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Abstract
At present, Wireless Sensor Network technology are widely used in the fields of agricultural environment monitoring. 
Whether we use ground network or ground-air coordination, the position coordinates of unknown nodes are an impor-
tant feature of sensor information collection. To achieve the goal of a wireless monitoring system for field soil irrigation 
and its node positioning, we proposed an RSSI (Received Signal Intensity Indication)-based agricultural environment 
irrigation monitoring system. The algorithm has three stages: RSSI ranging, error correction, and localization. In the RSSI 
ranging phase, we obtain inter-node measurement distance by wireless channel modeling. In the distance-weighted cor-
rection phase, considering the difference between the measured distance of the beacon nodes and the actual distance, 
we analyze and select the relative error coefficient for the beacon nodes to correct the measured distance between the 
unknown nodes and the beacon nodes within their communication range. In the positioning stage for the nodes to be 
located, we estimated the required node coordinates using a weighted centroid localization method. In addition, by 
analyzing the monitoring data, we know the changes in soil moisture in real-time, which provides new ideas for irriga-
tion automation and the efficient utilization of water resources. When designing the algorithm, we thoroughly consid-
ered the influence of RSSI ranging inaccuracy and the quantity of beacon nodes on the localization precision. The test 
demonstrated that the method presented in this paper has higher localization precision and lower computation cost.

Article Highlights

• In the application of the irrigation monitoring system in the agricultural environment, an RSSI-based ranging method 
is proposed for node localization.

• In the RSSI distance weighting correction stage, the difference between the measured distance of the beacon node 
and the actual distance is fully considered, and the relative error coefficient of the beacon node is analyzed and 
selected to obtain the accurate measurement distance.

• Under the case of harsh network environment and limited positioning cost, the system achieves better positioning 
effect. Compared with the least squares method, the method has high positioning accuracy and small computational 
amount.
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1 Introduction

Agriculture is the basic industry in China. Our country attaches increasing importance to agricultural output value, and 
it is very important to continuously implement new technologies in agriculture, especially to develop water-saving irri-
gation under the condition of water resources shortage. The soil moisture monitoring system is one of the agricultural 
environment monitoring. Water-saving irrigation means precise irrigation, and the basis of precise irrigation is to monitor 
and locate soil moisture in irrigated areas. At present, the technologies used in agricultural environment include GPS 
(Global positioning system), WSN (Wireless sensor networks) and UAV (Unmanned aerial vehicle), et al. Restricted by the 
cost and environmental conditions, GPS is not easy to realize alone in the wireless sensor networks for soil moisture moni-
toring [1]. In recent years, some scholars have proposed many positioning algorithms, but the application conditions of 
these algorithms are harsh, that is, each positioning algorithm is aimed at positioning problems in different applications.

WSN can perceive, collect and wirelessly transmit the environmental information in the monitoring area in a self-
organized and multi-hop manner [2]. It has become one of the data processing platforms with significant development 
and application potential, which is applied in many fields such as agricultural environment monitoring and soil moisture 
content [3]. The hardware composition of a sensor network system usually includes sensor nodes (End nodes), aggrega-
tion nodes (Router nodes), and management nodes (Coordinator). Positioning is an important supporting technology of 
WSN, and it is widely used in industry, agriculture, medical treatment and other fields. The most commonly used wireless 
communication protocol for building a WSN network is ZigBee, which is a close-range, low-power consumption, low-
data transmission rate, low-cost bi-directional wireless communication technology, and can be embedded in various 
devices, while supporting the geolocation function. The application of ZigBee technology to WSN is a focus of current 
research, and the research and application of related positioning technology has also attracted wide attention. In practical 
application, we can also use the cruise UAV technology based on ground-air collaboration, which takes the UAV loading 
ZigBee coordinator as the gathering node, collect environmental information from the WSN nodes on the ground, and 
transmit the data back to the remote server in time [4]. The advantages of UAV are high efficiency, high coverage rate 
and intelligence, which are conducive to the realization of agricultural modernization. In recent years, many scholars 
have carried out relevant scientific research [5].

Whether using the WSN of the surface network, or the ground-air collaborative cruise UAV technology, the position 
coordinates of unknown nodes are an important feature of sensor acquisition information, so it is necessary to monitor 
node positioning. The features, such as rapid unfolding, robust fault tolerance, and long working life, make the applica-
tion of WSN in the field of soil moisture monitoring develop very quickly, and many scholars have carried out relevant 
scientific research [6].

