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Abstract
This article investigates the path-following control problem of an autonomous ground vehicle (AGV) with unknown 
external disturbances and input deadzones. Neural networks are used to estimate unknown external disturbances, dead 
zones, and nonlinear functions. The minimum learning parameter scheme is employed to adjust the neural network 
to reduce the computational load. A backstepping control is proposed to facilitate the tracking of the target path. The 
steady-state path-following error is decreased by adding an integral error term to the backstepping controller. Command 
filtering is employed to address the explosion of the complexity issue of the conventional backstepping approach, and 
the filtering error is compensated via an auxiliary signal. Lyapunov stability study indicates that the AGV closed-loop 
system is bounded by the proposed control with reasonable accuracy. At last, simulations are given to demonstrate the 
potential of the proposed scheme in path-following control.

Article Highlights

• An integral backstepping control with neural network is proposed for path tracking of an autonomous ground vehicle 
with input deadzones and external disturbances.

• A command filter is used to estimate the derivative of the virtual controller to avoid the problem of “explosion of the 
complexity”.

• The computational burden of the controller is lessened by using a single parameter to adjust the neural network 
instead of the whole weight vector.
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1 Introduction

The advancement of computing and sensing has made the field of autonomous driving a hot research area in recent 
years [1]. Path following, as an indispensable technological aspect of autonomous driving, aims to ensure that the 
vehicle adheres to the predetermined reference path [2]. The autonomous ground vehicle presents itself as a promising 
architectural solution for the implementation of path following, due to its notable attributes of increased adaptability, 
maneuverability, and efficient transmission. Nonetheless, the nonlinear dynamics and the under-actuated characteristics 
of AGV pose considerable challenges to the task of path following control [3]. Hence, there exists a pressing need for 
further examination and exploration of the control scheme related to path following in the context of AGV.

In the past years, several path tracking control strategies have been proposed for the AGV to achieve the desired path 
tracking performance. The control strategies for the AGV can be broadly classified as linear and nonlinear [4]. For exam-
ple, linearizing the model of the AGV around an operating point enables the application of linear quadratic regulator 
control [5], linear quadratic Gaussian control [6], proportional-integral-derivative controller [7], model predictive control 
[8], model predictive control based on proportional-integral-derivative controller [9], linear matrix inequality-based 
control [10], and H∞ control [11]. However, these linear controllers are only valid around the operating point where the 
AGV model is linearized.

The limitations of linear controllers are usually overcome by using nonlinear controllers with global operating points. 
Tao et al. [12] applied a sliding mode control for the path tracking of an AGV with uncertainties. In [13], a finite-time 
robust sliding mode path following control was studied for a linearized AGV dynamic model. In [14], a particle swamp 
optimization algorithm was used to optimize the gains of the sliding mode controller to improve path tracking accuracy 
and robustness. In [15], immersion and invariance control is proposed to minimize tracking errors. In [16], a recursive 
backstepping control is developed for path tracking of AGV with asymptotic convergence. In [17], robust backstepping 
control is used to achieve trajectory tracking and counter uncertainties. In [18], backstepping and sliding mode control-
lers with optimal gains were designed for the kinematic and dynamic subsystems of the AGV to realize the trajectory 
following. In [19], a robust sliding mode control is proposed for an AGV with state constraints to follow the desired 
trajectory. In [20], a passivity-based lateral control is proposed for the AGV. In [21], backstepping sliding mode control 
is utilized to achieve automatic steering control of the AGV. In [22], a backstepping controller with optimal gains is used 
to follow the trajectory and avoid obstacles. In [23], a robust differential flatness-based control protocol is proposed to 
realize path tracking of the AGV.

