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Abstract
Train trajectory optimization (TTO) is an effective way to address energy consumption in rail transit. Reinforcement learn-
ing (RL), an excellent optimization method, has been used to solve TTO problems. Although traditional RL algorithms use 
penalty functions to restrict the random exploration behavior of agents, they cannot fully guarantee the safety of the 
process and results. This paper proposes a proximal policy optimization based safety reinforcement learning framework 
(S-PPO) for the train trajectory optimization, including a safe action rechoosing mechanism (SARM) and a relaxed dynamic 
reward mechanism (RDRM) combining a relaxed sparse reward and a dynamic dense reward. SARM guarantees that the 
new states generated by the agent consistently adhere to the environmental security constraints, thereby enhancing 
sampling efficiency and facilitating algorithm convergence. RDRM makes it easier for agents to obtain successful samples 
by relaxing time constraints, which also offers a better balance between exploration and exploitation. The experimental 
results show that S-PPO can significantly improve performance and obtain better train operation trajectories than soft 
constraint methods, and the convergence process is smoother. Finally, it was demonstrated that S-PPO exhibits good 
adaptability across various speed limit tracks.

Article Highlights

1. Discretize the train operation process based on distance and construct a Markov decision process model.
2. A safety reinforcement learning framework based on PPO is proposed to maintain the learning process within the 

constraints of boundaries.
3. A relaxed sparse reward which relaxes the constraint of train planned trip time is proposed to enhance the likelihood 

of agents completing tasks.
4. A dynamic dense reward can balance the contributions of time and energy consumption and offer enhanced feed-

back.
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1 Introduction

Urban rail transit, as an efficient, safe, comfortable, and fast mode of transportation, has undergone significant 
development in the past few decades. However, along with this massive transportation capacity, there is inevitably 
an enormous demand for energy. Taking the Guangzhou Metro in China as an example, the total number of pas-
sengers transported in 2022 reached 2.358 billion, and the total operating energy consumption for the year was 
1.882 ×  109 (kw h), with train traction energy consumption accounting for 55.6%, totaling 1.047 ×  109 (kw h) [1]. 
Energy-efficient train operation is a very effective measure for achieving energy conservation, emission reduction, 
and green transportation [2].

The keys to energy-efficient train operation include determining the speed profile of trains with minimal energy 
consumption and maintaining a timetable that can meet constraints such as train characteristics, track gradients, 
curves, and speed limits; this approach is also known as train trajectory optimization (TTO). The optimal train trajec-
tory can describe the movement on the track and can be used as a basis for guiding train drivers during operation 
or as an input to automatic train operation (ATO).

To solve the TTO problem, many scholars have conducted extensive research on train operation control strategies 
and control methods, which are mainly divided into five categories: Pontryagin’s maximum principle (PMP) [3–7], 
quadratic programming (QP) [8, 9], heuristic method [10–13], dynamic programming (DP) [14, 15] and reinforce-
ment learning (RL) [16, 17]. The PMP faces significant challenges in TTO problems, especially when dealing with 
hard constraints on non-flat and multi speed-limited tracks, it is difficult to find the optimal conversion conditions. 
Kouzoupis et al. [18] used a multiple shooting method to transform the TTO into a nonlinear programming problem, 
and directly solved it using CasAdi (an open-source tool for numeric optimization implementing automatic differ-
entiation in forward and reverse modes on sparse matrix-valued computational graphs) and IPOPT (a software for 
solving large-scale nonlinear optimization problems). And Wang and Goverde [8] solved it using the pseudospectral 
method. To improve the accuracy of the solution, the discrete scale of the TTO problem can be expanded, and the QP 
method requires a huge amount of computation and storage space to handle this large-scale problem. The heuristic 
methods often require considerable time to make control decisions and sometimes even lead to violent fluctuations 
in the speed profile that do not comply with the constraint. They regarded the train operation process as a multi-
stage decision process [14, 15], and used the Bellman optimal equation and backpropagation method to obtain the 
optimal control strategy through iterative solving. To overcome the curse of dimensionality, approximate dynamic 
programming (ADP) is adopted to solve the TTO problem, and multiple value function approximation methods are 
designed to estimate the optimal value function, such as the rolling algorithm, the interpolation method, and neural 
networks [19–21].

The RLs allow agents to learn how to complete tasks through interaction with the environment, but they also 
meet many challenges, such as sparse rewards, balance between exploration and exploitation, sampling efficiency. 
To solve these problems, many classic RL algorithms have been proposed, such as Q-learning [22], deep Q-network 
(DQN) [23], advanced actor–critic algorithm (A2C) [24], deep deterministic policy gradient (DDPG) [25], proximal 
policy optimization (PPO) [26]. Liu et al. [16] proposed an intelligent control method based on the deep Q-network 
(DQN) to solve the TTO problem of heavy-haul trains. Liang et al. [27] used the asynchronous advanced actor–critic 
(A3C) to optimize the train speed profile and proposed a parameter update method with a weighted average of 
advantage values to address the convergence oscillation and degradation problem of the A3C. The train operation 
process can also be seen as a continuous control task, which is solved using DDPG [28, 29]. Pang et al. [30] addressed 
the problem of train trajectory reconstruction under interruption conditions, using the PPO model to consider train 
operation constraints and minimize total train delay, and proposed a train trajectory reconstruction scheme.

During the learning process, traditional RLs adopt a soft constraint approach, which involves setting a penalty func-
tion that matches the constraint to prevent agents from crossing boundaries and reaching unsafe states. However, in 
fields with complex transition dynamics and high-dimensional state-action spaces, this trial-and-error process may 
cause damage to the learning system when executing selected actions in certain states, affecting the efficiency of 
algorithm search.

To address this issue, safe reinforcement learning (SRL) has been proposed with the aim of satisfying given safety 
constraints and ensuring good system performance [31]. Several researchers have applied a Gaussian process to 
model safety constraints, which enables the algorithm to evaluate the safety of state-action pairs before accessing 
them to support safe learning [32–34]. The concept of shielding was first proposed by Alshiekh et al.[35]. During 
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learning, when an agent discovers that the current action is unsafe, it triggers shielding and uses an alternative 
action to cover the current action to ensure safety. Jeddi et al. [36] proposed a memory-augmented Lyapunov-based 
SRL model that enables agents to always meet the safety constraints of the environment. Zhou et al. [37] adopted a 
simplified system model to establish an SRL framework and effectively learned low-dimensional representations of 
safe regions through data-driven methods to obtain more accurate safe estimates, which expanded the applicability 
of the SRL framework.