Range-based and distance-free positioning are the two widely used types of positioning methods [7]. The Range-
Free way does not need to measure the distance or the angle, but it cannot meet the application requirements of high 
accuracy due to the more significant error. The Range-Based method requires information such as distance or angular 
orientation. Commonly used ranging algorithms include receiving signal strength indication (RSSI) [8–10], time of arrival 
(TOA) [11, 12], time difference of arrival (TDOA) [13, 14], angle of arrival (AOA) [15, 16], etc. The latter three require addi-
tional equipment and high cost.

In [17], the author first explained the principle of the received signal strength indicator (RSSI) and the factors affecting 
the positioning accuracy, including the number and location of sensors of the factors, the quality of the received signal, 
the arrival Angle (AOA), and the arrival time difference (TDOA). Then the authors used the beacon nodes and the arrival 
distance for the sensor positioning. The simulation results showed that the system obtains lower mean estimation error 
when using RSSI because of temporal synchronization, which indicated that RSSI-based measurements achieve higher 
accuracy and accuracy during localization. However, because the RSSI values are different in different regions or direc-
tions in the environment, the adverse effect is mainly reflected in the path loss factor. The fixed empirical value of path 
loss will reduce the range accuracy due to the change in the signal propagation area; and the solution is to use multiple 
measurements and cycle refinement to increase the range precision [18].

At present, some scholars have carried out research from different perspectives or applications, and have proposed many 
positioning algorithms based on RSSI ranging. Before positioning, the RSS distance measurement needs to be conducted 
first, and then the distance model is established. In order to improve the ranging accuracy of RSS distance, in [19], the authors 
proposed a distribution positioning method based on RSSI, which can achieve high positioning accuracy without dense 
deployment of nodes, and also analyzed the distribution attributes of different nodes under fine-grained distance and 
constructed a unit positioning model. The results showed that the localization accuracy is improved by 50% compared with 
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the existing methods, and the error is less than 1.5 m. RSSI-based ranging accuracy depends on environmental and weather 
conditions, so the authors in [3] analyzed and evaluated RSSI-based ranging and adaptive techniques in outdoor wireless 
sensor networks to improve ranging quality. In this article the authors highlighted the impact of path loss index estimation 
error and temperature variation on RSSI ranging and proposed an RSSI-based adaptive ranging algorithm to improve ranging 
quality under changing outdoor conditions. The algorithm includes link RSSI estimation, temperature compensation, PLE 
estimation, and inter-node distance estimation, better localization effects were obtained by evaluating the performance of 
the proposed algorithm. In [20], aiming at the common non-line-of-sight (NLOS) problem, considering the actual dynamics 
of ultra-low power indoor wireless channel environment, the authors proposed an indoor positioning algorithm that can 
automatically adapt to the environmental dynamics in real time. In [21], the authors proposed a fingerprint technology 
based RSS to achieve indoor wireless positioning, which uses a machine learning algorithm to take the RSS measurement as 
a location-related signal parameter to estimate the location of the target. In this method, the estimation is divided into two 
phases, the offline phase and the online phase. In the offline phase, RSS measurement vectors are first collected and gener-
ated from the radio frequency (RF) signal received at the fixed reference position, and then RSS radio maps are constructed. 
In the online stage, the reference location is searched by the radio map to find the instantaneous location of the indoor 
target. However, the factors such as multipath, diffraction, and obstacle occlusion in the practical application environment 
often bring errors to the RSSI-based range.

By establishing the RSS filtering model, Ranjan et al. [22] applied the Gaussian average filtering technology to locate 
the estimation, which can better suppress the measurement noise, reduce the estimation error, and obtain a satisfactory 
positioning effect. By installing the measuring equipment, Katwe et al. [23] and Tomic et al. [24] adopted a hybrid ranging 
positioning scheme, and also obtained good positioning results based on the effective estimation algorithm. Under the RSS 
measurement condition, Ahmad et al. [25] achieved a good balance of positioning speed and algorithm quality by select-
ing the number of sensors involved in positioning calculation, but this algorithm comes at the cost of economy. Moreover, 
they made practical tests of the proposed positioning algorithms from the perspectives of calculation complexity, ranging, 
and positioning error, conducted a detailed analysis, and made the positioning performance evaluation. The re-search on 
the above positioning algorithms has a positive significance. Although these algorithms have a good positioning effect to a 
certain extent, the common problems are that they have high computational costs and high communication requirements. 
Therefore, these algorithms are difficult to popularize in soil moisture monitoring.

