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Abstract
Globally, motorcycles attract vast and varied users. However, since the rate of severe injury and fatality in motorcycle acci-
dents far exceeds that of passenger car accidents, efforts have been directed towards increasing passive safety systems. 
Impact simulations show that the risk of severe injury or death in the event of a motorcycle-to-car impact can be greatly 
reduced if the motorcycle is equipped with passive safety measures such as airbags and seat belts. For the passive safety 
systems to be activated, a collision must be detected within milliseconds for a wide variety of impact configurations, 
but under no circumstances may it be falsely triggered. For the challenge of reliably detecting impending collisions, this 
paper presents an investigation towards the applicability of machine learning algorithms. First, a series of simulations 
of accidents and driving operation is introduced to collect data to train machine learning classification models. Their 
performance is henceforth assessed and compared via multiple representative and application-oriented criteria.

Article Highlights

• The challenge of reliably detecting a motorcycle collision within a short time by means of machine learning classifica-
tion is investigated.

• Different machine learning architectures are compared in terms of their practical capability with metrics specifically 
adapted to the problem.

• Performance is validated on standardized ISO 13232 accident configurations.

Keywords Motorcycle safety · Multi-body simulation · Machine-learning · Passive safety · Vulnerable road users

1  Motivation

Globally, powered two-wheelers, more commonly called motorcycles, attract vast and varied users [1]. Depending on 
the region, they enjoy popularity as (i) a compact means of individual transportation in increasingly congested urban 
traffic and tight parking conditions, (ii) cheap individual mobility due to a lower price, lower energy consumption, and 
lower maintenance costs compared to, e.g., passenger cars, and (iii) a leisure or exciting sports activity due to its unique 
handling experience with the feeling of freedom when riding. However, their poor passive safety poses an excessive risk 
in road traffic at considerable social costs.
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The risk of suffering severe injuries or dying in an accident is more than twice as high for motorcyclists than for 
occupants of cars. Worldwide, about 375,000 drivers and passengers of two- or three-wheeled vehicles die each year, 
according to [2]. In 2021, 302 (2.2%) motorcyclists killed and 5230 (38.2%) motorcyclists seriously injured were recorded 
in 13,702 motorcycle accidents with personal injury in Germany alone [3]. In that same period, in 160,771 car accidents 
involving injuries to persons, only 1433 (0.9%) were killed, and 30,902 (19.2%) severely injured car drivers were registered. 
The higher risk of injury and fatality is attributed to the lack of passive safety systems. While passenger cars benefit from 
extensive safety measures such as airbags and seatbelts in an enclosed passenger cell with an energy-absorbing crum-
ple zone, motorcycles lack these features. There are many different active safety systems that improve the active safety 
of motorcycles [4] (including motorcycle-detecting automatic emergency braking which is integrated into passenger 
vehicles cars [5]). Studies show that they can potentially prevent a significant proportion of accidents, but they are not 
able to avoid all collisions in the future [5, 6]. Instead, nowadays motorcyclists rely on personal protective equipment 
such as helmets, safety clothing, and protectors, which, as the above statistics of accident outcomes show, have poor 
protective performance.

As part of a research project, the Institute of Engineering and Computational Mechanics (ITM) of the University of Stutt-
gart is investigating a new passive safety concept for motorcycles. The concept includes, among other features, seatbelts 
that restrain the rider to the vehicle and airbags in order to decelerate the rider in a controlled manner. The strategy for 
an impact scenario is no longer to detach the rider from the motorcycle so that, in the best-case scenario, to fly over the 
accident opponent without violent contact but to restrain and decelerate the rider with airbags and belts. Crash simula-
tions of a set of frequent impact configurations show that the likelihood of injuries is significantly reduced by applying 
the novel safety concept [7]. Like other passive safety systems for PTWs (e.g., airbags for scooters from [8]), the concept 
depends on reliably detecting a hazardous impact opponent with the need for a sufficiently short decisional delay.

Available since 2007 with a front airbag, the Honda Goldwing GL1800 heavy touring motorcycle is the only motorcycle 
available on the market that detects an impact with an accident opponent to activate passive safety systems. However, 
because it is designed for a frontal impact, the sensor system in the front fork does not detect side or rear impacts [9, 10]. 
In [11], a whole range of other sensors are proposed to detect a motorcycle impact as soon as possible. A study on the 
proposed safety concept predicts that a large number of such sensors is needed to detect many accident configurations 
reliably without unwanted faulty activation in expected driving conditions [12]. As a result, the greater the number of sen-
sors, the more complex and difficult it is to optimize and validate the decision-making process for activation. Ultimately, 
this is a very complex task for conventional methods such as threshold-driven detection logic and has strict requirements 
on validation and verification, see, e.g., [13]. Hence, this work is dedicated to the search for other methods capable of 
reliably detecting accidents within milliseconds. Algorithms from the field of machine learning are promising candidates 
for this task as, on the one hand, they are able to detect non-obvious patterns in data, which are therefore ignored in 
classical detection logic. On the other hand, many of them are very efficient and can therefore be quickly evaluated and 
used on hardware with limited computing power, such as found in the control units of a motorcycle.