To enhance the robustness of the controllers against disturbances and parametric uncertainties, it is essential to incor-
porate estimation mechanisms into the controllers to compensate for the disturbances. In [24], adaptive backstepping 
control is designed for path tracking and estimating the uncertain parameters of the AGV. In [25], adaptive terminal sliding 
mode control is proposed for the AGV to follow the target path while accounting for parametric perturbations. Baosen 
et al. [26] designed a recursive integral terminal sliding mode control scheme with adaptive gains to realize accurate path 
following. A disturbance observer-based sliding mode control is employed in [27] to estimate the disturbances and steer 
the AGV to track the desired trajectory. In [28], a nonsingular terminal sliding mode controller with disturbance observer 
was designed for the AGV path following. In [29], a robust adaptive sliding mode path tracking control law optimized with 
particle swamp optimization was formulated for the AGV. In [30], an observer-based differential flatness-based control 
has been suggested for path tracking of an AGV subjected to disturbances.

Recently, researchers have been using the universal approximating capability of fuzzy logic systems and neural net-
works to approximate unknown and continuous nonlinear functions and external disturbances [31]. Since fuzzy logic 
systems require heuristic knowledge of the plants and the formation of large sets of fuzzy rules and membership func-
tions, neural networks are preferred for approximating nonlinear functions. In [32], a neural network-based control has 
been proposed for steering control of AGV to keep tracking the target path. In [33], a neural network-based super-twisting 
sliding mode control has been designed for an AGV subjected to parametric variations. In [34], the authors presented a 
chattering-free sliding mode control with a neural network approximator to minimize the impact of unknown perturba-
tions. In [35], a neuro-adaptive sliding mode control strategy has been proposed for uncertain AGV. In [36], a nonsingular 
terminal sliding mode control with an adaptive recurrent neural network has been designed for path tracking of an 
AGV. Jin et al. [37] utilized adaptive backstepping variable structure control with a neural estimator to tackle vehicle 
trajectory following deviation and suppress environmental disturbances. However, updating the weights of the neural 
network’s hidden layer leads to a high computation load. The high computational burden will cause some delays in the 
control action and slow convergence speed. To lessen the computational burden and enhance the control performance, 
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a minimum parameter learning approach is employed to replace the neural network’s weight vector with its norm which 
is a single parameter [38].

Whilst the path tracking control techniques had shown promising results in the previously mentioned studies, the 
controller synthesis did not consider the actuators’ nonstructured nonlinear characteristics. The actuator nonlinearities 
such as backlash, deadzone, and saturation can degrade the path following performance or even lead to instability of 
the control system [39, 40]. In [41], an observer-based path tracking control based on convex optimization has been 
proposed for an AGV with Input Saturation. In [42], an adaptive path tracking control problem of an AGV with input 
saturation has been studied. In [43], an adaptive path tracking control problem of an AGV with steering angle backlash 
has been studied. The authors in [44] proposed a gain-scheduling control of an AGV with steering backlash. In [45], the 
model of the backlash in the steering system is first identified using the recursive identification algorithm and then an 
appropriate controller is designed.

Although the above works were wonderful, the path following control problem of the AGV with input deadzone has 
rarely been addressed [46, 47]. When the control input encounters a deadzone, the actuator output signal is blocked, 
which deteriorates the accuracy of the AGV path tracking. In [46], an observer-based state feedback control law has 
been designed to take care of the deadzone. In [47] an adaptive sliding mode control was proposed to estimate and 
compensate the upper bounds of the deadzone parameters. Considering the low volume of literature that investigated 
the path following control of AGV with deadzone, this paper is motivated to contribute in this direction to improve the 
path tracking accuracy.

In recent years, the command filtered scheme has been widely used to solve the problem of the “explosion of the 
complexity” associated with backstepping control. The command filter estimates the time-derivative of the virtual error 
while the associated filtering error is compensated through an auxiliary error signal [48]. Considering the complexity of 
the AGV kinematic model in the presence of disturbances and input deadzone, command filtered scheme is essential.

