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Abstract

One main hurdle towards commercial airliners’ Reduced-Crew Operations (RCO) is how to encounter pilot incapacitation. The
aim of this modelling study is to evaluate the potential effects of a single-pilot’s incapacitation on a future design approach to
RCO. Most solutions propose a ground support of the pilot by a remote operator whom control should be handed over in case of
an emergency. Both incapacitation and homicide-suicide have been discussed in the literature but neither of these events have
been modelled nor evaluated empirically. We introduce a future operational design concept for RCO which includes a remote-
copilot as ground support and automation tools monitoring pilot’s health and entries into aircraft systems. The hazard analysis
technique System-Theoretic Process Analysis (STPA) was used to model and analyse scenarios of incapacitation/homicide-
suicide. A hierarchical control structure showed how RCO can be embedded into commercial aviation. The STPA of pilot
incapacitation and two scenarios of pilot homicide-suicide showed how unsafe control actions leading to an incident or accident
after incapacitation/homicide-suicide could be prevented. The possible detection and take-over of control by the ground support
in the case of incapacitation raised the question for detailed procedures on how to react to its detection. Either an autoland by the
remote-copilot or by an affiliated system is possible. An additional breakup of data-link may only be solved by an automatic
landing system on-board.

Keywords System-Theoretic Accident Model and Processes (STAMP) - Single-pilot operations - Systems theory - Accident
modelling - Aviation

1 Introduction

Commercial Reduced-Crew Operations (RCO) synonymous-
ly referred to as Single-Pilot Operations (SPO) have been
debated as an alternative to Multi-Crew Operations (MCO)
in research for approximately two decades (Deutsch and
Pew 2005; Johnson et al. 2012). The two-crew flight deck
represents the modern standard for commercial MCO in in-
dustry and practice. By way of contrast, SPO have only one
pilot on the flight deck. At the moment, they are exclusively
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employed for different aircraft models in general and business
aviation as for example in Embraer’s (2015) Phenom 300. If
we consider SPO for commercial operations, the term RCO is
more comprehensive for SPO by including long-haul and
ultra-long-haul flights with a relief pilot on-board. The relief
pilot is only assigned to pilot duties in distinct portions of a
flight determined by the operator to enable another crew mem-
ber taking a rest (International Civil Aviation Organization
[ICAO] 2012b).

From the 1950s until the 1980s, the flight crew was con-
tinuously de-crewed from five to two members on the flight
deck (Boy 2016). For example, the Flight Engineer (FE) had
ensured that all aircraft systems were working properly. The
introduction of electronic flight management and automated
monitoring of aircraft systems and engines had made his pro-
fession obsolete in the 1980s. Similarly, communication and
navigation officers were replaced by developments in radio
and wayfinding technologies. The next step would be to fur-
ther reduce the crew to one pilot on-board. Some of the func-
tions could be assumed by either on-board automation or
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ground-based systems (Harris 2007; Stanton et al. 2016). This
next step in de-crewing towards a single-piloted commercial
aircraft sounds promising when we consider the anticipated
benefits. Commercial RCO/SPO could potentially save oper-
ating costs that offer an economic benefit to the operating
airline in the long term. Three different calculation models
supported the claim for this potential (Graham et al. 2014;
Malik and Gollnick 2016; Norman 2007). The costs required
developing a single-pilot aircraft, its operations and proce-
dures, and the technical infrastructure have not been consid-
ered in any formal model yet. A retrofit of current aircraft
models to RCO seems not to be economically viable because
most of the cockpit avionics would require redesign and re-
placement (Driscoll et al. 2017b). Ground infrastructure is
required to compensate for the loss of redundancy by the
copilot in case of emergencies on-board. The deployment
and operation of a ground override system linked to the air-
craft systems would have to be developed and integrated into
new aircraft designs. Hence, a re-conceptualisation of aircraft
systems including the flight deck and the role of single-pilot
are required before RCO can be taken into practice (Harris
2007).

Five main issues have been identified for RCO: automa-
tion, operational, pilot incapacitation, communication/social,
and certification (Johnson et al. 2012). For example, a concept
of RCO has to offer a safe solution for handling possible in-
flight incapacitation of the single-pilot to guarantee flight safe-
ty (Lachter et al. 2017). Different concepts of RCO have al-
ready been introduced (Bilimoria et al. 2014), modelled on a
conceptual level (Stanton et al. 2016) and investigated empir-
ically in simulations (Lachter et al. 2017). They all establish
different types of remote ground support to provide assistance
during high-workload situations and emergencies.
Nevertheless, the issue of pilot incapacitation per se has only
been addressed in very few studies on RCO (Revell et al.
2018; Stanton et al. 2016; Stanton et al. 2019). Hence, the
present paper’s aim is to model pilot incapacitation and its
potential effects. Pilot incapacitation can have detrimental ef-
fects on SPO which is why it has to be considered in connec-
tion with operational and automation issues for commercial
RCO.

In-flight incapacitation is “any reduction in medical fitness
to a degree or of a nature that is likely to jeopardise flight
safety” (ICAO 2012a, p. I-3-1). In addition, it is defined op-
erationally as “any physiological or psychological state or
situation that adversely affects performance” (ICAO 2012a,
p. I-3-1). For the purposes of this paper, incapacitation was
further classified operationally into “obvious” and “subtle”
subtypes, which refers to their appearance during flight oper-
ations. An obvious incapacitation is immediately apparent to
the other pilot as for example unconsciousness of his col-
league. A subtle incapacitation is more difficult to detect be-
cause although the pilot may look healthy, he is not. For
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example, in one incident, a pilot had complained about ab-
dominal pain, intermittently ignored the radio communica-
tions and then the copilot’s questions (Bureau d’Enquétes et
d’Analyses pour la sécurité de I’aviation civile [BEA], 2011).
When his speech had become incoherent, the copilot took
over control, declared an emergency and landed the aircraft
safely. In this example, the pilot had suffered from
hypoglycaemia which was hard to detect in its early stages.