To overcome the shortcomings encountered by the above positioning algorithm, on the premise of not increasing the 
hardware facility and meeting the positioning accuracy of the monitoring system, we should deeply explore the applica-
tion requirements of the RSSI positioning methods and monitoring systems. Under the needs of the positioning system, 
we should adopt a feasible scheme to reduce the positioning cost on the premise of preserving the positioning function. 
Our proposed algorithm assumes distance weighting and coordinate correction, reducing the system power consumption 
and prolonging network life. Moreover, the software cost is relatively small, and its positioning function is suitable for the 
application requirements of the soil moisture monitoring system.

2  RSSI ranging modeling

2.1  Wireless channel modeling

In the soil environment, there are different soil textures and other organisms with dense and uneven distribution, which will 
lead to multiple paths, diffraction, and obstacle shielding, complicating the RF signal transmission model. The monitoring 
node itself can provide RSSI measurements without adding additional hardware devices. Since the path-loss of radio wave 
transmission has a significant impact on the RSSI measuring precision, a log-normal topology model is used in this system. 
RSSI values are expressed as follows:

where Pt and Kt are the transmit power and the antenna gain, respectively. Ploss(l) is the path loss after the distance (l).

where Ploss(l0) is the consumed power after the ranges l0 . � is the path loss index. l0 is the referred range, and its value 
usually is 1 m. Substituting formula (2) into formula (1), there is

(1)Pr(l) = Pt + Kt − Ploss(l)

(2)Ploss(l) = Ploss(l0) + 10�lg

(
l

l0

)
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set

thus, Pr(l) is given by

where Pr(l0) is the RSS (Received Signal Strength) value at l0. The larger the Pr(l) value measured by the monitoring node 
is, and the closer the distance is, the smaller the error caused by the Pr(l) deviation is.

After the referred ranges l0, Ploss(l0) is given by

The meaning of Kt is given as described in formula (1), Kr is the aerial receipt enhancement. L is the disadvantage factor, 
and λ is the wireless signal wavelength.

2.2  Internode distance estimation

It is assumed that the positioned nodes are deployed uniformly and randomly in the wireless monitoring region. Each node 
has the same transmission range, and the transmission range can be represented as a regularly rounded region. If we take 
l0 = 1 m, by formula (3), then Pr(l) is given by

If enough nodes are located within the transmission range of the monitoring node, according to the interrelation between 
Pr(l) and the distance l, we assume that the minimum received signal intensity is Prmin corresponds to the maximum distance 
lmax , then

so,

The symbol lmax is considered to be the transmission radius. Among the multiple RSSI values obtained in monitoring 
the unknown nodes, the minimum RSSI value is Prmin , corresponding to lmax = R; thus, we can get the l value from the 
unknown node to the beacon point. The search method of Prmin is to put all the RSSI values received by the monitoring 
node to be positioned together with all the RSSI values obtained by the neighbor node, ranking from large to small and 
taking the smallest RSSI value as Prmin.

2.3  Distance ranging correction between nodes

To obtain the measurement error of RSSI values, the case of a beacon node with the known location is first considered. 
By measuring the Pr(l) value of the beacon node with the known sites in the network, we use the RF signal attenua-
tion modeling to calculate the measured distance value and then calculate the actual distance between the beacon 
nodes according to the exact coordinates of the beacon node, and compare the measured length with the exact 
length, thus obtain the measurement error of the beacon node Pr(l) measurement value. When ranging the unknown 
monitoring node, considering the measurement error of the Pr(l) value, the adverse effects of various random factors 
in the monitoring network on the RSSI ranging results can be decreased.