Motivated by the above discussion, this paper aims to develop a neural network-based backstepping control with a 
command filter and integral error action for path following control of AGV subjected to input deadzone. Compared with 
the existing path following control methods for AGV, this article considers the problems of external disturbances, the 
explosion of the complexity, and the input deadzone simultaneously, and incorporates the integral error term to improve 
the path following performances. Considering that it is difficult to determine the upper bounds of external disturbances 
and nonlinear dynamics in practical applications, neural networks are used to approximate them. The neural networks’ 
weights are adjusted using the minimum parameter learning scheme to lighten the computational burden. The low 
computational complexity of the controller makes its practical implementation easier. In addition, the knowledge of 
the AGVs’ nonlinearities or external disturbances is no longer required. The contributions of this paper compared to the 
existing path following control of the AGV are summarized as follows:

• Different from the studies [46, 47] where an observer-based state feedback controller and adaptive sliding mode 
controller were designed respectively to compensate the actuator deadzone and achieve the AGV path tracking, a 
neural network-based backstepping controller is proposed.

• Unlike the backstepping path following control in [16–18, 24], a command filter is used to tackle the "explosion of 
complexity" problem of the conventional backstepping arising due to successive differentiation of the virtual control 
input. The filtering errors are removed with the aid of filtered-error compensation signals to enhance the control 
accuracy. Moreover, contrary to [16–18, 24], an integral error term is added to the proposed backstepping controller 
to reduce steady-state tracking errors and enhance the tracking accuracy.

• In contrast to the neural networks in [31–37] where the whole weight vector is updated, in this paper, a single param-
eter that corresponds to the norm of the weight vector of the neural network is updated. This significantly reduces 
the computational load and improves the convergence speed of the controller.

• Simulation results and comparison studies are provided to justify the superior performance of the proposed controller 
compared to existing path tracking controllers.

The remaining sections of the paper are arranged as follows: The problem formulation is described in Sect. 2. The for-
mulation of the proposed path following controller is presented in Sect. 3. The Simulation results and discussions are 
provided in Sect. 4. Finally, the conclusions of the paper are given in Sect. 5.
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2  Problem formulation

2.1  Kinematic model of the AGV

This article considers a two-wheeled mobile robot as the AGV as shown in Fig. 1. The AGV modeled disregards the side-
slip angle, the AGV dynamics and tire models. The AGV kinematic model is widely used in the literature and it is described 
by the following equations [8, 22].

where x and y present the location of the AGV, v and � denote the linear and angular (yaw rate) velocities of the AGV, 
respectively, and � is the orientation angle.

Due to the fact that (1) is non-holonomic, a new reference point 
(
xn, yn

)
 is defined with (x, y) being the inertial position. 

The new coordinate transforms (1) into a holonomic system as follows [49]:

where L is the wheelbase.
Differentiating (2) twice with respect to time gives:

We let

Therefore, the holonomic model of the AGV is derives as:

(1)

⎧
⎪⎨⎪⎩

ẋ = v cos𝜓

ẏ = v sin𝜓

�̇� = 𝜔

(2)

{
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yn = y + L sin�

(3)

[
ẍn
ÿn

]
=

[
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sin𝜓 L cos𝜓

][
v̇

�̇�

]

+

[
−v𝜔 sin𝜓−L𝜔2 cos𝜓

v𝜔 cos𝜓−L𝜔2 sin𝜓
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�

Fig. 1  Schematic diagram of 
the AGV
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where ux and uy denote the new control inputs under deadzone, f1 and f2 are non-linear functions.
By considering the unknown lumped uncertainties and external disturbance, the dynamic equation of the orientation 

angle and (5) can be rewritten as follows:

The vectors of the dynamic states, control inputs under deadzone, and lumped disturbances are given by (7), (8), and 
(10), respectively, as:

2.2  Dead‑zone

When the input of a mechanical system falls into the deadzone effect, the actuator signals are blocked which leads to 
the loss of control performance and system stability. The model of the deadzone output can be written as [50]:

where sil and sir are the deadzone thresholds, Πil and Πir are the deadzone slopes. Equation (11) can be transformed into 
the following form:

where Ū∈ ℝ
2 is the vector of the actual control inputs without deadzone, d(Ū)∈ ℝ