In general, such cases of in-flight incapacitation are rare.
For example, the annual incapacitation rate for commercial
pilots was 0.25% in the UK in 2004 (Evans and Radcliffe
2012). This calculation was based on incidents reported to
the UK Civil Aviation Authority. A more precise and com-
plete incident rate for a medical in-flight incapacitation in
commercial aviation is difficult to estimate due to a lack of
prospective international long-term studies (Hinkelbein et al.
2008). The routine periodic medical examination for commer-
cial pilots for medical certificate class 1 is administered to
assess physiological and psychological health. It aims to keep
the risk for a medical incapacitation at low levels by only
issuing healthy pilots with a certificate (Evans et al. 2016).
This precondition will not change in RCO. In MCO, the “two
communication” rule was introduced to detect especially sub-
tle incapacitations before they affect flight operations (ICAO
2012a). It refers to each pilot being sensitive to such behaviour
as when a crew member does not respond appropriately in
verbal communications and deviates from standard operating
procedures. Once detected, ICAO’s (2012a, p. 1-3-6)
Standards and Recommended Practices (SARPS) recommend
three steps on how to handle an in-flight incapacitation: (a)
maintain control of the aircraft, (b) take care of the incapaci-
tated crew member and (c) reorganise the cockpit and bring
the aircraft to a safe landing. Step (b) was formalised as an
abnormal and emergency procedure called “crew
incapacitation” which is trained regularly in the simulator
(Airbus 2011). They are applicable to most kinds of in-flight
incapacitation whereas pilot homicide-suicide is an exception
and needs further refinement.

Pilot homicide-suicide represents a special subtype of a
subtle incapacitation resulting primarily from an adverse men-
tal health state. The pilot as a perpetrator crashes the aircraft
intentionally with the motive to commit a homicide-suicide. It
is mostly lethal for passengers and crew (Kenedi et al. 2016).
The causation is multifactorial comprising (but not limited to)
mental health, occupational, family and legal issues. Hence,
every case of pilot homicide-suicide must be separated from
incapacitation and considered on a case-by-case basis. There
are only 17 known cases of pilot homicide-suicide with large
aircraft, with and without passengers, in the history of aviation
(Aviation Safety Network 2015; Kenedi et al. 2016). The pre-
vention and handling of a pilot homicide-suicide differ from
those of usual incapacitation. A comprehensive mental health
assessment is currently considered as part of the certification



Hum Intell. Syst. Integr. (2019) 1:27-42

29

process for the initial medical certificate class 1 in most
European countries (European Aviation Safety Agency
[EASA], 2016a). It should help to detect the likelihood of a
homicidal-suicidal pilot. Furthermore, the EASA SIB 2016-
09 of the minimum cockpit occupancy has introduced the
requirement to have at least two authorised persons on the
flight deck during flight, based on a safety and security risk
assessment of the operator (EASA 2016b). Hereby, the rule
aims to prevent a homicide-suicide by having another person
present whose main task is to open the security door when the
flight crew member returns to the cockpit. Environmental con-
ditions and corresponding procedures need to be specified by
the individual airline.

In commercial RCO, pilot incapacitation and homicide-
suicide need to be handled differently to MCO. Safe operation
of the aircraft in case of an incapacitated single-pilot is chal-
lenging due to the issue of initial detection of the incident as
well as recovery from it (Bilimoria et al. 2014; Harris 2007).
Reliable detection of an adverse health state of the single-pilot
is required in the first instance. If the single-pilot on-board does
not self-report a decrease in fitness, then advanced automation
tools are required to detect it (Harris 2007). The development of
a pilot health monitoring system needs to address the detection
of conspicuous physiological health states based on behaviour-
al and physiological signals. Among these are high-workload
states or physical stress leading to a degraded capability and
suspect physiological conditions (Johnson et al. 2012). They
can be summarised as some behavioural indications for a cog-
nitive degradation which require reliable measurement equip-
ment. Only non-intrusive sensors would be suitable for com-
mercial flight operations because they must not interfere with
safe flight operations (Matessa et al. 2017). Hence, it is desired
that these (preferably) remote sensors are as comfortable as
possible. At the moment, several approaches to monitor the
health of pilots in aviation have been proposed, but they are
currently still under development (Cakir et al. 2016; Maiolo
et al. 2017; Oliveira et al. 2012). Further processing of health
data has not been integrated into systems explicitly recom-
mended for commercial RCO. Hence, all approaches to mea-
sure pilot health for RCO are of low technical maturity at pres-
ent. By way of contrast, technical solutions for monitoring
aircraft systems security and landing an aircraft autonomously
do currently exist for MCO and can be assumed mature enough
for commercial RCO. They are introduced subsequently.

Aircraft systems monitoring is required to detect attempted
pilot homicide-suicide, which represents a unique type of
unauthorised operation of aircraft systems. Table 1 exem-
plifies systems which have already been developed for
MCO to deal with such activities. They detect the entries into
the aircraft systems, evaluate their hazardousness for flight
safety and propose solutions, to either warn the crew or land
the aircraft. Some methods can inhibit all system entries on
airside to protect the aircraft and ensure a safe landing at an

adjacent airport (Gaultier and Security of Aircraft in the Future
European Environment [SAFEE] Consortium 2008; Schmitt
et al. 2010). These advanced new automation systems may be
equally applicable to handle a detected attempt for pilot
homicide-suicide in RCO. In all reduced-crew Concept of
Operations (ConOps), the recovery from a loss of control on
airside is solved by transferring control to a ground operator,
who lands the aircraft safely at an adjacent airport (Bilimoria
et al. 2014; Lachter et al. 2017; Matessa et al. 2017; Stanton
et al. 2016). This remote-pilot is supposed to either land the
aircraft or oversee on-board automation landing the aircraft
with Air Traffic Control (ATC)—supported (exceptional) emer-
gency handling (Lachter et al. 2017). For example, Table 1
includes a Flight Reconfiguration Function (FRF) which au-
tonomously re-plans the flight to return them safely to the
most suitable airfield and lands it safely (Gaultier and
SAFEE Consortium 2008; Laviv and Speijker 2007).
Automation tools, like the FRF, have the potential to be com-
bined with RCO (Benitez et al. 2018).

The present modelling paper investigates how pilot inca-
pacitation and pilot homicide-suicide can be detected and
prevented in a future design concept for commercial RCO.
The recovery of the single-piloted aircraft represents the main
issue which has to be solved (Harris 2007; Stanton et al.
2016). It has not been evaluated for any of the design recom-
mendations of RCO in commercial aviation yet, neither
through modelling nor in empirical studies. Thus, we
modelled the hazard of pilot incapacitation and homicide-
suicide in a possible future concept of RCO. The hazard anal-
ysis considered the proposals of new advanced automation
systems together with an operational concept of a remote
ground-based support. Here, we used the System-Theoretic
Accident Model and Processes (STAMP) and System-
Theoretic Process Analysis (STPA) to include human behav-
iour in a systems theory hazard analysis of the conceivable
complex sociotechnical system of commercial RCO (Leveson
2004a; Leveson 2011; Leveson 2017). Furthermore, STAMP
and STPA have been rarely applied in a predictive context to
evaluate future designs of complex sociotechnical systems
(Fleming et al. 2013; Grant et al. 2018; Leveson 2015).
There are notable exceptions, such as the STAMP analysis
of a rapid decompression event for SPO (Revell et al. 2018).
This major advantage of STPA enables evaluating a design
concept such as a RCO in early stages of the development
process. Following the system-theoretical rationale, we pro-
vide a new way of looking at the widely debated issue of pilot
incapacitation in RCO in a modelling study.