Pr(l) = Pt + Kt − Ploss(l0) − 10�lg

(
l

l0

)

(3)Pt + Kt − Ploss(l0) = Pr(l0)

(4)Pr(l) = Pr(l0) − 10�lg

(
l

l0

)

(5)Ploss(l0) = −10lg

[
KtKr�

2

4�2l2
0
L

]

(6)Pr(l) = Pr(1) − 10�lg(l)

(7)Prmin = Pr(1) − 10�

(8)� =
Pr(1) − Prmin

10 lg
(
lmax

)
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For the 2-D situation, we assume that the beacon node is marked as Bj
(
xj , yj

)
 , j = 1, 2,⋯ ,M , M is the total number 

of beacon nodes participating in the correction process. B0(x0, y0) represents the beacon node to be revised. The 
physical distance between B0(x0, y0) and Bj

(
xj , yj

)
 is recorded as dj . The lengths obtained by Pr(l) are recorded as lj . The 

RSSI distance-measured relative error is recorded as:

Then the correction coefficient for the relative error of weighted distance at the beacon node Bj
(
xj , yj

)
 is recorded 

as:

The coefficient �w indicates the RSSI measuring deviation of the beacon node. Considering the weighting occupied 
by the various Pr(l) , the smaller the range among the monitoring nodes, the smaller the range inaccuracy induced by 
the deviation of Pr(l) , and the larger the weighting to the compensation quotient. Then the compensation range of the 
beacon node is given by

where luj is the measured range between node B0 and the beacon node Bj , l
c
uj

 is the corresponding compensation range 
between two nodes.

3  Unknown node coordinate estimation

3.1  Weighted centroid localization

According to the RF signal transmission modeling discussed above, the larger the RSSI value is, the closer the distance 
between the monitoring nodes is, the farther the space is, and vice versa. As the node to be measured is closer to the 
beacon node, the measured RSSI value leads to a higher ranging accuracy, that is, the higher the confidence. When the 
distance is more significant than a particular threshold value, the ranging error caused by the RSSI value will increase, 
and the credibility of the RSSI value will decrease. Therefore, it is pretty reasonable to propose a centroid positioning 
method on the basis of RSSI distance weighting.

The algorithm achieves the weight of each beacon node to the centroid coordinates by the size of the weighted coef-
ficients. The larger the RSSI value is, the smaller the distance between nodes is, the higher the confidence of the RSSI 
value is at this time, and the greater the weight of the centroid coordinates is. Therefore, we can choose the appropriate 
weighting coefficient to perform the RSSI weighting calculation to improve the positioning accuracy.

Assuming that the unknown node U1 receives the RSSI values of the three beacon nodes B1, B2, and B3 within the com-
munication range of the node U1, these values are marked as R1, R2, and R3, and we have obtained the path loss index � , 
which can be calculated from formula (8), in the monitoring range of the node U1. After considering the RSSI value and 
the distance weighting factor, the coordinate (x, y) calculation formula of the node U1 can be given by

l1, l2, and l3 are the measured distances from U1 to B1, B2, and B3, respectively, and k is the weighted adjusting coefficient. 
In practical application, we can adjust the level of the weighting calibration by regulating the value of k, so that the 
localization system can achieve optimal effectiveness. The algorithm is characterized by a small computational amount 

(9)�j =
dj − lj

lj

(10)�w =

M�
j=1

dj − lj

l2
j

∑M

j=1

1

lj

(11)lc
uj
= luj(1 + �j)

(12)x =

x1

lk
1

+
x2

lk
2

+
x3

lk
3

1

lk
1

+
1

lk
2

+
1

lk
3

, y =

y1

lk
1

+
y2

lk
2

+
y3
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3

1
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+
1
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1
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and no additional communication overhead, which reduces the adverse effects of random noise in RF signal modeling 
and thus improves the positioning accuracy of the monitoring nodes.

We then consider the angle information when selecting beacon nodes to form a weighting, which can further 
save computational resources and reduce positioning error. When using the three-sided measurement method to 
calculate the node position, it is required to keep the three points not in a straight line as far as possible; that is, to 
achieve a good positioning effect, the three angles are controlled as sharp as far as possible. Therefore, we consider 
setting the confidence degree; the greater the confidence degree, the better the positioning effect. For each of the 
C3
M

 combinations of beacon nodes, let its confidence be CLABC(i) . We have

where�Ai,�Bi , and �Ci are the three inner angles of the triangle formed by the three beacon nodes, then

The coordinates ( x̂, ŷ ) of the node U1 after weighting are calculated as

In the above three formulas, i = 1, 2, ⋯ ,C3
M

 , M represents the total number of beacon nodes.