2 is the vector of disturbance-like terms, 
Π = diag{Πx , Πy} ∈ ℝ

2×2 is a diagonal matrix with each element defined as follows:

It is easy to see that

(5)

[
ẍn
ÿn

]
=

[
ux
uy

]
+

[
f1
f2

]

(6)

⎧
⎪⎨⎪⎩

�̇�1 = 𝜒2

�̇�2 = F(𝜒) + U + 𝛿𝜒
�̇� = 𝜔 + 𝛿𝜓

(7)

{
𝜒1 =

[
xn yn

]T
𝜒2 =

[
ẋn ẏn

]T

(8)U =
[
ux uy

]T

(9)F(�) =
[
f1 f2

]T

(10)�� =
[
�x �y

]T

(11)
ui =

⎧
⎪⎨⎪⎩

Πir

�
ūi(t) − sir

�
, if ūi(t) ≥ sir

0, if −sil < ūi(t) < sir
Πil

�
ūi(t) + sil

�
, if ūi(t) ≤ −sil

i = (x, y)

(12)U = ΠŪ + d(Ū)

(13)Πi =

{
Πir , if ūi(t) > 0

Πil , if ūi(t) ≤ 0
i = (x, y)

(14)d(ūi) =

⎧⎪⎨⎪⎩

−Πir sir , if ūi(t) ≥ sir
−Πi(t)ūi(t), if −sil < ūi(t) < sir
Πil sil , if ūi(t) ≤ −sil
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where Π
i
= min

(
Πir ,Πil

)
 , Π̄i = max

(
Πir ,Πil

)
 , d

i
= min

(
Πir sir ,Πil sil

)
 , and d̄i = max

(
Πir sir ,Πil sil

)
Similar to (12), the deadzone output of the orientation angle can be written as:

where

2.3  Neural network approximation

A radial basis function neural network is a powerful approximation algorithm commonly utilized in the control of non-
linear systems. The approximation equation of the RBFNN is given by:

where � =
[
�1,�2,… ,�q

]T
∈ ℝ

q is the input vector, W =
[
W1,W2,… ,WN

]T
∈ ℝ

N is a weight vector, N is the number 
of nodes in the hidden layer, �(�) is the approximation error satisfying ‖𝜀(𝜒)‖ ≤ �̄� , with �̄� being a positive constant, 

S(�) =
[
S1(�), S2(�),… , SN(�)

]T
∈ ℝ

N is the vector of the Gaussian function with Si(�) expressed as

where �̄� and � represent the center and width of the Gaussian function.

3  Design of the path following controller

Step l: The path following error is defined as:

where �1d = [xd yd]
T is the vector of the target trajectories, �1∈ ℝ

2 stands for the output vector of the command filter 
which is the estimate of the virtual control inputs �1∈ ℝ

2 . The virtual controller �1 will be designed later.
To tackle the issue of “explosion of complexity” associated with the conventional backstepping method as a result of 

continuous differentiation of �1 , a command filter is designed as follows:

where 𝜔n > 0 represents the undamped natural frequency, Ψ ∈ (0, 1] denotes the damping ratio, the initial condition of 
the filter satisfies �1(0) = �1(0),�2(0) = [0 0]T , and ‖‖�1 − �1

‖‖ ≤ � with 𝜂 > 0.

(15)

{
Π

i
≤ ||Πi

|| ≤ Π̄i

d
i
≤ |||d

(
ūi
)||| ≤ d̄i

(16)𝜔 = Π𝜓�̄� + d(�̄�)

(17)Π𝜓 =

{
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⎧
⎪⎨⎪⎩

−Π𝜓r s𝜓r , if �̄�(t) ≥ s𝜓r

−m(t)�̄�(t), if −s𝜓 l < �̄�(t) < s𝜓r

Π𝜓 l s𝜓 l , if �̄�(t) ≤ −s𝜓 l .