In addition, RLs require a reward function to provide feedback [38], and learning performance largely depends on the 
design of the reward function [39]. Generally, reward functions are divided into two types: sparse rewards and dense 
rewards. The sparse reward function provides reward feedback only when completing tasks; therefore, it has strong 
anti-interference ability and can be made consistent with the task objectives [40–42]. When there are enough successful 
samples to provide reward feedback, the agent can learn the global optimal strategy [43]. However, in the early stage, 
its efficiency is relatively low. If the task is not completed, the agent will only receive samples with the same penalty 
reward, which makes it difficult for the algorithm to learn good strategies from these bad data. A dense reward function 
usually provides specific feedback for each state of the agent in a timely manner to distinguish different actions [44], 
which can maintain the continuity of learning and quickly guide the agent to approach high-value states. However, 
when designing a dense reward function, it is necessary to fully consider the possible interference from noise, as it is 
susceptible to interference from noise signals that may propagate and amplify through the Bellman equation [45, 46].

In summary, the PMP has limitations when dealing with TTO problems with hard constraints such as track slope and 
speed limitations. The RLs can obtain rewards through the constant interaction between agents and the environment to 
guide the continuous evolution of the algorithm. Therefore, it can well adapt to complex environmental constraints and 
has good generalization ability. The PPO algorithm, a typical RLs, adopt the mode of limiting strategy update amplitude, 
which enables it to maintain a high sample efficiency while effectively improving the stability and efficiency of training. 
Then, the SRL can effectively improve the soft constraint, which punishes state-action pairs that exceed the constraint, 
resulting in low sampling efficiency, a slow learning speed, and even breaking the constraints and obtaining the train 
running track beyond the safety limit.

Therefore, this paper proposes a PPO based safety reinforcement learning framework (S-PPO) for the train trajectory 
optimization, including a safe action rechoosing mechanism (SARM) and a relaxed dynamic reward mechanism (RDRM) 
combining a relaxed sparse reward and a dynamic dense reward. The SARM is proposed to guarantee both the safety 
of the learning process and the final result. The state transition process of the agent is evaluated by environmental 
knowledge, and when it is found that the agent’s behavior exceeds the safety constraints, a new action is reselected 
to ensure that the next state reached by the agent always meets safety constraints, effectively improving the sampling 
efficiency. Notably, the SARM may be triggered at the beginning or middle of a state transition. The RDRM is designed 
to balance the potential convergence stability issues that the SARM may bring. The relaxed sparse rewards are obtained 
through extended planned trip time constraints, which makes it easier for the learning system to obtain samples that 
meet these constraints, greatly reducing the risk of the algorithm falling into local optima. The dynamic dense reward is 
a dynamic balance coefficient based on the initial velocity of the state, and is used to balance the contribution of running 
time and energy consumption to obtaining rewards in different states.

The remainder of this paper is organized as follows. In Sect. 2, the train operation model and the Markov decision 
process model of the train operation are formulated. In Sect. 3, we propose the S-PPO with the SARM and the RDRM for 
the TTO. In Sect. 4, simulations based on train and track data between Jiugong Station and Yizhuangqiao Station on the 
Beijing Metro Yizhuang Line verify the effectiveness of the proposed SVRDE and the energy efficiency of the proposed 
algorithm. In Sect. 5, conclusions are given.

2  Model construction

2.1  Basic train operation model construction

When studying the optimal operation of trains, a single-particle model [4, 47, 48] is always used to construct the kinematic 
system of trains. Assume that a train moves from the starting point x = 0 to the endpoint x = X  . The running time 
t = t(x) ∈ [0, T ] and speed v = v(x) ∈ [0, V ] are used as the dependent variables of the model. Then, the train operation 
model can be expressed as follows:
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where M is the mass of the train. f (v) > 0 and b(v) > 0 represent the maximum traction force and maximum braking force, 
respectively. w0(v) > 0 expresses the resistance produced by friction and wi(x) is the resistance generated by gradients. 
�f  and �b are the coefficients of traction and braking force utilization, respectively, must satisfy the constraint:

It is worth noting that the single-particle model ignores the length of the train. When the train passes the gradient 
transformation points, the model cannot accurately express the force process, and there will be some bias in the description of 
the train operation. The size of the bias is related to wi(x) and the train length. Therefore, the single-particle model is generally 
established with the train center point as the reference point, which effectively reduces this bias and keeps its impact on the 
train within a tolerable range. Meanwhile, to transform TTO into an Markov decision process (MDP), this paper also ignores 
the impact of this bias.

The energy consumption E is an important indicator for measuring train operation trajectory control and can be expressed 
as:

The Hamiltonian function can be defined as:

The Lagrangian function is represented as:

where �1 ≥ 0, �2 ≥ 0, �3 ≥ 0, �4 ≥ 0, �5 ≥ 0 are all Lagrangian multipliers and the adjoint variables must satisfy the 
following:

According to the Karush–Kuhn–Tucker (KKT) condition, it can be concluded that

The complementary relaxation conditions are as follows:

(1)
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It can be seen that �2 has two critical values: �2 = v, �2 = 0 . According to Pontryagin’s maximum principle, five different 
conditions need to be considered to determine the control laws �f  and �b such that the Hamiltonian function can reach 
the maximum value in the feasible region.

Condition 1: If �2 > v , since f (v) > 0 , according to Eq. (7), 𝜌1 < 𝜌2 . According to (10), due to �1, �2 ≥ 0 , �1 = 0 and 𝜌2 > 0 
can be obtained; then, �f = 1 . Similarly, according to (8), 𝜌3 − 𝜌4 > 0 can be obtained; since �3�b = �4(1 − �b) = 0 , �b = 0 . 
The train operates with maximum traction force (MT).