Utilization of machine learning methods for crash predictions is already being investigated in a wide range of applica-
tions. Among others, many publications deal with automated real-time traffic supervision, which aims towards identifying 
potentially hazardous road sections. In [14], different deep learning and machine learning techniques are compared to 
predict real-time crash occurrence based on traffic data as well as weather information. Similar efforts are taken for crash 
detection as well as risk estimation [15] and identification [16] on freeways which could be used for traffic management. 
When it comes to crash predictions for motorcycles, on the contrary, the number of research projects and publications is 
lower. One field of research where machine learning (ML) methods are useful is the investigation on crash- or injury-sever-
ity in motorcycle accidents, which gives useful insights into how motorcycle riding can be rendered less dangerous [17]. 
Another general recurring approach for cars is to use smartphone-based crash detection, where the smartphone serves 
as a measurement tool as well as an automated emergency notification system [18–21]. Instead of using smartphone-
based measurements, [22] use an ensemble-based crash detection on data emerging from dashboard cameras.

However, the possibility of using the motorcycle sensors themselves is often overlooked since most publications do 
not consider safety frameworks for motorcycles. Consequently, decisions are based on a few non-specialized measure-
ments so that the detection performance is highly limited, also allowing for false positive detection. Furthermore, most 
publications rely on difficult-to-access and poorly available real-world data where it is hard to reproduce exactly those 
scenarios crucial for accident detection. As we use simulation models to generate the training data, we are able to gener-
ate specific and well-defined parametric scenarios describing a wide variety of typical accidents and non-critical driving 
scenes. To the authors’ best knowledge, no research currently investigates the applicability of machine learning methods 
as a real-time, onboard crash prediction mechanism in order to trigger a given passive safety protocol.



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:326  | https://doi.org/10.1007/s42452-024-06014-w Research

This leads to the fundamental research question of this work: Is a ML model capable of accurately identifying an 
impact in due time? Responding to this question, this paper deals first with producing an expressive database that is 
consequently used to train a selection of ML models and to evaluate their performance. The following describes the 
used simulation model, illustrates how the database is produced and trains a selected set of ML classification models 
on this data.

2  Materials and methods

First, the simulation model is described, which is used to collect both operational driving data (regular use) and collision 
data (accidents). The collision data exclusively includes impacts into a car as a collision partner. It does not include solo 
accidents, since this study merely serves as a proof of concept and the simulation model is reused from a preceding 
study [7]. Subsequently, data generation and processing are addressed. In the last section, ML methods are implemented 
and optimized.

2.1  Simulation model

Data collection is accomplished solely by means of simulation as it offers the opportunity to cheaply evaluate and 
measure various operational driving and collision scenarios. In addition, the motorcycle concept currently only exists 
virtually, and real-world driving and crash tests are costly and pose great challenges to represent targeted scenarios. 
The simulation model is implemented in Siemens Simcenter’s Madymo (version MADYMO 2020.1), which serves as a 
multibody (MB) finite-element (FE) crash-simulation environment. Madymo is a simulation environment for physical 
systems with a focus on vehicle collision dynamics and passenger safety and injury assessment. It combines MB system 
capabilities for large rigid body motions as well as FE analysis for structural behavior. Here, simulating crash dynamics 
not only saves costs but can also serve to reduce time to market significantly.

2.1.1  Motorcycle model and accident opponent

The motorcycle is modeled with three masses, see Fig. 1, defined by their mass m, rotational inertia I  , and geometry. 
The bodies are linked via kinematic joints. The motorcycle chassis is attached to the suspended front fork (FF) and rear 
swing (RS). The telescopic front fork moves linearly (sFF ), whereas the rear swing rotates (�FF ). Both suspensions attach to their 
wheels (FW, RW) via hubs, around which these rotate (�FW,�RW ). To model structural deformation in an impact, the front 
fork allows for angular deformation �FF . It depicts a rotation of the front fork inwards around the steering hub. As an impact 
opponent vehicle, the simulation setup comprises a collision partner, which is represented by a 1987 Ford Scorpio config-
ured according to [23]. The model is part of a broader modeling and simulation strategy ranging from a multibody-system, 
a coupled multibody- and finite-element setup, to a full finite element model. The multibody model used here is chosen 
in order to simulate long scenarios that span many seconds. For a thorough overview of the models that also include the 
passive safety systems, be referred to [24]. It should also be noted, that in the scope of this research, the motorcycle model 
represents a category L3 vehicle according to the United Nations Economic Commission for Europe (UNECE) with an engine 

Fig. 1  Three mass rigid body 
model of the motorcycle: A 
frame (Moto) and two wheels 
(FW, RW)
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displacement larger than 50 m3 or a maximum design speed of more than 50 km/h, since the referenced ISO 13232 accident 
configurations are restricted to L3 vehicles. However, the concept of this work can be applied just as well to L1 vehicles.

In contrast to investigations of passive safety measures in the course of an accident, which are already well-established, 
the period of interest for this study includes only a few moments after the impact. This means that the period of interest 
for this study occurs well before the passenger comes in contact with the airbags or is significantly restrained by the 
belts allowing to reduce the overall computational costs significantly. On the one hand, this allows stopping the crash 
simulations before any computationally complex passenger-safety-system interactions occur. On the other hand, the 
passive safety system, i.e., thigh belts and airbags, and the rider model can be excluded from the simulation setup as 
they have no qualitative influence on the simulation results in the period under consideration. These simulation setup 
modifications are beneficial for the overall numeric costs and allow for the execution of a far greater number of simula-
tions than what would have been feasible within the same time with the inclusion of rider and passive safety systems.

A crucial issue with generating data from the model is that, due to complexity, the model does not allow for 
the application of lateral dynamics. Cornering behavior can thus not be incorporated into the dataset. Hence, only 
longitudinal dynamics are covered by the training data. This circumstance has far-reaching ramifications: Since, for 
example, the steering angle moves out of the 0◦ position in case of a head-on crash and by design never leaves this 
position during normal (non-crash) riding, the classifier would be induced false knowledge and would most likely decide 
solely on the basis of the steering angle signal. To circumvent this contingency, signals that contain information about 
lateral motion are to be strictly neglected in order not to overestimate the decision-making ability of a classification 
model. This poses a major restriction on parts of the available sensor data, as certain DOFs are only changed when the 
motorcycle collides with an opponent. Signals that are affected by the restriction are the motorcycle body’s velocity and 
acceleration, both linear and angular.