(19)f (�) = WTS(�) + �(�)

(20)Si(𝜒) = exp

(
−(𝜒 − �̄�)T (𝜒 − �̄�)

𝜂

)
, i = 1, 2,… ,N

(21)

{
Z1 = �1 − �1d =

[
z1 z3

]T
Z2 = �2 − �1 =

[
z2 z4

]T

(22)

{
�̇�1 = 𝜔n𝜙2

�̇�2 = −2Ψ𝜔n𝜙2 − 𝜔2
n

(
𝜙1 − 𝛼1

)
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The filtering error �1 − �1 is compensated by an error compensation signal designed as follows:

where �1, �2 ∈ ℝ
2 , �1(0) = �2(0) = [0 0]T  , and k1, k2 > 0 are constants chosen such that ‖�1� and ‖�2‖ are bounded. The 

path following errors are rewritten as:

where Z̄1, Z̄2 ∈ ℝ
2 are new error variables. An integral term �1 ∈ ℝ

2 is added to the system to lessen the steady-state 
errors in the presence of deadzone and external disturbances.

Select a candidate Lyapunov as follows:

where Λ > 0 , and the time-derivative of L1 gives

Inserting (24) into (27) leads to:

From (24), we can have the following:

Inserting (29) into (28) gives:

From (21) and (24), we can have �2 = Z2 + �1 and Z2 = Z̄2 + 𝜉2 , respectively. Then, (30) can be evaluated as follows:

Using the error compensating signal (23), (31) leads to:

The virtual control law is designed as 𝛼1 = −k1Z1 + �̇�1d − Λ𝛽1 . Inserting it into (32) gives the following equation:

Choose k1 and Λ such that L̇1 ≤ 0 is realized.
Step 2: Design a candidate Lyapunov function L2 as follows:

(23)

{
�̇�1 = 𝜉2 +

(
𝜙1 − 𝛼1

)
− k1𝜉1

�̇�2 = −k2𝜉2

(24)

{
Z̄1 = Z1 − 𝜉1
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(25)�1 = ∫
t

0

Z1(�)d�

(26)L1 =
1

2
Z̄2
1
+

1

2
Λ𝛽2

1

(27)L̇1 = Z̄1
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(28)L̇1 = Z̄1

(
̇̄Z1 + Λ𝛽1

)
+ Λ𝛽1𝜉1

(29)
̇̄Z1 = Ż1 − �̇�1 = �̇�1 − �̇�1d − �̇�1

= 𝜒2 − �̇�1d − �̇�1

(30)L̇1 = Z̄1
(
𝜒2 − �̇�1d − �̇�1 + Λ𝛽1

)
+ Λ𝛽1𝜉1

(31)

L̇1 = Z̄1
(
Z2 + 𝜙1 − �̇�1d − �̇�1 + Λ𝛽1

)
+ Λ𝛽1𝜉1

= Z̄1
(
Z̄2 + 𝜉2 + 𝛼1 +

(
𝜙1 − 𝛼1

)
− �̇�1d − �̇�1

+Λ𝛽1
)
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(32)L̇1 = Z̄1
(
Z̄2 + 𝛼1 + k1𝜉1 − �̇�1d + Λ𝛽1

)
+ Λ𝛽1𝜉1.

(33)
L̇1 = Z̄1

(
Z̄2 − k1Z1 + k1𝜉1

)
+ Λ𝛽1𝜉1
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(
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)
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where 𝛾1 > 0 is a design constant, �̃� = 𝜑 − �̂� is the estimation error and �̂� is the estimate of �.

Remark 1 Note that the unknown parameter � will be discussed later.