Condition 2: If �2 = v , according to Eq. (8), it is easy to find that �3 − �4 = b(v) ≥ 0 ; and according to Eq. (10), 0 ≤ �f ≤ 1 
and �b = 0.

When �2 = v , we can obtain equation d�2
dx

=
dv

dx
 and substitute Eqs. (1), (6) and (9) into it and simplify them:

In this condition, the speed is held at a certain value v = vc [ vc is the positive solution of Eq. (11)]. This indicates that 
the train operates at a constant speed with only partial traction force, which is called traction cruising (CR-T).

Condition 3: If 0 < �2 < v , it can be inferred that 𝜌1 > 𝜌2 and 𝜌3 > 𝜌4 according to (7) and (8), respectively. Then, 
according to (10), we can obtain �f = �b = 0 . Under these conditions, both the traction and braking forces of the train 
are zero, which is called coasting (CO).

Condition 4: If �2 = 0 , similar to condition 2, we can obtain 𝜌1 > 0 and �3 = �4 = 0 , corresponding to �f = 0 and 
0 ≤ �b ≤ 1.

When �2 = 0 , we can construct equations equation �2
v
= 0 and substitute Eq. (9):

If �5 = 0 , then Eq. (12) does not hold. If 𝜌5 > 0 , according to Eq. (10), v = V  , Eq. (12) may hold. The speed is held at 
a certain value v = V =

√
�1∕�5 . The train operates at a constant speed with only partial braking force; this process is 

called braking cruising (CR-B).
Condition 5: If �2 < 0 , as above, we can obtain 𝜌1 > 0 and 𝜌4 > 0 , so �f = 0 and �b = 1 . The train operates with a 

maximum braking force (MB).
Under both CR-T and CR-B operating conditions, trains can maintain a constant speed; these conditions are collectively 

referred to as cruising (CR).
In summary, the optimal train operation strategy consists of a sequence of four operation regimes: MT, CR, CO and 

MB. Therefore, The continuous train operation is simplified into these four actions: MT, CR, CO and MB, which can greatly 
reduce the dimension of the action space and make TTO easier to solve.

2.2  The Markov decision process of train operation

The MDP is a classical sequential decision process and can be defined as ⟨S,A,P,R, �⟩ , where S is the state space, A is 
the action space, P represents the state transfer function, R is the reward function, and � is the discount factor.

The agent and environment need to constantly interact, and the current action used in the interaction not only affects 
the immediate reward but also influences the subsequent state through future rewards. In step i, the agent’s state is to 
interact with the environment through actions, reach a new state, and receive a reward. At each step i  , an agent in state 
si ∈ S interacts through sampling action ai ∈ A and transitions to a new state si+1, receiving reward ri; the process of this state transition is denoted as 

si
ai

⟶

ri
si+1.

Here, the TTO problem is transformed into an MDP by the discretization. Common discretization methods include 
time discretization [49, 50], distance and velocity discretization [48], and distance discretization [18, 51].

The process of track discretization is shown in Fig. 1. Based on the gradient and the inflection point of the speed limit of 
the track, the track is discretized into H large sections (each with a length of lh, (h = 1, 2,⋯ ,H) ). To ensure accuracy, each 
large section needs to be further discretized. The maximum discretization step size of distance is Δl , and each large seg-
ment can be discretized into mh = ceil(lh∕Δl) small segments. The dimension of the discrete TTO problem is N =

∑H

h=1
mh.

The advantage of this discretization method is that it can ensure fixed properties (speed limit, slope and –if consid-
ered –curvature) for each small interval, and can solve the problems of unstable force and speed constraints on trains.

(11)(w�
0
(v)+�

5
)v2+�

1
= 0

(12)�5v
2−�1 = 0



Vol:.(1234567890)

Research Discover Applied Sciences           (2024) 6:469  | https://doi.org/10.1007/s42452-024-06159-8

To consider the adaptability of the algorithm to temporary speed limits, this paper also takes adjacent temporary speed 
limit information in front of the train as important state information when defining the state of the agent. Assume that the 
number of temporary speed limit intervals is Numsl ; the positions of the temporary speed limit intervals are 
[xslstart

j
, xslend

j
], j = 1, 2,⋯Numsl ; and the speed limit value is vslj . Then, the state is defined as follows:

where the speed difference from the temporary speed limit is Δvsli = vslj − vi.
The distance from the current position to the start of the next adjacent temporary speed limit interval is represented as 

follows:

Ti and Ei represent the running time and energy consumption, respectively, which can be calculated as follows:

In the interval [0, X ] , the total trip time of the train is TN ∈ [Tmin, Tmax] , and the total energy consumption is EN ∈ [Emin, Emax].
Notably, for the fixed-speed limit sections, the speed limit is lower than the maximum speed limit, and it has the same 

spatial distribution characteristics as the temporary speed limit during train operation tasks; therefore, this method is also 
applicable to these sections.

Based on Sect. 2.1, the action space can be defined as:

The deviation of trip time and energy consumption are important indicators for measuring the trajectory of train operation. 
Therefore, the objective function is defined as follows:

where � is the train operation strategies;JE = EN , JΔT = ||TN − TP
|| , and TP is the planned trip time.

The ideal total trip time should be consistent with the planned trip time, but in actual train control scenarios, there may 
be some deviation Δt between them, and small Δt is allowed. By simplifying the time deviation objective as a constraint:

The TTO problem can be transformed into a single-objective optimization problem, and objective function is:

(13)si = (xi , vi ,Δxsli ,Δvsli , Ti , Ei), si ∈ S

(14)Δxslstart
i

=

{
xslstart − xi xi < xslstart

Numsl

0 xi ≥ xslstart
Numsl

(15)

⎧⎪⎪⎨⎪⎪⎩
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dx
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∫
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(17)argmin
�∗

J(�) = {JΔT (�), JE(�)}
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|| ≤ Δt

(19)argmin
�∗

J(�) = JE(�)

Fig. 1  The principle of track 
discretization
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3  The safety reinforcement learning framework

In this section, the PPO algorithm is introduced, and a safe action rechoosing mechanism and a relaxed dynamic 
reward function are proposed to improve the performance of the algorithm.