In Table 1, all modelled sensors and available signals are listed. The first five signals are subject to dimensional 
limitation. The used component of these signals is given in the last column. In order to emulate the response of a tire 
pressure sensor, the resulting contact force between the crash opponent and each tire is combined with the contact 
force between each tire and the road surface, yielding the residual contact forces fFW and fRW for the front and respectively 
the rear wheel.

2.2  Data acquisition

A notable benefit of the proposed method is that the data used to train ML models does not come from logged real-
world sensor data but from closely monitored simulations. This means that each individual sample can be assigned 
to a scenario and, therefore, also state (non-crash/crash). The knowledge about the state introduces the ability to use 
supervised learning methods. A switch is incorporated into the model in order to automate the labeling process. It is 
flipped as soon as a part of the motorcycle comes in contact with the car. The switch is allowed only one initial flip since, 
for the purpose of this elaboration, a crash does not stop until the simulation terminates. The switch reliably distinguishes 
between normal non-crash operation and crash scenarios, and is, thus, eligible to be further used as a class label for the 
machine learning classification application.

A fundamental operation of this investigation is to produce data covering the whole spectrum of both non-crash 
driving and crash scenarios. Training data must contain all necessary information to reliably differentiate between those 
two states, but it can only be composed of a multitude of individual simulations. The fact that the labeling process is not a 
task to be carried out manually but rather by the simulation itself enables to consider all necessary scenarios. Henceforth, 
a parameter-based simulation definition is used to fully exploit the fact that individual simulation postprocessing is not 
required. Consequently, a set of scenario parameters with an allocated range defines each subset. The individual subsets 
are then merged to form a comprehensive database.

In order for the parameter space to be sufficiently covered by a given amount of instances, latin-hypercube sam-
pling (LHS) is applied. LHS, in contrast to simple-random-sampling (SRS), subdivides each parameter’s range into equal-
sized subdivisions, thus effectively partitioning the entire parameter space into hypercubes, called strata. A random 
sample is generated from each stratum, thus ensuring that the resulting distribution is fully representative of a given 
population [25]. All resulting simulative measurements are available under [26].
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2.2.1  Class A: uncritical data

Within the class of uncritical data, simulations are divided into two subsets. The first of which uses a sinusoidal base 
structure as a road profile. The second subset supplementary adds specified use cases to the database that can not 
be reproduced by the sinusoidal subset.

2.3  Scenario set A.1

A mesh of rigid shell elements which is created before each simulation serves as contact surface for the motorcycle. 
This road model has a total length of 300 m and a segment length of 0.2 m. The sine amplitude ranges from 0 m 
to 6 m. The first subset’s road profile is described by a sinusoidal base profile with added noise in order to mimic 
road-unevenness. By ensuring that the interval length corresponds to the road length, the steepest section is limited 
to a road gradient of 12% which amounts to the maximum gradient found on open roads according to [27]. Phase 
shift and noise amplitude are also incorporated as parameters for additional variation. A set of 20 exemplary road 
profiles is depicted in Fig. 2. The figure additionally presents an expanded view in order to illustrate the superimposed 
noise. The motorcycle’s initial velocity ranges from 3 m/s up to 23 m/s. The speed range is chosen to correspond to 
that of the crash scenarios (Fig. 6). Otherwise, if speed distribution in one class far exceeds that of the other class, the 
classification model would tend to incorporate that bias. Lastly, brake and acceleration torque acting on the wheel 
hubs are derived from one single parameter (since they cannot occur at once). In [28] it is shown that the mean brak-
ing torque of a motorcycle can be assumed to be 500 Nm and it is distributed, so that 70% is directed to the front 
wheel and 30% to the rear wheel. Likewise, [29] investigate the acceleration of high-performance race motorcycles. 
The authors state that the braking torque at the wheel can reach up to 1000 Nm. As a conservative estimate the 
acceleration torque limit is set to 500 Nm since the motorcycle under investigation here is not designed for racing. 
Scenario set A.1 is composed of 100 entities that are parametrized via LHS. The parameters with their corresponding 
variation range are listed in Tab. 2.

Table 1  Recorded output 
signals from the motorcycle 
simulation model

Abbreviation Description Unit Component

Body lin. vel Motorcycle body linear velocity m/s x
Body lin. acc Motorcycle body linear acceleration m/s2 x

Body ang. vel Motorcycle body angular velocity rad/s y
Body ang. acc Motorcycle body angular acceleration rad/s2 y

FW ang. vel Front wheel angular velocity rad/s
FW ang. acc Front wheel angular acceleration rad/s2

RW ang. vel Rear wheel angular velocity rad/s
RW ang. acc Rear wheel angular acceleration rad/s2

RS ang. pos Rear swing angular position rad
RS ang. vel Rear swing angular velocity rad/s
RS ang. acc Rear swing angular acceleration rad/s2

FS lin. pos Front suspension linear position m
FS lin. vel Front suspension linear velocity m/s
FS lin. acc Front suspension linear acceleration m/s2

FD ang. pos Front deflection angular position rad
FF ang. vel Front-fork deflection angular velocity rad/s
FF ang. acc Front-fork deflection angular acceleration rad/s2