The time-derivative of L2 yields:

From (12), one gets U = ΠŪ + d(Ū) , and

where f2(𝜒) = Z̄1 + 𝛿𝜒 − �̇�2 + F(𝜒) + d(Ū)∈ ℝ
2 . The neural network approximation of f2 is given by:

where ‖𝜀(𝜒)‖ ≤ �̄� Substituting (37) into (36), we have:

Remark 2 The RBFNN weight vector W ∈ ℝ
N in (38) contains N weights which requires N adaptive rules to adjust them 

online. However, updating the N weights adds to the computational cost of the controller. We define an unknown 
parameter � = WTW = ‖W‖ with �̂� as its estimate. So, updating a single parameter �̂� instead of the N weights reduces 
the computational burden of the controller.

To avoid updating the weight vector W in the control law, we utilize Young’s inequality to derive the following equation:

where � = WTW = ‖W‖ is an unknown parameter, b1 > 0 is a constant, inserting (39) into (38), one gets:

(34)L2 = L1 +
1

2
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2
+

Π

2𝛾1
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1
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)
−

Π

𝛾1
�̃� ̇̂𝜑

(39)

Z̄2f2(𝜒) = Z̄2
(
WTS(𝜒) + 𝜀(𝜒)

)

≤ Z̄2
2
WTWSTS

2b2
1

+
b2
1

2
+

Z̄2
2

2
+

�̄�2

2

≤ Z̄2
2
𝜑STS

2b2
1

+
b2
1

2
+

Z̄2
2

2
+

�̄�2

2



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:415  | https://doi.org/10.1007/s42452-024-06091-x Research

Then, Ū can be obtained as follows:

It follows that

Inserting (42) into (40) gives:

Evaluating (43) yields:

The parameter update law for �̂� is designed as follows:

where 𝜂1 > 0 is a constant.

Remark 3 The lone adaptive rule (45) will be used to adjust the RBFNN instead of the weight vector W.

3.1  Stability analysis

Inserting (45) into (44) leads to the following equation:

By using the Young’s inequality, we have:
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Inserting (47) into (46), we achieve:

where a1 = min
[
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2
.

From (48) we can obtain:

This implies that the closed-loop signals �1,�2 , Z̄1, Z̄2 and �̃� are semi-globally uniformly ultimately bounded. From (21), 
Z1 = Z̄1 + 𝜉1 , and ||�1|| is bounded. This implies that there exists a constant N1 > 0 such that ||�1|| ≤ N1 . This implies that Z1 
converges to the vicinity of zero.

Select a candidate Lyapunov function for �1 as follows:

The time-derivative of L3 gives:

By integrating (52), one has:

From (53), one obtains:

Therefore, (54) shows that the signals of the filtering error compensator are bounded.
Considering (16), the dynamic equation of the orientation angle can be rewritten as follows:
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From Fig. 1, by using plane geometry, we know that y
x
=

yn

xn
 . Therefore, the desired heading angle of the AGV is calculated 

as follows:

The heading angle tracking error is calculated as Z3 = � − �d . The integral of Z3 is given by:

The Lyapunov function for the heading angle is chosen as:

where 𝛾2 > 0 is a design constant. Define a parameter � = ‖W‖2 , with �̃�𝜓 = 𝜑 − �̂� is the estimation error and �̂� is the 
estimate of � . The time-derivative of L4 yields:

where F𝜓 = d(�̄�) + 𝛿𝜓 which is approximate with neural network as follows:

To avoid updating the weight vector W� in the control input, we employ Young’s inequality to derive the following 
equation:
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W� = ‖W�‖ is an unknown parameter, and b2 > 0 is a constant. Using (61), (59) becomes:

The control law for the heading angle is designed as follows:
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Then,

Substituting (64) into (62) yields:

Simplifying (65) yields:

The update rule for �̂�𝜓 is thus:

where 𝜂2 > 0 is a small constant.

Remark 4 The single adaptive rule (67) will be deployed to adjust the RBFNN instead of the weight vector W�.

