . h t t p s : / / do i . o rg /10 .1177 /
0018720818759356

Young MS, Brookhuis KA, Wickens CD, Hancock PA (2015) State of
science: Mental workload in ergonomics. Ergonomics 58:1–17.
https://doi.org/10.1080/00140139.2014.956151

Zhou F, Ji Y, Jiao RJ (2014) Prospect-theoretic modeling of customer
affective-cognitive decisions under uncertainty for user experience
design. IEEE Trans Hum-Mach Syst 44:468–483. https://doi.org/10.
1109/THMS.2014.2318704

Zondervan-Zwijnenburg M, Peeters M, Depaoli S, Van de Schoot R
(2017) Where do priors come from? Applying guidelines to con-
struct informative priors in small sample research. Res HumDev 14:
305–320. https://doi.org/10.1080/15427609.2017.1370966

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

88 Hum.-Intell. Syst. Integr. (2019) 1:71–88

https://doi.org/10.1103/RevModPhys.83.943
https://doi.org/10.1177/0018720818791372
https://doi.org/10.1177/0018720818791372
https://doi.org/10.3758/bf03194105
https://doi.org/10.3758/bf03194105
https://doi.org/10.3758/s13423-017-1323-7
https://doi.org/10.3758/s13423-017-1323-7
https://doi.org/10.3758/s13423-017-1343-3
https://doi.org/10.1177/1745691612463078
https://doi.org/10.1177/1745691612463078
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1093/biomet/84.2.419
https://doi.org/10.1093/biomet/84.2.419
https://doi.org/10.1177/1745691611406923
https://doi.org/10.3758/s13423-012-0295-x
https://doi.org/10.1177/0018720815621172
https://doi.org/10.1177/0018720818759356
https://doi.org/10.1177/0018720818759356
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1109/THMS.2014.2318704
https://doi.org/10.1109/THMS.2014.2318704
https://doi.org/10.1080/15427609.2017.1370966

	Exploring...
	Abstract
	Introduction
	The benefits of Bayesian statistics for human systems integration
	A case study: the effects of pilot incapacitation
	Method
	Participants
	Design
	Materials
	Procedure

	Results
	The effects on mental workload: NASA-TLX
	The frequentist repeated-measures ANOVA
	The Bayesian Repeated-measures ANOVA
	A comparison of the Frequentist and Bayesian repeated-measures ANOVA

	The effects on technology acceptance: the technology acceptance scale
	The Frequentist paired-sample t test

	The Bayesian paired-sample t test
	A comparison of the Frequentist and Bayesian t test


	Discussion
	References