2 Method

STAMP and STPA have been applied mostly retrospectively
to a series of incidents and accidents in aviation and aerospace
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Table 1

Additional automation tools which fit into a thinkable design RCO

Upper level function System

Function(s)

Pilot health monitoring system

Aircraft systems monitoring

TARMS (Threat Assessment and
Response Management System)?®

EAS (Emergency Avoidance System)*

FRF (flight reconfiguration function)®

OTDS (On-board Threat Detection System)®

Monitors pilot health via physiological sensors

Detect unauthorised access, dangerous materials or suspicious
human activity (from NAV, A/C systems, FCS, surveillance).
Forwards information to the
TARMS.

Alerts crew, evaluates threat situation and recommends possible
responses to deal with;
Can conclude that cockpit crew is no longer in control of aircraft.

Disables all unauthorised inputs (flight controls and aircraft systems)
and protects aircraft systems (electrics, hydraulics, engine power);

Allows an automated landing at a secure airport in case of the
single-pilot aircraft having been out of control.

The pilot health monitoring system remains unspecified

*SAFEE (Gaultier and SAFEE Consortium 2008; Laviv and Speijker 2007)

as well as in transport and military, whereas the predictive use
of both methods is less widespread in the peer-reviewed liter-
ature (e.g. Allison et al. 2017; Fleming and Leveson 2014;
Ishimatsu et al. 2014; Leveson 2004b; Plioutsias et al. 2017;
Revell et al. 2018; Rong and Tian 2015). STAMP as a causal
model of its corresponding hazard analysis STPA uses the
basic tenet of systems theory to explain accidents and their
causality holistically (Leveson 2017). Systems theory pro-
poses safety as a control problem rather than a component
reliability problem (Rasmussen 1997). In STAMP, a
sociotechnical system is defined as several interrelated com-
ponents which are related to each other by both feedforward
and feedback loops of information and control. Safety is
achieved by keeping the components’ behaviour and state in
an acceptable range of system operations. In other words,
adequate safety constraints have to be enforced. Thus, the
basic concepts of STAMP are hierarchical safety control struc-
tures, safety constraints and process models.

In general, systems theory assumes a hierarchical risk man-
agement in which a complex system is embedded (Rasmussen
1997). This covers legislators, managers, work planners and
operators across different systemic levels. In STAMP, two
basic control structures represent the development and opera-
tion of a system. Whilst both structures may change over time,
safety must not be adversely affected. Safety constraints en-
force control at, and across, each level of both structures to
create the emergence of system safety (Leveson 2004a).
Safety constraints can be standards and redundancy in design,
fail-safe design, standardised processes and operating proce-
dures, regulations and laws and social and organisational cul-
ture. The safety constraints define the relationships between
the system components’ variables to keep the system in a non-
hazardous (i.e. safe) state. The system components include
human and technical system components. For example, com-
mercial flight operations comprise pilots and aircraft systems
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among others which are all regulated and checked (Harris and
Stanton 2010).

An accident occurs if the safety constraints are inadequate-
ly enforced or if there is a lack of adequate safety constraints.
Human controllers or automated controllers can enforce safety
constraints (Leveson 2017). A controller can control a process
and influence a system’s state according to the control action
via actuators. A sensor provides feedback about the process’
state. Leveson (2004a) assumed the controller to have goals,
the ability to ascertain and affect the system’s state, and a
mental or formal process model which depends on the con-
troller’s nature. These characteristics of a controller are essen-
tial for the logic of a process model. This model describes a
controlled process as the interaction of controllers with the
process by enforcing a control action and receiving feedback
about the process’ state (Leveson 2017). Each component of
the hierarchical safety control structure enforces control ac-
tions via which it controls a process. The control actions can
be either safe or unsafe at every level. The unsafe control
actions in STAMP are analysed by the corresponding hazard
analysis technique STPA.

STPA can describe an accident before it occurs in a formal
model, requiring only a conceptual design of system opera-
tions and the scenario of the safety critical event (Leveson
2011). The predictive use of this analysis in the early concep-
tual design stages of a system provides information to guide
the design process. Potential sources for accidents can be
eliminated or controlled. In doing so, STPA contributes to a
most cost-effective way of designing safer systems. Therefore,
we applied STPA to the hazard of incapacitation events in
imaginable future RCO. Furthermore, STPA provides some
additional advantages compared to traditional reliability anal-
ysis methods. These traditional methods, for example the fault
tree analysis or the HAZOP (Hazard and Operability) tech-
niques, typically model only a single chain of events (Aven
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2015; Dunjéa et al. 2010; Geymar and Ebecken 1995; Stanton
and Harvey 2017). By contrast, STPA focuses on the whole
complex sociotechnical system at all levels. The operating
processes and corresponding control actions of all involved
agents are modelled for a causal scenario of an incident or
accident. For example, we analysed the exemplary cases of
pilot incapacitation and homicide-suicide (see Table 2) under
RCO conditions according to STPA. Firstly, four types of
Unsafe Control Actions (UCAs) were identified for the given
system and scenario under analysis (Leveson 2011; Leveson

3. Control action is applied too early or too late;
4. Control action is applied for too short or too long.

Secondly, each control loop was examined to reason how
the UCAs could occur. The hierarchical safety control struc-
ture was considered to identify how control might degrade and
how system resilience could be improved. This detection of
the weaknesses in safety constraints helps to anticipate inci-
dents and accidents in existent or planned designs of complex

2017):

1. Control action is not provided,
2. Unsafe control action is executed;

sociotechnical systems.