3.1  The PPO algorithm

PPO algorithm is a classic RL algorithm consisting of two networks, the actor network and the critic network, which 
can be defined by weights � and � , respectively. The actor network generates the probability distribution of possible 
actions, which is used to choose the best action. The critic network assesses the value of the current state and guides 
the network of actors to make better decisions. The PPO optimizes a clipped surrogate objective function using mini-
batch stochastic gradient ascent, which is given by

�i(�) =
�� (ai |si )

��old
(ai |si ) denotes the probability ratio between the previous and updated policies. � is the hyperparameter, 

represents the range for truncation. A��old (si ,ai) is an advantage function estimated by the generalized advantage 
estimation

where �i = ri + �V�(si+1) − V�(si).V�(si) is the value of state si and ri is the reward at i time step. U denotes the size of mini-
batch. � and � are discount factor and GAE parameter, respectively. clip( ⋅ ) is clip function that can prevent the disastrous 
performance loss caused by the high variance inherent in the strategy gradient method by conservatively optimizing 
the strategy. If A𝜋𝜃old (si ,ai)> 0 , �i(�) is cliped at 1 + � ; On the contrary, if A𝜋𝜃old (si ,ai)< 0 , then �i(�) is cliped at 1 − �.

At the end, the critic network and actor network are updated by:

3.2  Safe action rechoosing mechanism

In practical applications, the environment is often bounded. To ensure that each state transition satisfies the 
constraints of the environmental boundary, traditional RLs punish the state–action pairs that exceed the environ-
mental limit and keep the state unchanged, i.e., si

ai
⟶

ri
si , to correct unsafe states. This approach is called an unsafe 

state maintenance mechanism. This method of collecting data through trial and error to obtain the optimal strategy 
can incur significant costs and may even cause damage to the learning system during application. Therefore, this 
paper presents an S-PPO algorithm with SARM and RDRM based on the PPO by analyzing the characteristics of the 
TTO problem. The unsafe actions discovered during interactions with the environment are rechosen to improve the 
algorithm learning efficiency and stability. To ensure the safety of train operation, safety law must be met:

Where Vmax(x) is the actual speed limit curve generated by the automatic train protection system (ATP).
However, in reality, when the train speed approaches the speed limit, an inappropriate action may violate a safety 

law. There are two specific situations to describe:

(20)L(𝜃) = �̂
[
min

(
𝜌i(𝜃)A

𝜋𝜃old
(
si , ai

)
, clip

(
𝜌i(𝜃), 1 − 𝜀, 1 + 𝜀

)
A
𝜋𝜃old

(
si , ai

))]]

(21)A
��old (s, a) = �i + (��)�i+1 +⋯ + (��)U−i�U

(22)L(𝜔) = �̂

[(
V𝜔(si) − V̂i

)2]
, where V̂i =

U∑
j=i

𝛾 j−i rj

(23)�new ← �now − �c ⋅ ∇�L(�)

(24)�new ← �now + �a ⋅ ∇�L(�)

(25)v(x) < Vmax(x), x ∈ [xi , xi+1]
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Situation 1: In the constant speed limit interval, as shown in Fig. 2, when the train’s speed v(xi) approaches the 

speed limit Vmax(xi) in a state si and action ai = {MT} , e.g., si
MT
⟶ sMT

i+1
 , then vMT (xi+1) > Vmax(xi+1) , which violates safety 

law (25). However, if the action can be rechosen as ai ∈ {CR,CO,MB} at point A ( Vmax(xA) − Δv ≤ v(xA) < Vmax(xA) , 
where Δv  is the allowable error for approaching the speed limit), then the corresponding state transitions to 

si
CR,CO,MB
⟶ sMT

i+1
, sCO

i+1
, sMB

i+1
 and the speed meets condition (25), which can ensure the safety of the train.

Situation 2: In the braking speed limit interval, as shown in Fig. 3, when the train’s speed v(xi) approaches the 
speed limit Vmax(xi) in a state si and action ai ∈ {MT ,CR,CO} , if the speed remains constant within the interval and 
transitions to the next state si+1 ∈ {sMT

i+1
, sCR

i+1
, sCO

i+1
} , the corresponding speed v∗ > Vmax(xi+1), v

∗ ∈ {vMT , vCR , vCO} , does 
not comply with safety law (25). If the actions at points A, B, and C can be reset, it can ensure that si+1 = {sMB

i+1
} meets 

the requirements of (25).
Specifically, in S-PPO, as shown in Fig. 4, the probability distribution PdistA of each action in action space A can be 

generated based on the policy network �(⋅|si ;�now) . The action ai sampled based on the probability distribution PdistA 

Fig. 2  Rechoosing plan for a 
constant speedlimit interval

xi xi+1 x

Vmax

MT

A

v

si+1MT

v
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Fig. 3  Rechoosing plan for a 
braking speed limit interval
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is used to interact with the environment. Environmental knowledge is used to evaluate the safety of state–action 
pairs, and the safety judgment coefficient is �sd.

If �sd = 1 , continuing to take the action ai will cause the train to exceed the speed limit, which does not satisfy the safety 
law. Therefore, the SARM will be triggered. To prevent the new action a′

i
 after rechoosing from being consistent with 

the original action ai , it is necessary to remove unsafe actions and reconstruct the action space A′ ( A� = A − ai ). Then, 
the probability distribution of the remaining actions is normalized to obtain the reconstructed probability distribution 
PdistA′ , which is used to obtain a new action a′

i
 . Therefore, when performing the SARM, new actions are sampled based 

on PdistA′ . The actions with higher adoption probabilities can have more opportunities to be reselected. The pseudocode 
of the safe action rechoosing mechanism is shown in algorithm 1.

Algorithm 1  SARM

3.3  Relaxed dynamic reward function construction

The performance of RL agent’s learning largely depended on the reward function design. In [16], a dense reward strategy 
has been designed, which punishes unsafe operations and encouraging the release of air brakes under specific condi-
tions through a positive reward. [30] constructs a sparse reward, which the system gives a large immediate reward to 
agent when the train reaches the final position, otherwise the instantaneous reward obtained by the system agent is 
always 0. Lin et al. [52] and Haung et al. [53] adopt a weighted average approach to incorporate multiple objectives into 
the reward function.