3.2  Stability analysis

Substituting (67) into (66) gives:

Considering the Young’s inequality, one gets:

Substituting (69) into (68) yields:
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The inequality above highlights that Z3 is semi-globally uniformly ultimately bounded and converges to:

The block diagram of the proposed path following control of the UGV is depicted in Fig. 2.

Remark 5 The controller parameters are adjusted by trial and error technique until the desired path tracking perfor-
mances are achieved.

4  Simulation results

This section presents simulation results to highlight the performance of the proposed path following control protocol. 
The AGV kinematic model is obtained from [8, 22]. The initial conditions of the AGV are set as xn(0) = −0.5 , yn(0) = 0.5 , 
ẋn(0) = 0.1 , yn(0) = 0.1 , and �(0) = 0.1 . The external disturbances are set as �x = 0.2cos(0.5t) , �y = 0.2cos(0.5t) , and 
�� = 0.2cos(0.5t) . The deadzone parameters are set as Πr = 0.6 , Πl = 0.8 , sr = 0.5 , sl = −0.4 , Π�r = 0.91 , Π� l = 0.72 , 
s�r = 0.66 , and s� l = −0.53 . The parameters of the filter are set as �n = 90 and Φ = 0.75 . The controller gains are set as 

Λ = 16 , Λ� = 9 , k1 = 20 , k2 = 20 , and k3 = 12 . The RBFNN in this study consists of five nodes; the centers of the Gaussian 
functions are selected between −3 and 3, whereas the width of the functions is chosen as 0.5; the parameters of the 
RBFNN parameter update laws are chosen as �1 = 0.1 , �1 = 0.001 , �2 = 0.1 , �2 = 0.001 ; the initial values of the RBFNN 

parameter update laws are chosen as 0.1. The desired path is a dumbbell shape described by xd = sin
(

1

3
.
22

7
.t
)

 , 

yd = sin
(

1

6
.
22

7
.t
)

 . The desired orientation angle is calculated as �d = atan2(xd , yd).

The simulation results are depicted in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16. The Figs. 3, 4, 5, 6 shows the 
performance of the proposed path following controller compared with the recently reported literature that investigated 
the path following control of the AGV subjected external disturbances to actuator deadzone such as observer-based state 
feed control (OSFC) [46] and adaptive sliding mode control (ASMC) [47]. Figures 3, 4 depict the time-varying position and 
orientation of the AGV. It can be observed that all three controllers were able to achieve path tracking in the presence of 
external disturbances and deadzone. However, the proposed controller has better tracking accuracy compared to OFSMC 
and ASMC. The tracking errors of the time-varying position and orientation of the AGV under the three controllers are 
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Fig. 2  Block diagram of the 
proposed UGV control
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shown in Figs. 5, 6, respectively. These figures show that the tracking errors are much closer to zero under the proposed 
controller. The dumbbell path tracking is shown in Fig. 7 which shows that the proposed controller can track the path 
faster. The responses of the proposed control inputs capable of compensating input deadzone and external disturbances 
are presented in Figs. 8, 9. The evolution of the parameters for adjusting the RBFNN for the position and the orientation 
angle are depicted in Figs. 10, 11, respectively. Each of the parameters corresponds to the norm-2 of the RBFNN weights. 
Updating a single parameter instead of the whole weight vector lessens the computational cost of the controller. Table 1 
presents the performance of the proposed controller in terms of settling time and root-mean-square-errors (RMSE) 
under different RBFNN weights. It can be seen that by using a single parameter to adjust the RBFNN, the RMSE and the 
settling time of the proposed controller are smaller, which signifies enhanced tracking performance. On the other hand, 
when multiple weights are used to adjust the RBFNN, the RBFNN approximation errors tend to increase as the number 

Table 1  Comparisons of 
settling time and RMSE of 
the proposed controller with 
different RBFNN weights