3.2  Node location correction

The ranging correction coefficient �w can improve the accuracy of RSSI ranging, but it is unable to monitor the coor-
dinate errors caused by various random factors, such as measurement equipment and emergencies. Therefore, we 
should also make full use of the known location information of the beacon nodes to correct the node positioning 
coordinates to improve the positioning accuracy further. Assuming that the beacon node location is unknown, the 
integrated weighted centroid localization algorithm proposed in this paper is used to calculate the beacon node 
coordinates and then to find the difference with the actual coordinates of the beacon nodes; thus, the error infor-
mation of the beacon node coordinate is obtained. We must consider such coordinate error information to reduce 
further the influence of various random factors in the monitoring network on localization accuracy.

The assumptions made here are the same as those made in Sect. 2.3. Assuming a beacon node B0(x0, y0) , whose 
location is unknown, and the other beacon nodes be recorded as Bj

(
xj , yj

)
 , where j = 1, 2,⋯N , N is the number of 

beacon nodes participating in the calculation of positioning error. The position of B0
(
x0, y0

)
 is calculated as Br0

(
xr0, yr0

)
 

based on the distance between Bj
(
xj , yj

)
 to B0

(
x0, y0

)
 , and the coordinate errors are obtained when compared with 

their actual coordinates. Then the coordinate error of the beacon node B0
(
x0, y0

)
 is expressed as

The position error of the jth beacon node is expressed in the following standard form

Weighted position errors within the monitoring region are the statistical mean of the position errors of the N beacon 
nodes and can be expressed as

(13)CLABC(i) = 1 −
�max − �min

�Ai + �Bi + �Ci

(14)

{
�max = max

{
�Ai , �Bi , �Ci

}
�min = min

{
�Ai , �Bi , �Ci

}

(15)

�
x̂ =

CLABC i∑
CLABC i

x

ŷ =
CLABC i∑
CLABC i

y

(16)

{
ex0 = x0 − xr0
ey0 = y0 − yr0

(17)

{
exj = xj − xrj
eyj = yj − yrj
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where ljc is the correction distance of the jth beacon node. The weighted coordinate errors ewx
 and ewy

 within the moni-
tored region are the weighted average of the beacon node coordinate errors, reflecting the regional localization capability 
of the system. Let 

(
xr , yr

)
 be the coordinate values calculated by the weighted centroid localization algorithm for the 

unknown nodes; therefore, the coordinates 
(
x̂r , ŷr

)
 of the unknown nodes in the positioning system after being corrected 

by the regional positioning error coefficient are

4  Experimental verification

4.1  Simulation and the analysis

In simulation research and analysis, to reflect the influence of the quantity, density, and communication radius of bea-
con nodes on the positioning error of unknown nodes, we take the average positioning error of unknown nodes as the 
primary evaluation standard in the execution of the positioning algorithm. In the monitoring region, the positioning 
error of the jth node is expressed as Ej.

where, j = 1, 2, …, MU , MU is the quantity of unknown locations nodes in the monitoring region, and the communication 

radius of the nodes is Rj , pj =
[
xrj yrj

]T
 is the final estimated position of node j, and zj =

[
xj yj

]T
 is the actual position of 

node j. The mean of the positioning error for all nodes of unknown locations is marked as Ea

Obviously, the smaller the value of Ea , the higher the localization accuracy.

4.1.1  Network environment

MATLAB 2020a is selected as the simulation test platform, and the simulation environment is set to a rectangular area 
of 80 m × 80 m. In this paper, the log-normal model is used as the RF communication ranging model between nodes, 
shown in formula (2). In the ranging model, the RSSI values and distance l are the inputs and outputs of the model, 
respectively. Various random disturbances in the actual monitoring environment lead to some ranging errors. For the 
simulation, the inter-node spacing superimposed on the Gaussian noise was used as the RSSI input in the wireless 
communication model. Inter-node spacing is calculated from the actual coordinates of the monitoring nodes. The 
standard deviation of the Gaussian noise is �i , and its expression is shown in formula (22),

(18)

⎧
⎪⎪⎨⎪⎪⎩

ewx
=

N∑
j=1

exi

ljc
∑N

j=1
l−1
jr

ewy
=

N∑
j=1

eyj

ljc
∑N

j=1
l−1
jr

(19)

{
x̂r = xr + ewx

ŷr = yr + ewy

(20)Ej =

√
(xrj − xj)

2 + (yrj − yj)
2

Rj

(21)Ea =
1

MU

MU∑
j=1

√
(xrj − xj)

2 + (yrj − yj)
2

Rj
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where, j = 1, 2, …, MU,Rmax indicates the furthest propagation range of the monitored node, Rj indicates the propagation 
range of the jth monitored node, �j indicates the distance-measured relative error of the jth monitored node, which is 
defined as in formula (9). We can imitate different ranging errors by regulating the value of �j.