This paper combines the advantages of sparse rewards and dense rewards to design a reward function, called the 
RDRM, which includes the relaxed sparse reward and the dynamic dense reward. The planned trip time is limited to a 
narrow range, which makes it difficult for the algorithm to collect samples that meet the constraints during learning. The 
relaxed sparse reward function is established to increase the probability of the agent completing tasks by relaxing the 
time constraints of the train operation plan, which can enable the agent to obtain more successful samples and accelerate 
the speed of learning the optimal strategy. Furthermore, the dynamic dense reward function is established based on 
the average planned speed of the train, which can balance the contributions of time rewards and energy consumption 
rewards according to the states of different trains and provide better feedback.

3.3.1  The relaxed sparse reward

In the iterative learning process, exploring successful strategies requires meeting time constraints ||TN(�) − TP
|| ≤ Δt . 

The small Δt makes it difficult for the algorithm to obtain successful experience to train the learning network, seriously 

(26)𝜉sd =

{
0 v(x) ≤ Vmax(x)

1 v(x) > Vmax(x)
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affecting the learning efficiency of the network. Therefore, it is necessary to relax the time constraint to improve the 
probability of successful strategy acquisition during the algorithm exploration process.

According to this conclusion, if TN(�∗) = TP , we can propose several typical optimal strategies �∗
k
, k = 1, 2, 3, 4 and 

T 1
P
< T 2

P
< T 3

P
< T 4

P
 . The trajectories are shown in Fig. 5 and Table 1. According to Eqs. (15), the train’s energy consump-

tion can be expressed as:

where EMT and ECR−T are the maximum traction energy consumption and traction cruise energy consumption, respec-
tively; m and n represent the numbers of sections using maximum traction and traction cruising, respectively. The 
trip times for trains to maintain MT in different strategies are T 1

MT
= T 2

MT
= T 3

MT
> T 4

MT
 , and the energy consumption is 

E1
MT

= E2
MT

= E3
MT

> E4
MT

 . In the CR-T stage, T 1
CR−T

> T 2
CR−T

> T 3
CR−T

= T 4
CR−T

 and E1
CR−T

> E2
CR−T

> E3
CR−T

= E4
CR−T

 . Therefore, it 

is easy to deduce J
𝜋∗
1

E
> J

𝜋∗
2

E
> J

𝜋∗
3

E
> J

𝜋∗
4

E
 . Furthermore, due to the negative correlation between TN(�∗) and the average 

speed v�∗ of the strategy, when v is higher, it is positively correlated with w0 . The higher the speed is, the more energy 
the train needs to consume to overcome resistance.

As a result, for an optimal train operation strategy �∗ , if TN(�∗) = TP , TP ∈ [Tmin, Tmax] , then TP is negatively correlated 
with the energy consumption of optimal strategy EN(�∗) for the TTO problem on a straight track. And we can draw 
the following:

When T�∗

N
∈ [Tmin, TP] ; J

�∗

E
(T�∗

N
) monotonically decreases, i.e.,min(J

�∗

E
) = J

�∗

E
(TP) , T

�∗

N
∈ (TP , Tmax] ; thus, the Gaussian 

function is adopted. Therefore, by relaxing Eq. (18), a train trip-time reward function RT  is constructed, as shown in 
Fig. 6.

(27)JE = EN = EMT + ECR−T =

m∑
i=1

∫
xi

xi−1

f (v)dx +

n∑
j=1

∫
xj

xj−1

�f f (v)dx =

m∑
i=1

∫
ti

ti−1

vf (v)dt +

n∑
j=1

∫
tj

tj−1

�f vf (v)dt

(28)argmin
�∗

J(�) = argmin
�∗

JE(�), T
N
(�) ∈ [Tmin, TP]

(29)RT =

{
500 TN ∈ [Tmin, TP]

500e−(TN−TP )
2∕20 TN ∈ (TP , Tmax]

Fig. 5  Schematic diagram of 
the optimal strategy trajec-
tories
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Table 1  Correspondence 
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and trajectory
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The energy consumption reward function RE reflects the energy consumption level of the train.

Therefore, the relaxed sparse reward function is represented as follows:

where � represents weighting factor for the trip time weight and energy consumption weight coefficients. An agent 
guided by sparse rewards can in principle have higher consistency with the task; thus, larger values of sparse_rN is needed 
to highlight the contribution of sparse rewards. In the TTO, the constraint of planning travel time needs to be strictly 
followed, so we pay more attention to time rewards. Therefore, this paper takes � = 0.6.

3.3.2  The dynamic dense reward

A dense reward can enhance the exploration ability of algorithms [39]. Based on two objective of time and energy 
consumption, we design an average dense reward function ave_r.

Here, the dense time reward function r
t
 should satisfy the planned travel time constraint.

The dense energy consumption reward function r
e
 should guide agents to approach the optimal strategy for energy 

consumption as well as possible.

where the planned average trip time is vp = X∕TP . Evp is the benchmark energy consumption, where the train accelerates 
to vp with MT, then moves to CR and MB, adopts coasting and completes all generated energy consumption steps. Making 
the energy consumption appropriately smaller than EN(�∗) is more beneficial for the algorithm learning process. Notably, 
the dense reward function must have the ability to guide the agent toward the optimal goal.

The larger the value of ri
t
 is, the more it helps the agent accelerate and save time. Similarly, the larger ri

e
 is, the more it 

helps the agent slow down and reduce energy consumption. In the initial stage, increasing the contribution of ri
t
 is more 

advantageous for agents to achieve higher speed. In contrast, in the final stage, when the speed v → 0 , increasing the 
contribution of ri

e
 is more advantageous. Moreover, considering the constraints of planned travel time, a linear balance 

benchmark function Fbal(x) is constructed based on the planned average trip time vp.

The dynamic balance coefficients �e and �t used to balance time rewards and energy consumption rewards.