FW cnt. force Front wheel contact force N
RW cnt. force Rear wheel contact force N
FW/RW vel. diff Wheel speed differential rad/s
FW/RW acc. diff Wheel acceleration differential rad/s2

cnt. sensor left Contact sensor left Bolean
cnt. sensor right Contact sensor right Boolean
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2.4  Scenario set A.2

Although the parametrized scenario generation already covers a wide range of applications, some use cases can not 
be emulated by this method and should still be considered in the database. These scenarios, referred to as set A.2, are 
designed manually and appended onto the dataset. Namely, these simulations are intended to replicate the following 
use cases: (i) riding over potholes, (ii) approaching a curbstone, (iii) riding down multiple curbstones, and (iv) riding 
over speedbumps. Road profiles that are designed to imitate these obstacles are depicted in Fig. 3. In combination 
with initial velocities lying within the same range as in subset A.1 , see Tab. 2 and using LHS as sampling method, a 
total of 20 simulations (4 in each use case) are performed to build subset A.2.

2.4.1  Class B: crash data

The data containing accidents involves more than just head-on collisions, where simple threshold-based decision 
logic would suffice for detection. Instead, the aim is to examine a broad range of conceivable impact scenarios. 
Consequently, parametrized scenario generation is resorted to again. A Dutch study on motorcycle accidents shows, 
that almost 70% of the recorded accidents involved an impact against an opposing vehicle [?]. The study further 
shows, that no one accident configuration with an opposing vehicle is overly dominant, but rather, that a multitude 
of accident scenarios with equal probability exist. These include a variety of intersection collisions, where either 
the car or the motorcycle are making a left-hand turn. However, overtaking and making a U-turn are also likely 
scenarios. This leads to the conclusion that it is not sufficient to limit the analysis to one type of collision, but that 
many possible scenarios should be considered. Two different base architectures are therefore designed to cover the 
spectrum collisions. A stationary car is struck by a motorcycle at different angles and velocities (subset B.1) and a car 
striking the stationary motorcycle at different angles and velocities (subset B.2). Additionally, a set of ISO 13232 crash 
scenarios are simulated and preserved in order to validate the classifier’s ability to generalize after being trained.

Fig. 2  Road profiles for 
non-crash scenario set A.1. 
The road consists of a start 
platform which is connected 
to a randomly generated sinu-
soidal profile with a maximum 
gradient of up to 12% and a 
superimposed noise

Table 2  Parameter space for 
non-crash scenario set A.1 

Parameter Range Unit

sine amplitude 0 : 6 m
phase shift 0 : 360 ◦

road ’noise’ 0 : 0.025 m
vMoto,init,A1

−1.2 : 1.2 m/s
taccel∕decel,A1 -500 : 500 N m
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2.5  Scenario set B.1

Set B.1 consists of 100 simulations in which the motorcycle with an initial velocity vMoto,init,B1 approaches a stationary 
car that is both rotationally (�B1 ) and laterally (oy,B1 ) displaced. Figure 4 illustrates the structure of the scenario set B.1. 
By offsetting the car by yoffset , grazing-accidents are included in the scenario database. Table 3 shows the range in 
which the parameters are varied.

Fig. 3  Additional road profiles for non-crash scenario set A.2 

Fig. 4  Schematic illustration 
of crash scenario set B.1 
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2.6  Scenario set B.2

For more variation, in B.2 the setup is inverted with the motorcycle now stationary and the car pointing at the motorcycle 
at different angles, see Fig. 5. Additionally, the direction of rotation of the car is shifted by �B2 for further variation of the 
point of impact. Table 4 lists the range of variation for each parameter assigned to set B.2.

2.7  Validation set B.3

Validation scenarios are implemented in order to evaluate the final performance of the trained models and, thus, 
their ability to generalize. Scenarios according to [30] are selected for this purpose in order to be representative. The 
ISO norm 13232 provides a set of impact configurations based on a statistical analysis of real-world crash events. The full 
set consists of 25 impact configurations, shown in Fig. 6.

2.8  Machine learning classification

The remainder of the chapter is devoted to the task of building machine learning models using the scikit-
learn toolbox in Python [31]. The section is structured into preprocessing of the raw data, model preselection, and 
hyperparameter-tuning using grid-search in combination with cross-validation (CV).

2.8.1  Preprocessing

Data preprocessing can often lead to a significant performance enhancement compared to working with raw data. 
Preprocessing includes distribution management, standardization, checking for, and handling of missing values.

As some classification algorithms tend to perform better or even depend upon standardization, a scaling routine is 
implemented prior to the classification. Whereas some classification algorithms like decision trees and ensembles do 
generally not require data standardization, others, like, for example, neural networks, are strongly reliant on it. Otherwise, 
features that have different magnitudes are not treated equally. Standardization scales each feature to unit variance. In 

Fig. 5  Schematic illustration 
of crash scenario set B.2 

Table 4  Parameter space for 
crash scenario set B.2 

Parameter Range Unit

vCar,init,B.2 6.7 : 13.4 m/s
�z 0 : 360 ◦

�z,B.2 -5 : 5 ◦

Table 3  Parameter space for 
crash scenario set B.1 

Parameter Range Unit

vMoto,init,B.1 6.7 : 13.4 m/s
�z 0 : 360 ◦

oy,B.1 −1.2 : 1.2 m
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order to be consistent, a transformation vector is computed on the training set and applied to the test set rather than 
scaling each dataset to unit variance in its own right. The standardized value x′

i,m
 for each sample xi,m of timestep i and 

feature m is carried out via

Fig. 6  Scenarios of the validation set B.3 from [30]. Each scenario is described by a code XXX-Y/Z, where XXX encodes the relative position of 
car and motorcycle, Y is the car’s, and Z is the motorcycle’s impact velocity in m/s
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with x̄m being the arithmetic mean of feature xm and �x,m its standard deviation.
An additional preprocessing method is feature extraction via principal-component-analysis (PCA). It aims at deriving 

meaningful and non-redundant variables from the original dataset by projecting it to a lower-dimensional space by 
means of singular value decomposition (SVD). By doing so the original dimension of the feature space dimension, which 
is with a total of 23 features fairly high, could be reduced, This could be beneficial considering that the concluding model 
is to be run in real-time on an embedded system. However, the desired effect does not materialize well and the method 
proves to be ineffective for this application. Consequently, it will not be addressed further in this report.