We used official reports, regulations, guidelines, aviation
training textbooks and a Flight Crew Operating Manual to
construct the hierarchical control structure of RCO (Airbus

Table 2  The incidents’ and accidents’ causal scenarios transferred to future RCO in STAMP and STPA

Type Flight Year Short summary

In-flight Subtle  Air Canada Rouge 2008 During cruise, the FO left the flight deck for several times, did not
incapacitation (scheduled flight) follow the standard operating procedures, took a controlled rest

Obvious China Airlines CI681 2001

Ryanair (scheduled flight) 2011

Etihad Airways ETD308 2012
Pilot homicide-suicide Japan Airlines JL350 1984
Germanwings U9525 2015

and finally became belligerent and uncooperative. The Captain
called the cabin crew to secure the incapacitated pilot away from the
controls. He diverted the flight to Shannon due to better weather
conditions and landed the aircraft safely.

Thirty minutes after take-off, the Captain did not react to flight
operations anymore. The FO carried out the crew incapacitation
procedure, turned back to Taiwan Taoyuan International Airport
and landed the aircraft safely. The Captain had died from an acute
cardiac artery occlusion.

Thirty minutes after take-off, the FO felt ill and the captain took over control.
Afterwards, he did not react anymore and eventually fainted. The Captain
called the cabin crew to carry out the crew incapacitation procedure,
declared a medical emergency and diverted to the adjacent Girona Airport safely.

During the approach to Abu Dhabi International Airport, the Captain’s (PF)
speech became incoherent and tone of voice unusual during conversation.
He slumped down in his seat. Thus, the FO took over control after having
tried to wake up the Captain in vain. He called the cabin crew to take care
of the Captain, declared an emergency to approach control and landed
the aircraft safely. The Captain had sustained an antiphospholipid syndrome
leading to an embolic and loss of consciousness.

During final approach to Tokyo Haneda Airport, the Captain jumped out
of his seat and babbled incomprehensibly when reaching the DA.
The FO and flight engineer pulled him back into his seat. Then, the
Captain cancelled the autopilot, retarded thrust to idle/reverse and pushed
forward yoke. Although the FO tried to pull back the controls, the
McDonnell Douglas DC-8-61 crashed into Tokyo Bay before reaching
the runway. The Captain had a premedical history of a delusional schizophrenia.

During descend the Captain of Germanwings flight 4U9525 left the flight deck.
After FO locking the door, the FO selected open descent mode, an altitude
of 100 ft, and a speed of 350 kt at the autopilot. He did not answer to a ring
of the buzzer of the door, several knocks, several calls from ATC, a radio
call from another airliner’s crew and violent blows against the door. Finally,
the airplane crashed into the French Alps. The copilot had suffered from a mental
disorder with psychotic symptoms.

DA, Decision Altitude; FO, First Officer; PF, Pilot Flying; PM, Pilot Monitoring. For full outline of the incident/accident, refer to the given referenced
official report (Aircraft Investigation Unit Ireland [AAIU] 2008; Aircraft Accident Investigation Committee 1984; Aviation Safety Council China 2001;
Bureau d’Enquétes et d’Analyses pour la sécurité de I’aviation civile [BEA] 2016; Comision de Investigacion de Accidentes e Incidentes de Aviacion
Civil [CIAIAC] 2011; UAE General Civil Aviation Authority [UAE GCAA]2012)
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2011; Oxford Aviation Academy 2008). Table 2 lists all inci-
dents and accidents reports of which we transferred to the time
course of happenings to RCO. Four cases of pilot incapacita-
tion were merged to create a general process model. Pilot
homicide-suicide had to be considered on its own because
each case shows a unique multifactorial causation (Kenedi
etal. 2016; Schmid et al. 2018). For example, the cockpit crew
members of Japan Airlines 350 (JL350) had actively inter-
vened in suicidal actions of the captain during approach.
They had tried to prevent the plane from crashing (Aircraft
Accident Investigation Committee 1984). Most of the passen-
gers and all of the crew survived. By contrast, Germanwings
flight 4U9525 ended as fatal crash without survivors (BEA
2016). We merged all information with an anticipated design
concept for RCO how it might be introduced beside MCO in
the future. All outputs from the analysis were verified through
consultation with a commercial pilot (age 28 years, male;
Commercial Pilot Licence [CPL], frozen Air Transport Pilot
Licence [ATPL]; 1400 of 1800 flying hours at Boeing B737-
800) from one of the larger European airlines. This
Subject Matter Expert (SME) was introduced to the method-
ology, the preliminary design concept and findings during a
video conference. His suggestions were incorporated into the
results.

3 Results
3.1 A design approach to Reduced-Crew Operations

A possible future design concept of RCO required for STPA
includes the following agents: the single-pilot, an aircraft in-
cluding its automation, the remote-copilot at a Ground Station
(GS) connected via data-link and ATC. In addition, we spec-
ified conceivable characteristics of ground support and ad-
vanced automation systems which deal with monitoring and
detection of incapacitation(s). These agents are sufficient to
model any in-flight incapacitation. Their composition is sim-
ilar to that proposed in other design concepts of RCO (Lachter
etal. 2017; Schmid and Korn 2017; Stanton et al. 2016). Other
possible agents are omitted in this paper. During departure and
approach, the remote-copilot supports the single-pilot in-flight
planning and navigation as Pilot Monitoring (PM). These
flight phases are associated with a high workload and there-
fore support would be mandatory (European Commission
2015; Federal Aviation Administration [FAA] 2001). It is as-
sumed that these periods of the high workload will remain in
RCO because it is anticipated that the airport-related precon-
ditions for departure and arrival will remain largely un-
changed. Hence, the remote-copilot supports each single-
pilot aircraft successively, of which he can serve 4-6 aircraft
during departure/arrival (Koltz et al. 2015). During the cruise,
the single-pilot is supported remotely as needs arise (Schmid
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and Korn 2017). The pilot on the aircraft can call for assis-
tance or take-over of control via the remote-copilot call lever
in any phase of flight. Both functions for immediate recovery
from any safety critical event are available to the single-pilot
throughout all flight phases. Typical applications might be
high-workload situations, technical failures and health issues.
Normal events, like going to the lavatory, taking a nap and
eating, would require only a temporary take-over of control.