In the following simulation experiments, the localization effects of three algorithms are listed. Where algorithm 
A indicates the presented algorithm, algorithm B indicates the LS (Least Square) method and algorithm C indicates 
the standard centroid positioning (SCP) method. The positioning accuracy of the three algorithms in different rang-
ing errors, the number of varying beacon nodes, and the communication radii of other nodes are compared and 
analyzed by simulation.

4.1.2  Relationship between position accuracy and ranging error

We set the number of beacon nodes to M=15 and the total number of nodes to 300. The obtained simulation results 
are shown in Fig. 1.

According to Fig. 1, the localization precision of three algorithms decreased with the increasing variance of rang-
ing error. The ranging error has the most significant influence on algorithm C, and when the variance of range error 
is significant, the localization precision decreases more. Algorithm B is less affected by range error, but in contrast, 
the proposed algorithm A suppresses the range error very well, thus achieving a higher localization precision.

When the variance of ranging error is �2
j
= 0.1 , the positioning accuracy of algorithm B is about 0.21, and that of 

algorithm C is about 0.26; when the variance �2
j
 increases, the localization precision of the three algorithms begins 

to decrease, while the localization precision of algorithm A is invariably superior to that of the other algorithms. The 
reason is that when the variance of ranging error �2

j
= 0.1 , the localization precision is mainly caused by the ranging 

error; after the ranging correction, the node localization precision has been dramatically improved. When the vari-
ance of the ranging error �2

j
 increases, �2

j
 significantly weakens the localization accuracy. The ranging correction of 

algorithm A acts as an inhibitory error and a significant improvement in localization accuracy.

4.1.3  Relationship between the localization accuracy and the number of beacon nodes

We set up the emulation environment of 80 m × 80 m, and eighty nodes presented with a random distribution. The 
communication distance of the node is 40 m. The obtained simulation results are shown in Fig. 2.

It can be seen from the curve trend shown in Fig. 2 that the positioning accuracy of the three algorithms increases 
with the number of beacon nodes, which is because the coordinate information provided by multiple beacon nodes can 
be verified and supplemented by each other, reducing the inaccurate positioning caused by errors in a single anchor 
node. And under the same conditions, the proposed algorithm (Algorithm A) outperforms the other two algorithms.

(22)�j =
Rmax

Rj
�j

Fig. 1  Effects of distance 
measurement error on locali-
zation accuracy
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4.1.4  Relationship between the positioning precision and the communication radius of the nodes

We set the simulation environment as in the previous case, where 80 nodes are stochastically distributed in the 
80 m × 80 m region and set that the quantity of beacon nodes is 10. The simulations yielded the results shown in Fig. 3.

Figure 3 illustrates that the positioning precision also gradually increases as the node communication radius increases. 
Because the more prominent the distance between the nodes communicates, the amount of information between the 
unknown node and the beacon node increases, and the distance error between the unknown node and the beacon node 
decreases. At the same time, due to the increased communication distance of the nodes, the beacon nodes around the 
unknown nodes also begin to grow, so the unknown nodes can use more beacon node distance to correct their space 
to the beacon node. Therefore, as the node communication distance increases, the positioning accuracy is also gradually 
increasing. Figure 3 shows that the positioning accuracy of algorithm A is higher than the other two algorithms under 
the same network conditions.

4.2  Experiment verification

To verify the localization effect of the proposed algorithm, in the about 15 m × 15 m area of the laboratory building, we 
built a small WSN experimental system using CC2530 nodes. Although the experimental area is limited compared with 
the actual scale of soil moisture monitoring applications, the experimental results can still be of great significance, and 
high-quality data can be obtained in a small range, which can be statistically extended to a larger range, provided that 
the corresponding assumptions are met. Here we assume that the node density per unit area is the same, so the node 
positioning performance is basically independent of the area size, while considering the uniform ductility of the region 
selected by the validation experiment, its size basically does not affect the validity of the results. There are five beacon 
nodes in the design, which are evenly arranged within the observed region. In addition, nine unknown nodes and one 
convergence node are manually set. The minimum communication distance of these nodes is about 10 m, and the nodes 
are placed directly on the ground and are about 0.1 m from the ground height. The data is transmitted every 10 s, and 
the mean of 20 tests is taken as the experimental results. The node to be positioned is considered an unknown node and 
is measured and placed after the specific location of the deployment setting. The resulting data are shown in Table 1.