2.8.2  Training‑test‑split

A decisive circumstance to consider when subdividing time-dependent data is that neighboring samples have a ten-
dency to be located in close proximity to each other. A random training test split, like it is often performed on non-time-
dependent data, is, henceforth, not an appropriate splitting method.

In the case of this application, training-test-split is carried out on whole coherent simulations itself rather than on 
samples. As this is a safety-critical application, a 50-50 split is performed, meaning half of the available data is retained 
for testing to cover a broad range of scenarios. The remaining half is dedicated towards training the models. Addition-
ally, none of the ISO scenarios of set B.3 shall be included in the training set as it is of particular interest to assess how 
well-trained models generalize on these representative scenarios.

When training a model for classification purposes, close attention must be paid towards the distribution of the two 
classes. Since crash-labeled samples are, in this case, much less frequently represented in the raw dataset, non-crash-
labeled data requires subsampling in order to achieve equal distribution. The desired distribution is achieved with a 
sampling rate of twelve. The resulting sizes and distributions of the two datasets are displayed in Tab. 5.

For the final application of the real-time classification model into the virtual “system” of the motorcycle, a sample rate 
of  2kHz is selected. This is a sample rate that most commercially available sensors are able to safely handle and which 
also leaves a sufficient margin of samples for the implementation of an activation threshold. In addition to the above-
mentioned training and test datasets, which are no longer subject to a uniform sample rate, individual scenario datasets 
are prepared, which incorporate the realistic scenarios from [30]. Those simulations are synchronized to the selected 
sample rate of 2kHz in order to evaluate the model’s decisional delay.

2.8.3  Model preselection

The amount of available classification algorithms is extensive and thus not feasible to investigate exhaustively. A prese-
lection of suitable algorithms is therefore shortlisted. The preselection is designed to incorporate multiple different 
classification approaches like ensembling, support vector machines (SVMs), and artificial neural networks (ANNs) as 
they are some of the most frequently used algorithms available. In Tab. 6 all preselected models and their underlying 
method are listed.

2.8.4  Hyperparameter‑optimization

A decisive determinant for the performance of a classification model is the proper choice of its hyperparameters. There 
are several different approaches to resolve this problem, such as random or grid searches. In the scope of this paper, 

x�
i,m

=
xi,m − x̄m

𝜎x,m

Table 5  Distribution of 
samples dedicated towards 
training and testing

Dataset Class Samples

training
{

Non-crash

crash

total

13, 842

10, 908

24, 750

test
{

.
Non-crash

crash

total

11, 238

11, 778

23, 016
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grid search parametrization, in combination with cross-validation (CV), is employed in order to discover the best-fitting 
parameters for each model.

Using grid search optimization, the (discrete) hyperparameter space searched within must be predefined. A classifica-
tion model is trained on each combination of parameters, and, using cross-validation, a mean score is computed for each 
iteration. The type of score as well as the number of cross-validation folds are user-defined. For this application 20-fold 
CV in combination with the F1 score

is selected since the dataset consists itself of a multitude of subsets. The  F1 is chosen as it combines both precision and 
recall scores.

Each parameter’s grid is incrementally refined, effectively narrowing the search radius until further refinement no 
longer yields an improvement. Tuned resulting hyperparameters for all five models are listed in Tab. 7. Only parameters 
that deviate from the standard parameters are listed.

2.8.5  Baseline model

In order to put the performance of the classification models into perspective, a simple threshold based model acts as 
a baseline. The model is implemented according to [9], where a set of accelerometers is placed at the fork legs of the 
motorcycle. The signals are then used to determine if the motorcycle is about to collide. Since the two acceleration sig-
nals are averaged, in this paper there is only one accelerometer placed at the front hub. The models only parameter is 
the threshold at which it detects an impending collision. This threshold is tuned on the training data in the exact same 
way as for the other models, with its hyperparameter-space being only one dimensional.

F1 = 2
precision ⋅ recall

precision + recall

Table 6  Preselection of scikit-
learn classification algorithms

Algorithm Base method

AdaBoost.M1 Ensembling (boosting)
Gradient boosting Ensembling (boosting)
Random forest Ensembling (bagging)
SVM Support vectors
MLP Feedforward neural network

Table 7  Tuned 
hyperparameters for the five 
classification methods

Algorithm Hyperparameter Value

AdaBoost
{

Number of learners

max. leaner depth

learning rate

algorithm

80

2

0.6

SAMME

Gradient Boost
{

Number of learners

max. leaner depth

learning rate

loss function

80

10

0.5

exponential

Random Forest
{

Number of learners

max. leaner depth

splitting criterion

45

17

entropy

SVM
{

C

Gamma

120

auto

Neural Net
{

Number of hidden layers

hidden layer size

initial learning rate

optimization tolerance

early stopping

1

220

0.002

0.0003

enabled
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3  Results and discussion

In this section, the results from the previously introduced trained classification models are compared to each other 
and are individually evaluated for fitness. ML classification-specific criteria on one side, as well as several application-
specific criteria, act as a basis for comparison. Furthermore, available sensor data is examined and ranked according to 
its individual contribution. The computation of feature importance can be helpful to point out wether the feature space 
dimension can be reduced. The final section describes the individual feature contribution, giving an overview of sensor 
significance that can assist future work.