The dynamic dense rewards are represented as follows:

(30)RE = 500e−(EN−Emin)∕(Emax−Emin)

(31)sparse_ri =

{
0 i < N

𝛽RT + (1 − 𝛽)RE i = N

(32)ave_ri =

{
𝛽ri

t
+ (1 − 𝛽)ri

e
i < N

𝛽RT + (1 − 𝛽)RE i = N

(33)ri
t
= e−(|Ti−TP |)∕TP

(34)ri
e
= e

−(|Ei−Evp |)∕Evp

(35)Fbal(x) = −
20

X
x +

X

TP
+ 5

(36)

⎧⎪⎪⎨⎪⎪⎩

�e =
vi − Fbal(xi)

Vmax(xi)
+ 0.5

�t = −
vi − Fbal(xi)

Vmax(xi)
+ 0.5
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The SARM reschoosing actions beyond the boundary, the agent is inevitably able to transition from one state to the 
new state with each iteration, rather than remaining in the current state. In training, the agent completes a episode 
after N iterations. Therefore, when i = N, only more accurate sparse rewards are used to guide the learning process. The 
relaxed dynamic reward function is

The pseudocode of S-PPO is shown in Algorithm 2.

Algorithm 2  The pseudocode of S-PPO

(37)dense_ri =

[
�e

�t

][
ri
e

ri
t

]

(38)Rewardi =

{
dense_ri i < N

sparse_ri i = N

Table 2  Static speed limit data 
of the track

Sequence Starting point (m) Endpoint (m) Speed 
limit 
(km/h)

1 0 130 54
2 130 1840 80
3 1840 1975 54
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4  Experimental simulation and analysis

We implement the proposed S-PPO method via three fully connected hidden layers with 120 hidden units, and the 
numbers of output layers of the strategy network and the value network are one and four, respectively. This simula-
tion is based on the line data from Jiugong Station to Yizhuangqiao Station on the Beijing Subway Yizhuang Line [28]. 
Table 2 shows the static speed limit data of Jiugong Station and Yizhuangqiao Station, and the slopes of the track are 
shown in Fig. 7. The proposed algorithm is implemented in Python on a computer with an Intel Core i7-10700 CPU 
@2.90 GHz and 32 GB RAM running Windows 10 × 64 Edition.

The parameters used in the algorithm are shown in Table 3. A smaller discretization step Δl can improve the 
accuracy of the results, but it also makes the calculation more complex. Therefore, this paper takes Δl = 30 (m), 
corresponding to which the track is discretized into N = 73 sub segments and takes Δt = 1 (s).

We follow the hyperparameters recommended by PPO [26] and set clipping rate � = 0.2 . And we set the discount 
factor to a higher value, � = 0.99 , which can encourage agents to focus more on long-term rewards. In addition, we 
set the mini-batch size to U = 40 and the Number of epochs n_epoch = 5. As the PPO algorithm is insensitive to the 
change in the learning rate, we always keep learning rates of critic network and actor network the same and select 
0.0001, 0.0003, and 0.0005 earning rates in the experiment. The experimental results are shown in Fig. 8. When learn-
ing rates is 0.0001, the convergence speed is relatively slow. The larger learning rate of 0.0005, although improving 
the convergence speed, also causes oscillations in the convergence curve in the later stages of iteration. Therefore, 
we choose a moderate learning rate of 0.0003 in this paper, which can achieve faster convergence speed and main-
tain a stable convergence curve.

Effectiveness Test: We compare the optimization effects of the S-PPO and the traditional PPO without safety protection 
measures on the TTO problem to verify the effectiveness of the SARM. A comparative experiment is conducted under 
three different reward functions, namely, the sparse reward function (31), the average dense reward function (32), and 
the relaxed dynamic reward function (38). The combination table numbers for the algorithms and rewards are shown in 
Table 4. Furthermore, we conducted a statistical analysis of the unsafe action counts of S-PPO and PPO with the relaxed 
dynamic reward (Max_ep = 5000) to further demonstrate the effectiveness of the safe action rechoose mechanism. In 

Fig. 7  The slope data of the 
track
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Table 3  The values of the 
parameters

Name Symbol Value

Learning rate of critic network �c 0.0003
Learning rate of actor network �a 0.0003
Discount factor � 0.99
GAE parameter � 0.95
Clipping rate � 0.2
Maximum number of episode Max_epis 5000
Number of epochs n_epochs 5
Mini-batch size U 40
Weighting factor � 0.6
Maximum discretization step size Δl 30 m
Planned trip time TP 130 s
Allowable time deviation Δt 1 s
Mass of the train M 1.94*105 kg
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addition, we compared the performance of S-PPO with two other excellent train operation methods (i.e. A3C [27], DQN 
[16]), as the train operation processes in these methods are all modeled as MDPs.

Universality Test: Generally, the most important factor affecting the train trajectory is the maximum speed constraint, 
which determines the basic shape of the train operation trajectory. In practical applications, trains often need to operate 
on speed limited tracks with different spatial characteristics. Therefore, to verify the performance of S-PPO on tracks with 
different speed limits, we randomly added speed limited sections with different characteristics on the original track to 
test its adaptability.

4.1  Effectiveness test

Due to the lack of a safety protection mechanism, the traditional PPO uses soft constraints to handle unsafe risks 
such as those exceeding environmental boundaries. Therefore, a penalty value needs to be set for such behavior, 
and in this experiment, the penalty value rpenalty = −1 is chosen. The convergence curves and the train trajectories of 
the reward of the S-PPO and the PPO algorithms for three different rewards are shown in Figs. 9 and 10, respectively. 
Table 5 presents the results of the energy consumption, total trip time, and time deviation with respect to the planned 
trip time for the S-PPO and PPO algorithms for three different rewards.