The Ej in the table can be calculated from formula (20). We know from Table 1 that the minimum localization deviation 
of the algorithm in this paper (algorithm A) is 0.09, the maximum localization deviation is 0.21, and the average value is 
0.16 in the actual monitoring environment. If the conditions are the same, the average localization deviation obtained 
by the simulation was 0.12. The reason why the actual positioning effect is inferior to the simulation effect is that the RF 

Fig. 2  Effect of the number 
of beacon nodes on the posi-
tioning precision
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Fig. 3  Relationship between 
node communication radius 
and positioning precision
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signal in the actual environment is blocked by indoor walls and electrical equipment, and the signal transmission loss 
and multipath reduce the measurement accuracy of RSSI, thus increasing the positioning error. In comparison, these 
interference factors are not considered in the simulation. In conclusion, we experimentally verified the feasibility of 
algorithm A for localization accuracy requirements.

We use the localization algorithm proposed in this paper to analyze 15 series of test data, where the Gaussian random 
variable is set as ��(0, 10) , eighty nodes are randomly placed within the 80 m × 80 m region, and the communication 
radius of the nodes is 40 m, and the number of beacon nodes n = 20. To minimize the random deviation, 100 simulation 
experiments were done under the same conditions, averaging the results of 100 times, and obtaining 15 localization 
errors for 15 sets of corresponding unknown nodes, as shown in Fig. 4.

In Fig. 4, the maximum value of the positioning error is 0.35, the minimum value is 0.19, and the overall positioning 
effect is good. Because the 20 beacon nodes are evenly deployed in the laboratory test area, the positioning error of 
the area edge is slightly larger. If we deploy more beacon nodes at the edge of the test area, the localization effect will 
improve.

5  Conclusions

In this paper, we propose a weighted centroid localization algorithm applied to wireless monitoring systems of soil 
moisture. When designing the algorithm, we firstly used the signal propagation attenuation to build the model, obtained 
the range information by measuring the RSSI value, then selected the relative error correction coefficient of weighted 
distance to correct the measured range, and finally designed an integrated weighted centroid localization algorithm with 
less computation to reckon the location coordinates of the nodes to be tested. The advantage of this algorithm is that it 
can meet the accuracy of soil moisture wireless monitoring without adding hardware equipment. Simulation experiments 
indicate that the algorithm can efficiently suppress Gaussian noise with small transmission overhead. Simulation shows 
that the proposed algorithm is better than LS method and SCP method in positioning accuracy because of the distance 
error correction measure of RSSI level in the ranging stage, which reduces the measurement error and improves the 
positioning accuracy. Therefore, the proposed algorithm in this paper has a certain reference function for the practical 
application of soil moisture monitoring.

Table 1  Test results Number of nodes Actual location of 
node

Location after measure-
ment

Range between two 
nodes

Ej

01 (4.0, 4.0) (4.8, 2.9) 1.36 0.14
02 (4.0, 8.0) (4.9, 6.7) 1.58 0.16
03 (4.0, 12.0) (5.5, 11.2) 1.7 0.17
04 (8.0, 4.0) (8.9, 5.8) 2.01 0.20
05 (8.0, 8.0) (9.4, 9.6) 2.13 0.21
06 (8.0, 12.0) (9.5, 12.9) 1.75 0.18
07 (12.0, 4.0) (11.4, 4.6) 0.85 0.09
08 (12.0, 8.0) (11.3, 9.3) 1.48 0.15
09 (12.0, 12.0) (10.9, 12.9) 1.27 0.13

Fig. 4  Positioning error of the 
test data
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The research direction of positioning algorithm in agricultural environment monitoring is diversified, aiming at improv-
ing monitoring accuracy, reducing cost, enhancing system adaptability and intelligence level. Our future research direc-
tion is still the positioning algorithm with high precision and cost-reduction.
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