We assumed three functions of additional automation sys-
tems that would be required to recover from any incapacita-
tion. Firstly, a pilot health monitoring system should be capa-
ble of evaluating the single-pilot’s physiological state.
Secondly, aircraft systems monitoring should assess entries
into aircraft systems in the search for critical and unauthorised
deviations from the flight plan and safe flight operations.
Third, and finally, an affiliated system can disable all
unauthorised inputs at airside and transfer control to the GS
and the remote-copilot. We modelled systems similar to those
proposed in the European Union (EU) projects (Advanced
Cockpit for Reduction of Stress and Workload [ACROSS]
2016; Gaultier and SAFEE Consortium 2008). Table 1 sum-
marises some of the details of these systems. We adapted their
functions by adding dual-graded alert management to inte-
grate them into the concept of RCO. Subsequent events re-
lease dual-graded alerts:

1. Critical physiological state/suspicious entries into aircraft
systems;

2. In-flight incapacitation based on physiological variables/
cockpit crew is no longer in control of the aircraft.

It is anticipated that the single-pilot aircraft would automat-
ically connect to the GS via data-link. The first type of alert
would involve the remote-copilot to support as PM. By con-
trast, the second type would completely handover control to
the GS. The single-pilot can also manually initiate support or
handover by the GS. Finally, the remote-copilot can also
switch control from the air if he deems necessary in emergen-
cies. Otherwise, the single-pilot has authority and control of
the aircraft unless a loss of control occurs. It is also anticipated
that a backup GS with the same systems monitors several GSs
in order to provide redundancy in case of fire or terror attack.

Figure 1 shows the hierarchical organisation of a proposed
commercial RCO in a safety control structure. RCO could be
embedded next to MCO by introducing the required technol-
ogies and procedures. The flight crew consisting of a single-
pilot and (optional) remote-copilot remains on the crew level.
The remote-copilot at the GS is linked via data-link to the
single-pilot and aircraft systems. A remote-copilot centre
serves as a facility at airports to organise ground support and
corresponding technical infrastructure on the ground. It pro-
vides space for airlines to operate a reduced-crew fleet. The
safety constraints on all other levels will be extended to
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Fig. 1 The hierarchical safety control structure of system development and system operations of RCO in commercial aviation

include commercial RCO in the future. For example, both the
single-pilot and remote-copilot could be commercial pilots
who have undergone additional training to receive a licence
as RCO pilot. They would need to perform their jobs in a shift
of several months to keep their skills up to date as well as
annual refresher training and testing. The entire design ap-
proach assumes reliable and secure data-links with backups
as a necessary prerequisite (Schmid and Korn 2018).
Currently, the hierarchical safety control structure of MCO
does not include commercial RCO. Only one legislative step
has been initialized towards considering commercial RCO
yet. The US Congress had recently launched the FAA
Reauthorization Act H.R.4 incorporating a research and de-
velopment programme for single-piloted cargo aircraft
assisted by remote piloting (FAA Reauthorization Act of
2018 (H.R.4) 2018). Stanton et al. (2016) predicted that cargo
operations would most likely be the first commercial flights
for the RCO concept. They have gone on to consider the
implications for distributed crewing (Stanton et al. 2019). As
reaction, the pilots’ community has however opposed this
development. They fear a loss of safety in regulations and
airline culture driven by premature technology for RCO which
could affect systems (cyber)security (Cargo Airlines Respond
to FAA Reauthorization Section 744 Language 2018). Hence,
they implored Congress to reject the relevant section 744.
Nevertheless, experts have fostered the planned programme
to investigate the safety issues of RCO. Although the bill has
passed the Senate, the research programme was taken out in
the final version (FAA Reauthorization Act of 2018 (H.R.302)
2018). Before the current hierarchical organisation of

commercial aviation can progress towards RCO in the end,
research issues, such as pilot incapacitation, have to be
addressed.

3.2 Pilot incapacitation

We assessed the four exemplary cases of pilot incapacitation
including the obvious and subtle subtype against the concept
of RCO previously introduced in Table 2. In doing so, we
identified the following common control actions:

1. Detect adverse health condition of single-pilot;
2. Remote-copilot to take control;
3. Reorganise the cockpit and land aircraft safely;

Call cabin crew to conduct crew incapacitation
procedure;

Declare an emergency (“Mayday”) and inform on
crew incapacitation; and

Land aircraft safely.

(2)
(b)
(©

The control actions for the remote-copilot at the GS remain
similar to those in MCO (ICAO 2012a). Figure 2 shows the
corresponding course of interactions between an incapacitated
single-pilot, a remote-copilot, aircraft and optional support. In
general, the single-pilot can proactively ask for support and/or
handover control if they feel unwell. Furthermore, they can
voluntarily request medical incident support and advice on
health issues. The two-communication rule would be main-
tained. If the single-pilot does not self-report an adverse
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Fig. 2 UCAs and control loops for pilot incapacitation in general in RCO

physiological state, the pilot health monitoring system detects
and evaluates the hazard. The system’s dual-graded alert man-
agement handles a decrease in physiological health of the
single-pilot by involving ground support. The remote-copilot
is connected to either support the single-pilot in situations of a
degraded cognitive and/or physical capability or to take over
control completely if control is lost. The recovery of the
single-pilot aircraft from both critical events is initiated by
automation. In addition, subtle incapacitation eliciting proce-
dural deviations and abnormalities could be detected by the
aircraft systems monitoring function. This monitoring system
either indicates suspicious operations or a complete loss of
control regarding flight safety. The two types of reactions
involving the remote-copilot remain the same: support or
take-over of control depending on criticality for flight safety.
Hence, all manifestations of an incapacitation were attempted
to be covered by both monitoring systems in this design
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approach. Advanced automation tools would complement
the control actions in RCO and should consequently enable
the recovery from a single-pilot incapacitation. After a hand-
over of control to the ground due to incapacitation, the remote-
copilot lands the aircraft at the nearest viable alternate airport.

3.3 Pilot homicide-suicide

Pilot homicide-suicide is different to cognitive and physical
incapacitation because it represents a deliberate and intention-
al action to crash an aircraft. Both JL350 and 4U9525 repre-
sent homicide-suicides with an airline pilot as the perpetrator
but they differ in terms of their causation and outcome (as
shown in Table 2). Taken together with the formal emergency
procedures for crew incapacitation and guidelines on incapac-
itation (Airbus 2011; ICAO 2012a), the following common
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control actions could be identified in a transfer of both crash
scenarios to RCO:

Detect adverse health condition of single-pilot;
Remote-copilot to take control;

Detect homicidal-suicidal intent; and

Bring aircraft to a safe landing by control from GS;

b=

(a) Disable all unauthorised inputs and protect aircraft
systems;

(b) Declare emergency (“Mayday”) and inform on
homicidal-suicidal intent;

(c) Inform cabin crew; and

(d) Land aircraft safely.