3.1  Capability assessment

The following sections serve as an illustration of the trained classification models’ performance. This allows to draw 
a comparison between the models and assess the level of proficiency that can be expected from a specific model. In 
addition to a selected set of machine learning performance metrics, a few domain-specific criteria are established. The 
main objective is to outline the overall performance as broadly as possible in order to make a reasoned choice when 
selecting a model.

3.1.1  Performance measures

Performance metrics that are considered to evaluate and compare the achieved training results are the receiver operating 
characteristic (ROC) curve, which shows the true positive (TP)-false positive (FP) trade-off of a model. The area under the 
ROC curve (AUC) quantifies the individual trends. Additionally, scores that are computed from the confusion matrix are 
listed. For the sake of clarity, the resulting confusion matrix of all models is shown in the appendix (Fig. 1).

3.1.2  Receiver‑operator characteristic

The resulting receiver operator characteristics for all trained models are displayed in Fig. 7. All curves lead through the 
sweet spot in the upper left corner, where classification yields a high TPR while maintaining a low FPR. The results indicate 
that there is no direct trade-off for all models between achieving a high TP rate (TPR) and keeping the FP rate (FPR) low. 
The ROC curves show an almost identical trend for four of the models, with only the AdaBoost model’s performance 
being marginally poorer. The ROC curve does, therefore, not yet permit any statement about performance fluctuation 
between the models.

3.1.3  Machine learning scores

Since one single index is not able to sufficiently describe the performance of a classification model, a selection of metrics 
is chosen. The intention is not only to point out which models perform well and which are rendered unfit but also to 
indicate potential overfitting by computing the score on the training data. Consequently, a well-fitted model will tend 
to yield similar scores on both sets sacrificing training accuracy for better generalization ability. In contrast, an overfitted 
model tends to achieve a higher score on the training set than on the test set. The resulting scores are collected in Fig. 8.

Fig. 7  Receiver-operator char-
acteristic of all five models. A 
perfect classification model 
would reside in the top-left 
corner, reaching a 100% TPR 
while maintaining a 0% FPR, 
essentially, mapping each 
sample flawlessly to its associ-
ated class
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• The AUC  Score quantifies the trend given by the receiver-operating characteristic, by calculating the area under-
neath the curve. A higher score means the demand for a better TPR does not tend to sacrifice a models FPR and 
vice versa.

• Accuracy measures the rate of correctly classified samples of both classes out of all samples. It is thus a valuable 
indicator of overfitting, if a model yields a sufficiently lower score on the test set than on the training set.

• The precision score, which in this context accounts for the classifier’s ability to not falsely misclassify a non-crash 
sample as a crash. Sufficient scoring on this assessment is of elementary importance for applying the method 
presented in this report. Frequently misclassifying class A samples and, thus, falsely initiating deployment of 
passive safety mechanisms render the implementation of a ML-based crash detection algorithm possibly more 
harmful than profitable.

• As a combination of sensitivity and recall, Youden’s index measures the overall informedness of a model’s deci-
sion-making process.

Summarizing the scores and discrepancies presented in Fig. 8 permits to conclude the models’ performance and 
generalizing ability. At first glance it is clearly visible, that the baseline model is not able to keep up with the ML 
models in terms of performance. Its scores are significantly lower than those of the other models. The poor scores 
indicate, that the model may be able to make a decision, albeit not an informed one.

In comparison to the baseline model the ML models tend to achieve a similar performance, with the AUC  scores 
only ranging from 0.94 to 0.97 and precision being almost identical. The accuracy and Youden’s scores however hold 
more information. Firstly, the test scores of the Random Forest and Gradient Boost models are slightly higher than 
that of the other models. However, as the dashed line suggests, their ability to generalize tends to be impaired due 
to overfitting. To summarize, all of the five models achieve a similar performance with two of the models being 
subject to overfitting.

Fig. 8  Performance scores of all five trained models computed on both training and test data. A large deviation between training and test 
score is a strong indicator for and overfitted model
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3.1.4  Crash prediction requirements

Besides the aforementioned performance criteria which assess the classification models themselves, there are certain 
requirements that are given by the very nature of what is intended to follow the crash prediction algorithm. Theses 
requirements are that (i) no false detection is raised when not at risk for accidents, that (ii) prediction time is sufficiently 
short, for the airbag to deploy fully before the rider impacts the motorcycle, and that (iii) the model is computation-
ally efficient. The first domain requirement results from the fact that the algorithm is intended to initiate passive safety 
precautions, such as the deployment of the airbag and fastening of the thigh belts. Some of the used airbags are non-
deflating and, thus, stay inflated for at least a few seconds. False deployment should, therefore, be avoided at all costs 
due to the obstruction of visibility and maneuverability as well as rider shock and product reputation. Requirement (ii) 
aims to keep the prediction time of the classification models modest since the airbag inflation takes a comparably long 
time due to a much larger volume than that of a passenger car. In this context, a prediction time lower than 12 ms has 
proven to be sufficient in order for the airbag to inflate fully in time [11]. Furthermore, the fundamental idea behind this 
investigation is that the classification model operates in real-time on the motorcycle’s embedded system. It is therefore 
reasonable to analyze and compare the latency of the classification models since CPU capacity can be assumed to be 
seriously limited. The requirements are tested on the ISO scenarios presented in Fig. 6 as well as a share of sets A.1 and A.2 
that are preserved for the test set and that act as control scenarios. Thus, all data the classifier is tested on is not included 
in the training set and is not used for hyperparameter-tuning.