1. Figure 9 shows that the three combinations ①, ②, and ③ of the S-PPO algorithm converge to better reward values 
than the corresponding three combinations ④, ⑤, and ⑥ of the PPO algorithm. And, ① and ② converge faster 
and smoother than ④ and ⑤, respectively. Although ③ has poorer convergence speed and stability than ⑥. It can 
jump out of local optima in the later stage of iteration, causing continuous oscillation, which requires more itera-
tions (exceeding Max_ep) to reconverge to a stationary state and obtains a better train operation control model. The 
three combinations of ④, ⑤ and ⑥ all have significant oscillations in the early stages of training. This is because PPO 

Fig. 8  The slope data of the 
track
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Table 4  The combination 
table numbers for the 
algorithms and reward 
functions

Sequence Reward function Algorithm

① Relaxed dynamic reward (38) S-PPO
② Average dense reward (32) S-PPO
③ Sparse reward (31) S-PPO
④ Relaxed dynamic reward (38) PPO
⑤ Average dense reward (32) PPO
⑥ Sparse reward (31) PPO
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Fig. 9  The convergence curves S-PPO and PPO based on relaxed dynamic reward, average dense reward and sparse reward
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Fig. 10  The trajectories of train operating using S-PPO and PPO based on relaxed dynamic reward, average dense reward and sparse reward
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does not have a safe action protection mechanism. At the beginning of training, the learning system has not formed 
a relatively stable strategy model, making it easier for unsafe actions to occur near the environmental boundary, 
causing damage to the learning system. The three combinations of S-PPO with SARM ①, ②, and ③ can effectively 
avoid the disturbance of unsafe behavior during the training process, which enables the algorithm to better balance 
exploration and development and enhance the learning efficiency of the algorithm and the smoothness of the train-
ing process.

  In addition, the convergence curve of ① and ④ is the fastest and smoothest, followed by ② and ⑤, while the 
convergence process of ③ and ⑥ is slower and the fluctuation is relatively larger. Therefore, compared with average 
dense reward and sparse reward, relaxed dynamic reward can better adjust the scale of feedback according to differ-
ent state-action pairs information, enabling the algorithm to obtain sample information faster and more effectively 
and promote its learning process.

2. Figure 10 shows that the three trajectories of the S-PPO algorithm, ①, ②, and ③, have fewer operational changes 
and are smoother than the three trajectories of the PPO algorithm, ④, ⑤, and ⑥. ①, ②, and ③ are able to quickly 
increase the train speed with the MT in the early stage and then maintain the speed at a reasonable level through the 
MT, CR, and CO adjustments. Afterward, coasting control is adopted over the longer track space. Finally, when turn-
ing to the MB, the speeds of ① and ② are all less than 47 km/h, and ③ starts braking at a speed of 53.17 km/h, but 
undergoes several transitions between MB and CO until stopping. This indicates that for these three trajectories, less 
kinetic energy is consumed by braking, and more kinetic energy is used to overcome resistance. On the other hand, 
the three trajectories ④, ⑤, and ⑥ have a higher frequency of switching operations. In a relatively long distance of 
the track, the train maintains high speed through MT and CO. After switching to continuous CO, the distance traveled 
is shorter. The speed of three trajectories exceeds 54 km/h when switching to MB. This means that more energy is 
consumed by braking. Therefore, the energy consumption of three trajectories ①, ②, and ③ is lower than ④, ⑤, 
and ⑥, respectively.

3. This is also supported by Table 5, in which three important indicators the energy consumption EN(kw h), the total trip 
time TN(s), and the time deviation JΔt = ||TN − TP

||(s) are used to evaluate the train operation trajectory. The energy 
consumption corresponding to the train trajectories obtained by the S-PPO algorithm with the three rewards is 
21.13 kw h, 21.47 kw h and 22.06 kw h, and their deviation in trip time are also very small, with values of 0.06 s, 0.07 s 
and 0.21 s. The PPO algorithm yields energy consumption of 22.32 kw h, 22.41 kw h and 22.61 kw h, with trip time 
deviations of 0.04 s, 0.57 s and 0.02 s, respectively. The time deviations of the control strategies obtained by S-PPO 

Table 5  The results of the 
energy consumption EN , the 
total trip time TN , and the time 
deviation JΔt with respect to 
the planned trip time for the 
S-PPO and PPO algorithms for 
three different rewards

Algorithms Relaxed dynamic reward Average dense reward Sparse reward

EN TN JΔt EN TN JΔt EN TN JΔt

S-PPO 21.13 130.06 0.06 21.47 130.07 0.07 22.06 129.79 0.21
PPO 22.32 130.04 0.04 22.41 129.43 0.57 22.61 130.02 0.02

5.63% – < 1 s 4.37% – < 1 s 2.49% – < 1 s

Fig. 11  The result of unsafe 
action counts of S-PPO and 
PPO
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and PPO with different rewards are less than 1 s, which is within the allowable range. Compared to PPO, S-PPO with 
relaxed dynamic reward, average dense reward and sparse reward save energy consumption by 5.63%, 4.37%, and 
2.49%, respectively. Especially with the combination of S-PPO and relaxed dynamic reward, there is a considerable 
improvement in energy efficiency on a line with a total length of 1975 m. This further demonstrates that algorithms 
with relaxed dynamic rewards have better exploration ability than do those with sparse and average dense rewards.

4. The statistical analysis bar chart of the average unsafe action counts of S-PPO and PPO ten experiments is shown in 
Fig. 11, where parameter � is the unsafe action counts in each episode. It can be seen that S-PPO has a low level of 
unsafe action counts ( � ≤ 5 ) in 2209 episodes, accounting for 44.18%, much higher than PPO’s 622 episodes (12.44%). 
When 5 < 𝜒 ≤ 10 , S-PPO has slightly higher episodes than PPO, with 2598 episodes (51.96%) and 2248 episodes 
(44.96%), respectively. At high level unsafe action counts ( 10 < 𝜒 ≤ 15 , 15 < 𝜒 ≤ 20 and 𝜒 > 20 ), the number of 
episodes for S-PPO is much lower than PPO. As a result, S-PPO maintains a lower unsafe action counts for a episode 
throughout the entire iteration process, while PPO does the opposite. This viewpoint is also supported by Fig. 12 that 
is a moving average unsafe action counts curve of ten experiments for S-PPO and PPO. From Fig. 12, it can be seen 
that the unsafe action counts of PPO remain oscillating at a high level. However, the unsafe action counts of S-PPO 
experienced severe oscillations before the 1000 episodes and has been able to maintain a relatively low steady state 
since then.