Assuming a single-pilot would behave like the incapacitated
captain of JL350 in RCO, the course of action and correspond-
ing UCAs are presented in Table 3 and feedback loops in Fig. 3.
Advanced automation could have alerted the GS in two cases
depending on its operating rules. Firstly, the hazardous holding
on the outbound flight might have caused an alert on suspicious
entries into aircraft systems. This would have established assis-
tance by a remote-copilot who may (or may not) have reported
it depending on whether or not they suspected the hazardous
state of the single-pilot. Such alerts of suspicious entries might
be collected, but only after a distinct frequency of abnormal

Table 3

events, compulsory preventive measures could be undertaken.
For example, an appointment for an additional specific aero-
medical checkup can be arranged in case of abnormalities.
Secondly, the pilot health monitoring system would have im-
mediately detected the UCA of the single-pilot jumping up
from the seat during approach and concluded a loss of control
in connection with other systems, e.g. the On-board Threat
Detection System (OTDS). Thus, the Emergency Avoidance
System (EAS) would have disabled all inputs from airside to
protect its systems. Another system would have switched con-
trol to the ground to the GS for the rest of the flight. Hence, the
captain’s actions to crash the aircraft would have had no effect
on flight operations.

The possible control actions against hazardous events of
GWI18G are similar to JL350 in RCO (Fig. 4; Table 4).
Firstly, the short-time selection of 100 ft on the outbound
flight would have caused an automatic alert of suspicious
human activity by aircraft systems monitoring. The assigned
remote-copilot could have assisted until the situation is report-
ed under control. Depending on the hazard classification of
this event, it is either collected in a database (as mentioned
previously) or leads to a compulsory appointment with a pilot
support programme member. However, a break from duty is
unlikely. Secondly, OTDS and Threat Assessment and
Response Management System (TARMS) would have imme-
diately detected the hazardous autopilot selections of 100 ft,

UCAs and safety constraints generated for control loop of “remote-copilot at GS”, “suicidal single-pilot” for JAL 350 transferred to in RCO

Control action/feedback 1. Control action is not

Safety constraints 1

2. Unsafe control action is Safety constraints 2

provided executed
(1) Detect adverse (1) No report on hazardous Missing information regarding
health condition of operation to management hazardous holding: not clear if
single-pilot detectable by proposed systems
(2) Remote-copilot to (2) Captain ignoring call  (3) Recognising call out
take control out of DA and radio of DA and radio

altimeter warning; altimeter warning;

(4) Captain jumping up at (5) Alert on suspicious
DA and babbling human activity
incomprehensibly

(3) Detect (9) Captain tries to cancel (8) Remote-copilot took over (5) Alert on suspicious (6) TARMS: conclusion
homicidal-suicidal autopilot, push forward control; human activity (already  that nobody is in
intent yoke and retards thrust in ~ Aircraft systems monitoring in place) control of aircraft;

vain (7) Displayed
information on
inhibition of inputs
into all systems;
Warning of loss of
control by single-pilot
(4) Bring aircraft to a safe landing by control from GS
(4a) Disable all (7) EAS disables all (8) Remote-copilot takes

unauthorised inputs
and protect aircraft
systems

unauthorised inputs and ~ over control;
protects aircraft systems Improved aeromedical
decision-making

The numbers inside the table refer to the time course of UCAs in the process model of Fig. 3. JAL 350 modelled in RCO. Control actions (4b)—(4c) were

omitted because we assume them to be conducted safely and successfully
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Fig. 3 UCAs and control loops for a pilot homicide-suicide in RCO based on the real-world model of JL350 transferred to RCO

the open descent as vertical mode, thrust mode idle and a
speed of 308 kt as loss of control. Thus, EAS would have
disabled all unauthorised inputs to protect aircraft systems
on airside. Subsequently, command and control would have
been transferred to the remote-copilot at the GS.

In summary, both pilot homicide-suicides can be anticipat-
ed as hazardous for safe flight operations. Hence, they are
conceptually preventable in the proposed design approach
for RCO. Subsequent to a detection of pilot incapacitation
and/or an attempt for homicide-suicide, several actions are
anticipated. The remote-copilot could land the aircraft safely
by using an autoland function. He could also monitor the
activation of the FRF and EAS. Both would control and land
the aircraft automatically at an airport. Although TARMS and
EAS are proposed for normal flight crew on-board (Gaultier
and SAFEE Consortium 2008), they remain a solution to react
to hazardous flight operations in RCO detect by an aircraft
systems monitoring. Of course, the ground infrastructure
would have to be added into the systems. Hence, TARMS
and EAS can enable recovery from hazardous reduced-crew
flight operations in off-nominal situations or emergencies. The
present paper has focused on how a single-pilot aircraft can be
protected from the emergencies of in-flight incapacitation and
exemplary cases of homicide-suicide.

@ Springer

4 Discussion

A predictive use of STAMP and STPA to a design concept of
RCO including remote support has shown that incapacitation
and homicide-suicide can be detected and prevented in the
present modelling approach. This concept required the appli-
cation of a pilot health monitoring system and a detection
system for suspicious entries into aircraft systems (Table 1;
Benitez et al. 2018; Matessa et al. 2017). Both systems were
considered in the present design approach based on research’s
solutions for different applications in aviation. New systems
have already been proposed in EU projects and integrated into
the approach (Laviv and Speijker 2007). Furthermore, affili-
ated systems are needed to protect aircraft systems by dis-
abling all inputs on airside and land the aircraft safely at an
adjacent airport. Here, the remote-copilot could land the air-
craft by autoland or an alternate control system (e.g. FRF)
takes over control to land the aircraft automatically.

Both system solutions proposed for detection and subse-
quent recovery from incapacitation or severe security intru-
sions (except hacking) into aircraft systems provide the oppor-
tunity for a comparable resilience of RCO to contemporary
MCO (Stanton et al. 2016). The new design approach man-
ages off-nominal situations and emergencies comparable to
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Fig. 4 UCAs and control loops for a pilot homicide-suicide in RCO based on the real-world model of GWI 18G transferred to RCO

the National Aeronautics and Space Administration’s
(NASA’s) ConOps (Johnson et al. 2012; Lachter et al.
2017). In the latter one, dedicated support would be assigned
to the single-pilot aircraft in high-workload and urgent situa-
tions among which are adverse physiological states, suspi-
cious entries into aircraft systems, incapacitation and loss of
control (Brandt et al. 2015; Dao et al. 2015; Lachter et al.
2014; Ligda et al. 2015). It was suggested combining an
autoland procedure with new automation technology to enable
a safe automated landing. They have not made any further
specific design recommendations yet. The decision for proce-
dures after the detection of incapacitation or loss of control
depends on the interactions between the reliability of the tech-
nical systems and reliability of the data-link. Here, the two
biggest hazards in RCO could coincide in time: the presence
of both pilot incapacitation and a data-link failure (Driscoll
et al. 2017a). An autoland technology on-board was proposed
for data-link loss or disconnection (Lachter et al. 2017). The
autoland system on-board could be applied in the case of in-
flight incapacitation as well. If the data-link is sufficient reli-
able (Schmid and Korn 2018), the remote-copilot could also
conduct the autoland from the ground in combination with
automation tools reviewed above (Table 1). This represents
an additional option depending on the data-link’s bandwidth,
reliability and security.