3.1.5  Decisional delay

For the purpose of meeting requirement (i) and eliminating false-positive detection of outliers, an activation threshold 
is introduced, which acts as a fail-safe mechanism. The activation threshold determines, how many consecutive positive 
classifications are needed so as to not make a false prediction in a safe scenario. The parameter is therefore tuned 
towards not making a crash prediction within the non-crash scenarios in the training data. Assuming then, the imaginary 
microcontroller running the algorithm has a fixed cycle time tMC , a flawless classification model would have a prediction 
time of (nactivation ⋅ tMC).

Requirements (i) and (ii) contradict each other, as can be concluded from a conceptual experiment concerning the 
ROC curve. If the activation threshold nactivation is set arbitrarily high, the rate of false positives will diminish, however, 
prediction time would be infinite. In the opposing case, the activation threshold is set arbitrarily low. In this case, pre-
diction time would be sufficiently short, but at the cost of having misclassifications. The link between requirements (i) 
and (ii) can be found in the prediction time. The schematic process is explained in Fig. 9. The threshold values are tuned 
individually for each model so that no false prediction is made in control scenarios. Classification models that are subject 

Table 8  Number of successive 
samples and equivalent time 
for a valid classification for 
each trained classification 
model

Model n
activation

Activation time Unit

Baseline 36 18.0 ms
AdaBoost 26 13.0 ms
Random Forest 19 9.5 ms
Gradient Boost 25 12.5 ms
SVM 16 8 ms
Neural Net 9 4.5 ms

Fig. 9  An exemplary detection process, beginning at the time of impact and ending with a valid classification. A valid prediction requires a 
specified number of consecutive positive classifications in order to filter out any false positives
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to a higher FP rate are consequently assigned a higher activation threshold nactivation . The individual activation thresholds 
are listed in Tab. 8.

From Tab. 8 it becomes apparent that at a sample rate fsample of 2kHz and an activation threshold nactivation = 26 and 25, 
the AdaBoost and Gradient Boost models are rendered unfit as they could not meet the required decisional delay of 12 
ms even with a perfect accuracy score. The set of ISO crash scenarios is categorized for the purpose of the decision delay 
assessment. Categories are frontal contact crashes, lateral or rear contact crashes, and lastly, grazing accidents. Decision 
delay is interpreted as the time between initial contact and the moment when nactivation successive positive classifications 
are reached. The mean decision delay each model achieves in each of the three crash categories is presented in Fig. 10. 
The illustration presents, first of all, an intuitive trend regarding the three crash categories. The delay when predicting 
frontal accidents, on average, is significantly lower than that of grazing accidents, meaning they are effectively easier 
to predict. This can partly be attributed to the acceleration that the motorcycle exhibits during an accident, which is 
generally larger in magnitude in frontal crashes than during grazing. The figure shows that only the Neural Net model is 
capable of making an informed decision within the time limit for frontal, lateral, and rear-end accidents. The SVM model, 
though failing at detecting frontal accidents, predicts lateral and rear-end accidents in due time. The other models are not 
able to decide within the required period of time as their decisional threshold does not allow for as much agility. Graz-
ing accidents pose a serious challenge for all of the models equally, as no model manages to stay within the time limit.

3.1.6  Runtime

To conclude the capability-assessment-investigation, the runtime of each model is evaluated. Runtime, in the context of 
real-time capability, is the time that elapses between the input of an instruction and the results output by the computing 
unit. It shall be stated that the results of this evaluation have no context outside this work and are merely a concept to 
compare the latency distribution of the six trained models. runtime measurement is carried out on an  Intel® Core™i7-2600 
CPU which operates at a base frequency of 3.4[]GHz. The runtime mean and standard deviation are computed for each 
model on the same test set and on the same processing unit.

The results are listed in Tab. 9 for each of the models. The distribution of the mean values shows that incremental 
sample classification for the Gradient Boost, SVM, and Neural Net model takes considerably less time than it takes for 
the remaining two models. With latency ranging from (0.05 to 0.2)ms these classifiers require only a fraction of the time 
of AdaBoost and Random Forest, where latency is distributed from (4.29 to 5.60)ms. It is to be expected that the runtime 
of the baseline model is small, as its computational cost is moderate. The low runtime of the models Gradient Boost, 

Fig. 10  Prediction delay for 
the control scenarios [30] 
from Fig. 6 categorized into 3 
accident groups
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SVM, and Neural Net compared to that of the remaining models indicate that they should be preferred especially when 
real-time capability is required.

3.2  Feature importance

In order to achieve the results shown above, not all features are of equal importance to the classification model. Some 
features are of greater use in order to differentiate between categories than others. From an economic perspective, it is 
particularly interesting which features contribute only marginally towards the overall result as it allows the sensors to be 
dispensed with while maintaining comparable performance. For the following investigation only the results of the Neural 
Net are used as it yields the best overall performance and meets the requirements. To find the most important features 
for ANNs, permutation-based feature importance is calculated by performing a number k of sample interchanges in 
individual features c and computes the resulting accuracy score of the corrupted dataset. For each iteration k ∈ {1, ..., n} 
samples of column c are interchanged and the resulting score sk,c is evaluated. A final measure ic for the importance of 
feature c is given by

ic = s −
1

n

n
∑

k=1

sk,c ,

Table 9  Mean computation 
time of the different models 
and standard deviation 
carried out on an  Intel® 
Core™i7-2600 CPU

Model Runtime mean std. dev. Unit

Baseline 0.02 0.001 ms
AdaBoost 4.29 0.14 ms
Random Forest 5.60 2.27 ms
Gradient Boost 0.16 0.02 ms
SVM 0.20 0.004 ms
Neural Net 0.05 0.002 ms

Fig. 11  Permutation feature 
importance for the Neural Net 
model
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where s marks the score on the uncorrupted dataset. The contribution of individual features is presented in Fig. 11 in 
progressive order so that in the case that feature dimension is limited, the features to omit are highlighted.