  The higher proportion of low-level unsafe action counts and the lower proportion of high-level unsafe action 
counts indicate that the SARM, which can effectively limit the unsafe actions to a lower level and protect the learning 
process, is superior to the penalty mechanism based soft constraint method.

5. The convergence curves and train operating trajectories of the S-PPO, A3C, and DQN algorithms are shown in Figs. 13 
and 14, respectively. As shown in Fig. 13, in comparison with the A3C and DQN algorithms, the S-PPO algorithm 

Fig. 12  The comparison of 
average unsafe action counts 
of S-PPO and PPO
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curve comparsion among the 
three algorithm

0 1000 2000 3000 4000 5000

Episodes

0

100

200

300

400

500

600

R
e
w
a
rd

S-PPO

A3C

DQN



Vol:.(1234567890)

Research Discover Applied Sciences           (2024) 6:469  | https://doi.org/10.1007/s42452-024-06159-8

exhibits a quicker and smoother convergence, achieving superior reward values. In Fig. 14, the S-PPO algorithm’s 
trajectory minimizes the number of MT and MB, effectively reducing braking duration through extensive coasting. The 
performance metrics for S-PPO, A3C, and DQN are presented in Table 6. The S-PPO algorithm achieved a runtime of 
130.06 s on the track, maintaining a close tolerance of only 0.06 s from the planned trip time. Its energy consumption 
is 21.13 kw h, the lowest among the three algorithms. These results suggest that S-PPO exhibits superior performance 
in TTO problems.

In summary, the combination of the relaxed dynamic rewards and the SARM enhances the exploration and 
convergence capabilities of the S-PPO algorithm, which helps it obtain better train trajectories in TTO problems.

4.2  Universality test

Given that varying speed limit locations and the shape of speed limit curves significantly affect the trajectories of 
train operating, we have developed four different speed limit curves to assess the adaptability of S-PPO. The speed 
limit information is shown in Table 7. ① and ② denote the establishment of a single speed limit at the proximate and 
terminal positions along the track, respectively. ③ and ④, different speed limit combinations have been adopted. The 

Fig. 14  The trajectories of 
train operating comparsion 
among the three algorithm
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Table 6  The performance 
metrics of S-PPO, A3C, and 
DQN

Performance S-PPO A3C DQN

EN 21.13 21.65 24.03
TN 130.06 129.97 130.14
JΔt 0.06 0.03 0.14

Table 7  Speed limit 
information for the track

Sequence Starting point (m) Endpoint (m) Speed 
limit 
(km/h)

① 543 761 50
② 1115 1405 60
③ 851 1029 60

1029 1115 50
④ 700 851 60

1405 1620 60
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trajectories of trains under four different speed limits, achieved using S-PPO, A3C, and DQN algorithms, are depicted 
in Fig. 15. Correspondingly, detailed performance metrics are compiled in Table 8.

As shown in Fig. 15, train operating trajectories of the S-PPO, A3C, and DQN algorithms on four tracks with varying 
speed limits are presented. The corresponding performance metrics for these trajectories are outlined in Table 8. 
The trajectories of S-PPO exhibit consistent characteristics. Prior to reaching or surpassing speed limit starting point, 
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Fig. 15  The trajectories of train operating under various speed limit using S-PPO, A3C, and DQN

Table 8  Performance data 
under different speed limits

The best experimental result is shown in bold

Algorithms Performance Speed limits sequence

① ② ③ ④

S-PPO EN 25.96 21.86 25.57 23.81
TN 130.15 130.07 130.06 130.20
JΔt 0.15 0.07 0.06 0.20

A3C EN 27.37 22.33 26.56 26.01
TN 130.13 129.83 129.96 130.16
JΔt 0.13 0.17 0.04 0.16

DQN EN 31.26 23.30 28.76 27.63
TN 130.49 130.07 130.11 129.49
JΔt 0.49 0.07 0.11 0.51
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the train endeavors to increase its speed as much as possible, and then effectively employs CR and CO to maintain 
a reasonable speed level, significantly reducing energy losses due to MB. This aligns with the features of the train’s 
optimal control sequence. This is consistent with the characteristics of the optimal control sequence of the train. 
S-PPO operates with energy consumption of 25.96, 21.86, 25.57, and 23.81 respectively on ①, ②, ③, and ④, dem-
onstrating better energy-saving efficiency than A3C and DQN, and has a sufficiently small deviation in operating 
time ( JΔt ≤ 0.2s ). The train operation trajectories of A3C on four tracks with varying speed limits has fewer action 
transitions. Its time deviation on ①, ③, and ④ is superior to that of S-PPO, albeit within a narrow margin of 0.04. 
Nevertheless, its energy-saving efficiency significantly trails that of S-PPO. DQN has the worst energy-saving effect 
and operating time deviation.

Therefore, S-PPO can adapt well to different speed limits and obtain satisfactory train operation trajectories, with 
strong universality.

5  Conclusion

This paper presents an S-PPO algorithm to solve the problem that the soft constraints in reinforcement learning cannot 
fully protect the learning process from interference and damage caused by actions that exceed safety limits. The SARM has 
been designed to ensure the agent remains within safe boundaries during the learning process, and combined with the 
RDRM to enhance the algorithm’s exploration ability. The simulation experiment results confirm that these mechanisms 
significantly improve algorithm stability, making the learning process more efficient while meeting environmental safety 
constraints. In addition, series of experiments have also demonstrated that the S-PPO performs well under various 
speed limit conditions and achieves effective train operation strategies, indicating its strong generalization ability and 
adaptability to energy-saving optimization challenges in diverse environments. It holds broad application prospects in 
practical scenarios.

In future research, we will continue to explore the adaptability of the S-PPO algorithm under dynamic speed limit 
conditions. Specifically, we will investigate how to optimize the algorithm’s performance to meet speed limit requirements 
in emergency situations as speed limits continuously change. Additionally, we will also explore the application of the 
S-PPO algorithm in other areas with security requirements, such as drone navigation and intelligent transportation. 
Through these studies, we aim to provide more effective and stable methods for the application of reinforcement learning 
in security-critical areas.
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