The specific application of such a pilot health and aircraft
system monitoring system to RCO has not been modelled nor
empirically evaluated. Nonetheless, similar applications were
already investigated for use in MCO. The STAMP models
presented provide first insights into how these new types of
automation systems could be integrated into a concept of
RCO. In doing so, we employed dual-graded alert manage-
ment with affiliated recovery systems for both specific types
of monitoring systems to adapt it to the two types of remote
support by PM or PF. Any alert management would have to be
fitted to the specific health and systems monitoring technolo-
gy. Nonetheless, empirical data regarding the precise in-flight
application of both types of monitoring technology are not
available (Maiolo et al. 2017) and only validated regarding
their technical feasibility in assessment (Oliveira et al. 2012)
rarely during simulated flight (e.g. Cakir et al. 2016; Gaultier
and SAFEE Consortium 2008). Thus, we discuss the risks
involved with the use of both kinds of system support mech-
anisms on a conceptual level.

At first, most approaches to pilot health monitoring include
physiological measures for cognitive capacity or workload but
they do not suggest a specific response for crew members of
commercial aircraft. For example, Maiolo et al. (2017) only
demonstrated the technical operation of a wireless wristband
to monitor cardiac activity and gesture recognition off-flight.
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Table4 UCAs and safety constraints generated for control loop of “remote-copilot at GS”, “suicidal single-pilot” for Germanwings flight transferred
to in RCO

1. Control action is not
provided

Control action/
feedback

Safety constraints 1 2. Unsafe control action is  Safety constraints 2

executed

(1) Detect adverse
health condition of

(2) Alert on short-time SEL ALT
100 ft (previous inbound flight) as

Self-report decrease in medical (2) Captain short-time
fitness; SEL ALT 100 ft (previ-

(1) Failure to self-report
decrease in medical

crewmember fitness of single-pilot; (3) Ask for support in-flight ous inbound flight); deviation from flight plan;
(4) Reports the situation planning; (4) No further inquiries; (3) Check flight parameters;
as under control (3) Check flight parameters; (5) Captain selected ALT  (3) Ask for support in-flight plan-
(4) No further inquiries 100 ft OPEN DES, ning;
THR IDLE, SPD (5) Alert on SEL ALT 100 ft, OPEN
308 kt. DES, THR IDLE, SPD 308 kt as

suspicious human activity

(2) Remote-copilot to  Failure to safely control ~The assessment of premedical

take control the aircraft by history as context cannot be
remote-copilot served by remote-copilot
(3) Detect Missing feedback to Pursue flight plan; (5) Captain selected ALT  (5) Alert on SEL ALT 100 ft, OPEN
homicidal-suicidal pursue the flight plan ~ Safety recommendations 100 ft. OPEN DES, DES, THR IDLE, SPD 308 kt as
intent regarding aeromedical THR IDLE, SPD 308 suspicious human activity;

decision-making after kt.
GWII8G

(6) TARMS concludes that
single-pilot is no longer in control

(4) Bring aircraft to a safe landing by control from GS

(4a) Disable all (7) EAS disables all
unauthorised inputs unauthorised inputs and
and protect aircraft protects aircraft systems
systems (8) Take over control: In cruise
by EAS (incl. FRF)

(7) EAS disables all
unauthorised inputs and
protects aircraft systems

(6) Failure to safely
control the aircraft

(8) Take over control: In cruise by
EAS (incl. FRF)

The numbers inside the table refer to the time course of UCAs in the process model of Fig. 4. The accident of Germanwings flight GWI18G from
Barcelona to Diisseldorf (BEA, 2016) was modelled with the tripartite concept of RCO assumed to be valid in commercial aviation. Italics represent a

possible safety constraint which was recommended after this accident (EASA 2015; EASA 2016a; 2016b)

The system had around 90% reliability of assessing physio-
logical signals. The monitoring system by Oliveira et al.
(2012), using oximetry and corporal temperature measure-
ment, was found to assess both physiological parameters reli-
able during glider flight. A classification of physiological pa-
rameters to assess the pilot’s workload or health state and to
relate this to their ability to control the aircraft safely is miss-
ing in all these systems. Hence, no conclusion can be drawn
on the pilot’s cognitive state and the control of the aircraft,
although a relation of these parameters to workload exists in
general (Young et al. 2015). Functional near-infrared spectros-
copy (fNIRS) can be used to passively monitor cognitive load
during simulated and real flight with an accuracy of workload
classification between 76 and 92% but a limited predictive
value of 68% for expected workload levels (Cakir et al.
2016; Gateau et al. 2018). Thus, relating physiological mea-
sures and psychological states of human subjects remains a
challenging undertaking for integrating it into sociotechnical
systems. Until this issue is solved entirely, the practical appli-
cation remains risky due to the technologies’ lower maturity in
further signal attribution in the operational context of aviation.
Conclusions regarding the pilot’s ability to control an aircraft
independent of the situation were not investigated for these
systems. This seems to be the reason why further applications
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of pilot monitoring technologies to influence flight procedures
on the base of these data have almost not been investigated
yet. In all examples, the assessment of physiological signals
was found to be reliable whereas the subsequent classification
of the pilot’s physiological state regarding flight safety was
either omitted, neglected or less satisfactory. In sum, current
technology monitoring pilot’s physiology remains at low
levels of technological maturity for the transition to commer-
cial RCO.