The permutation feature importance ranks that of the motorcycle body’s linear acceleration (Body lin. acc.) one of the 
highest, which intuitively appears reasonable. After all, a common condition that all crash scenarios share is an exces-
sive (negative) acceleration of the system due to a more or less severe impact. However, as shown by [10], the frame 
acceleration sensor alone is not a sufficiently agile crash indicator as it responds with a considerable time delay. The delay 
is mostly due to the deformation that occurs before the frame is actually decelerated. Furthermore, the model assigns a 
critical weight to the approximated tire pressure (FW cnt. force), which is derived from the contact force. Front and rear 
wheel, as well as frame angular acceleration, are also among the top-ranked signals. Signals that only seem to contribute 
marginally are the suspensions positions and velocities, both front (FS lin. pos. and FS lin. vel.) and rear (RS ang. pos. and 
RS ang. vel.). The contact sensors that are attached to both sides (cnt. sensor left/right) of the frame also do not particularly 
enhance the performance.

Concluding the feature importance investigation, it can be established that acceleration signals generally are of 
greater benefit towards the overall decision-making quality. A fact that is particularly convenient, as accelerometers are 
among the most widely used sensors. In contrast, position and velocity signals do not contribute equally as much. This 
also serves as a potential explanation for the prolonged mean decisional delay that is observed in grazing accidents for 
all five models. Since in grazing accidents, the induced (negative) acceleration is not as pronounced as in other types of 
accidents, the acceleration-dominant classifiers fail to respond in due time. This forfeit, however, is admissible since it 
implies that severe accidents with more pronounced acceleration are reliably detected.

4  Summary and conclusion

The outline of this elaboration is to implement and evaluate machine learning methods to detect motorcycle collisions 
early and reliably. Simulation data is used for this purpose as it is easier and more cost-saving to acquire. A further benefit 
is that it allows close monitoring and, thus, enables the utilization of supervised learning. For this reason, the multi-
body simulation model is adjusted to incorporate automated data labeling without requiring manual intervention. An 
extensive database is, henceforth, produced by means of parametrized scenario generation in order to broadly cover 
both areas of interest.

The simulation model has some limitations, e.g. it does not allow cornering. Thus, this work cannot illustrate all 
possible accident scenarios. Instead, this work suggests a workflow which must be extended in the future for a holistic 
consideration. The signal selection and data processing take into account the influences, e.g. the non-consideration of 
cornering by not inducing “false knowledge” into the database. The database is used to train a selected set of machine 
learning classification models. The mindfully preselected algorithms that are under consideration are three decision 
tree ensemble models, an support vector machine as well as an artificial neural network. In order to have a better 
understanding of the results, a primitive, threshold based model acts as a baseline for comparison.

Challenges that are imposed on the prediction model are that (i) it raises no false detection during normal opera-
tion, (ii) it responds sufficiently quick to account for the airbag’s prolonged inflation time, and (iii) it is computationally 
efficient for realtime application. In order to evaluate each individual classification model’s performance and to rate their 
fitness, a sophisticated scoring procedure is established in Sect. 3, allowing for a reasoned choice. Performance is evalu-
ated on a set of frequent crash scenarios from ISO 13232 to be representative. The classification models are individually 
tuned towards not making a potentially harmful false prediction. Only one out of the five trained models is able to reli-
ably identify the more severe crashes flawlessly and in due time, with only the less harmful grazing accidents posing a 
challenge. Despite being fail-safe during non-crash driving operation, this model predicts crashes with sufficient agility 



Vol:.(1234567890)

Research Discover Applied Sciences           (2024) 6:326  | https://doi.org/10.1007/s42452-024-06014-w

for the airbag to inflate within the prescribed time. At the same time the neural net model proves to be amongst the 
lowest in terms of computation time.

Although the scores of other models were superior, the Neural Net model still prevails, as it provides the most reliable 
classification and thus requires the lowest activation threshold of all the models. Furthermore, this work gives insight into 
the significance of individual sensor data via feature importance assessment. This examination reveals that, in general, 
acceleration signals are weighted much more favorably than position and velocity signals. This circumstance renders 
grazing accidents particularly difficult to predict, as the acceleration imposed on the motorcycle is considerably lower 
than in other collision types.

Despite the exciting contributions of this study in detecting motorcycle collisions for a variety of simulated scenarios, 
it is important to acknowledge its limitations, particularly with regards to the restricted computational capacity of 
in-vehicle control units and the lack of consideration of lateral dynamics due to simulation model shortcomings. While 
realistic boundary conditions are adopted, wherever feasible (e.g. sensor sample time, ISO crash scenarios), it should be 
noted that, for the sake of simplification, ideal measurement hardware is assumed. Any loss in signal quality, that any 
commercially available sensor would impose is neglected, and must be taken into account in future studies. Therefore, 
in subsequent research, it is of interest to first consider even more realistic and extensive scenarios and mimic real sensor 
measurements by adding noise to the data or using sensor models. In a second step, it is of interest to investigate the 
suitability of the prediction algorithms for real-time use on weak hardware.
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