RBFNN weights Variables Settling time (s) RMSE

Single parameter x 0.14 0.2029
y 0.14 0.2015
� 0.14 0.1586

5 x 0.15 0.2113
y 0.15 0.2097
� 0.15 0.1656

50 x 0.22 0.3961
y 0.22 0.4850
� 0.22 0.3730

Fig. 3  Time-varying positions 
of the AGV

Fig. 4  Steering angle of the 
AGV
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Fig. 5  Path following tracking 
errors of the AGV

Fig. 6  Steering angle tracking 
errors of the AGV

Fig. 7  Path tracking graph of 
the AGV
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of weights increases. The increase in the RBFNN approximation errors coupled with the increase in the computational 
complexities leads to an increase in the tracking errors and slows down system response.

To highlight the negative impact of the input deadzone on the path tracking performance of the AGV, the differential 
flatness-based controller (DFC) [23] and the finite-time sliding mode control (FTSMC) [13] are applied to the AGV under 
deadzone. The time-varying position and orientation of the AGV under the DFC and FTSMC deviated from the target 
trajectories as depicted in Figs. 12, 13, respectively. The tracking errors of the AGV under both DFC and FTSMC are large 
and unacceptable as shown in Figs. 14, 15. The dumbbell path tracking is presented in Fig. 16 which shows that both 

Fig. 8  Control inputs of the 
AGV position

Fig. 9  Control inputs of the 
AGV orientation angle

Fig. 10  Norm-2 of the neural 
network weights of the AGV 
position
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DFC and FTSMC failed to steer the AGV to track the desired path because they were not designed to compensate for the 
input deadzones.

To further demonstrate the superior robustness of the proposed controller against external disturbances and input 
deadzone, its performance in terms of settling time and RMSE is compared with that of the OSFC, ASMC, TOSMC, and 
DFC as shown in Table 2. From this table, it is clear that the proposed controller is superior. Meanwhile, both TOSMC 
and DFC could not settle and converge to the desired trajectories as a result of the input deadzone.

Fig. 11  Norm-2 of the neural 
network weights of the AGV 
steering angle

Fig. 12  Time-varying posi-
tions of the AGV

Fig. 13  Steering angle of the 
AGV
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Fig. 14  Path following track-
ing errors of the AGV

Fig. 15  Steering angle track-
ing errors of the AGV

Fig. 16  Path tracking graph of 
the AGV
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5  Conclusion

This paper studied the problem of path following control of an AGV subjected to input deadzone and external distur-
bances. An RBFNN has been employed to approximate the AGV nonlinearities, external disturbances, and the input 
deadzone. A minimum learning parameter scheme is put in place to minimize the computational cost of the RBFNN. A 
backstepping controller with integral error action is proposed to achieve the path following with much smaller tracking 
errors. The problem of ’explosion of the complexity’ associated with traditional backstepping has been dealt with using 
the command filter and the filtering errors were removed via filtering error compensation signals. The comparison results 
showed that the proposed control strategy provided Superior path tracking performance. The limitations of this work 
include the use of Ackerman’s model which disregards some important parameters of the AGV, and a lack of experimental 
verification. In the future, fractional-order backstepping will be used to improve the robustness and convergence speed 
of the path tracking controller. In addition, to further minimize the computation cost of the controller, an event-triggered 
mechanism will be incorporated into the controller. Furthermore, a detailed model of AGV will be considered and an 
experiment will be conducted to further verify the effectiveness of the proposed controller.
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Table 2  Comparisons of 
settling time and RMSE of the 
three controllers

Controllers Variables Settling time (s) RMSE

Proposed x 0.14 0.2029
y 0.14 0.2015
� 0.14 0.1586

OSFC x 2.25 0.3502
y 2.25 0.3266
� 2.25 0.2287

ASMC x 3.76 0.3277
y 3.76 0.3088
� 3.76 0.2171

TOSMC x Unsettled 0.7877
y Unsettled 0.4130
� Unsettled 0.5912

DFC x Unsettled 0.5479
y Unsettled 0.3836
� Unsettled 0.5351
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