In contrast, aircraft systems monitoring has evolved further
in terms of system integration into simulations of commercial
airliners’ flight deck. ACROSS' (ACROSS Consortium 2016)
and SAFEE’s systems (Table 1; OTDS, TARMS, EAS
supplemented by FRF; Gaultier and SAFEE Consortium
2008; Laviv and Speijker 2007) can validly detect hazardous
entries into aircraft systems, warn, take over control whilst
protecting aircraft systems and land the aircraft autonomously.
For example, the OTDS prototype employed detection algo-
rithms based on basic behaviour detection principles and suit-
able indicators for suspicious behavioural patterns. The ability
of TARMS to evaluate different security hazards subsequently
was evaluated. Although the system suggested different
courses of actions, the pilots doubted the TARMS’ interpreta-
tion and decision-making. This issue of lack of trust in
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interpretation was also apparent in the present theoretical anal-
ysis of JL350 regarding the hazardous holding on the previous
flight (Table 3) and of GWI81G regarding the short-time se-
lection of ALT 100 ft on the outbound flight (Table 4). Here,
both deviations from normal operations would have been very
presumably detected by a system protecting the aircraft from
unauthorised operations as a deviation from the current valid
flight plan and trajectory. The risk in the interpretation of such
hazardous entries into aircraft systems is as follows. The SME
of'this study remarked that although the selection of 100 ft ata
cruise flight level of 38,000 ft would be considered as an
abnormal event with caution, it would be challenging to eval-
uate such detection even as a human pilot involved in-flight
operations. At this point, a solution has to be found because
automation depending on predefined values remains risky in
terms of limited interpretability. A possible solution is to mon-
itor the time period of the hazardous aircraft system’s state and
define an emergency based on additional measures. In con-
trast, other situations are easily to detect as hazards in which
control can be automatically switched to ground. Among
these is the long-term selection of the lowest possible altitude
of the Flight Management System (FMS) of GWI18G and
jumping off the seat during the approach of JL350. In the
end, ambiguous detections of deviations from predefined
norms of safe flight operations which do not immediately lead
to a loss of control on airside followed by apparent danger
remain challenging in integrating into a software solution that
should assist or even take over the decision on switching con-
trol to ground. Connection to remote ground-based support
does not guarantee the detection of malicious behaviour.
Here, a system-theoretic view remains important because ad-
ditional factors must be considered in system design, such as
personal data protection. Observing the health data of the
single-pilot too closely could lead to a lack of trust between
the air and ground pilots.

Hence, we may indicate the technology for aircraft
systems monitoring as under development for RCO
(Harris 2007) because in general, the technology exists
whereas it has only be tailored specifically to RCO. In
sum, the predictive STAMP and STPAs of pilot inca-
pacitation and homicide-suicide stimulate the debate
about how to encounter these events in RCO by provid-
ing a comprehensive structured framework. Here, we
encourage community proceeding research regarding
the data these systems assess with relation to the oper-
ational context of operating an aircraft. This basic re-
quirement has to be solved before considering the inte-
gration of such technologies into practical development.

Against this emerging background of RCO, some
changes to the higher managerial levels of commercial
aviation in the future might be required to improve the
safety of flight operations, because the hierarchical safety
control structure usually adapts over time (Leveson

2004a). The regulations regarding the
two communication rule (ICAO 2012a) and aeromedical
decision-making (Evans 2016) will remain because both
represent effective countermeasures against in-flight inca-
pacitation. The two communication rule is well
established in practice (Schmid and Stanton 2018;
Schmid et al. 2018) whereas the aeromedical services
have been improving in Europe as reaction to the
Germanwings crash in 2015 (EASA 2016a). In the future,
aeromedical services might apply enhanced methods for
diagnosis when compared with contemporary medical ser-
vices. Pilot homicide-suicide has remained thankfully a
very rare event throughout the history of aviation
(Aviation Safety Network 2015; Kenedi et al. 2016). We
anticipate that the current preventive enhancement of
countermeasures, such as an additional psychological
checkup and other services, provides a solid base to di-
minish this risk (EASA 2016a). For example, a proactive
and non-punitive support programme will assist pilots in
any issues which might potentially affect their fitness to
fly whilst keeping data confidential and protected
(European Commission 2018). Further possible influences
of the incapacitation rate in future by a growing demand
for air travel and better aeromedical services have not
been investigated yet (Airbus 2018; Boeing 2018).
Whereas the preconditions and upper level regulations in
RCO remain similar, the cases of incapacitations might
climb in total due to an increase in flight operations.
This aspect has not been taken into account in any dis-
cussions on RCO yet.

The new infrastructure of RCO will serve as the
driver of all changes in the hierarchical safety control
structure of commercial air operations which we intro-
duced above in the present operational concept. An old
issue which might become more relevant in RCO is
trust especially in a new advanced automation system
which monitors pilot and system, and actively influ-
ences system operations (Ashleigh and Stanton 2001,
Hoffmann et al. 2013; Lee and See 2004; Walker
et al. 2016). It is crucial to enable safe operations. For
example, trust in an assistance tool called the
“Autonomous Constrained Flight Planner” aiming to im-
prove flight planning of a remote-operator in RCO was
found to be dependent from several different factors like
transparency and risk of the recommended potential di-
versions (Brandt et al. 2017; Lachter et al. 2017; Sadler
et al. 2016). The sociotechnical system of commercial
aviation continues to evolve towards the future of RCO.
All systems levels, including human-, automation- and
environment-related factors, can potentially affect trust
(Schaefer et al. 2016). A policy on data processing,
storage, use and recording of alerts has led to the pilot’s
fear of loss of licence. The (multi)national aviation
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authorities would face the challenge of integrating RCO
into policy and operational practice.

5 Conclusions

In this paper, we have taken step towards applying the con-
temporary ideas on pilot health monitoring and implementa-
tion of additional automation tools to a possible future of
RCO. STAMP and STPA have been used predictively which
is rather novel to human systems integration. The models have
shown how the application of specific advanced automation
systems could prevent an incident resulting from incapacita-
tion of the single-pilot on-board. The sociotechnical system
even handles the rarer event of a pilot homicide-suicide.
Hence, the concept on how to prevent a crash due to a purely
human loss of control of the single-pilot extends existing func-
tion allocations of RCO. By considering the system-theoretic
approach, we could take the whole system and identify stake-
holders affected into account. These results stimulate debate
about progressing to RCO in the future and encourage further
development of operational procedures and technologies for
specific use in commercial RCO. A limitation of the system-
theoretic model and analyses of the scenarios of pilot incapac-
itation and homicide-suicide is that the predictions have not
yet been validated empirically. An experimental flight simu-
lation setup with standard methods is planned for future stud-
ies. Nonetheless, the functions of the single additional auto-
mation tools have been validated in case of the EU projects
and look promising for RCO. In contrast, the pilot health
monitoring systems require further research. Here, the re-
search is rather fragmented at present, resulting in varied so-
lutions which focus on different measures and responses. With
the concept of RCO, residual issues of trust in the automation
tools, the distributed crew member and the reliability of data-
link remain. If all these issues are resolved, then RCO could
indeed become a viable future concept of operations for com-
mercial aviation.
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