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Abstract 
This paper provides a comprehensive review on the Artificial Intelligence (AI) based models for predictive maintenance 
(PdM) of water injection pumps (WIPs) in the oil and gas industry (OGI). The review encompasses the selection of algo-
rithms, data requirements, and optimization strategies, offering insights into advancements, challenges, and theoretical 
foundations including data pre-processing and feature selection. This review highlights AI-based PdM developments 
for WIPs, focusing on techniques and algorithms that enhance water injection pump performance and accurately pre-
dict maintenance needs. It emphasizes the effectiveness of algorithms in capturing pump data patterns and anomalies 
for proactive maintenance. Additionally, the review offers valuable insights for future research directions and practical 
implementations of AI in pump maintenance. This comprehensive assessment serves as a beacon for OGI experts in 
the selection of AI methods for pump maintenance, enabling them to refine their procedures, enhance efficiency, and 
reduce operational interruptions. A prominent highlight is the importance of data quality and interpretability, which play 
a pivotal role in facilitating well-informed decision-making during the integration of AI technologies into maintenance 
processes. This article focuses on the theoretical foundations of AI in the context of pump maintenance, providing a con-
tribution to OGI industry. By integrating theoretical perspectives with real-world evidence, it offers insights for guiding 
future research and enhancing maintenance techniques. As a resource, it holds relevance for researchers, practitioners, 
and decision-makers within the OGI sector, contributing to the ongoing advancement of this field.

Article Highlights 

•	 Artificial Intelligence (AI) optimizes Oil & Gas pump 
maintenance for efficiency and reliability.

•	 Real-world case studies validate cost and time reduc-
tions, improving pump performance.

•	 Challenges in data management and ethical AI imple-
mentation require careful consideration.
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1  Introduction

The oil and gas industry (OGI) plays a crucial role in the 
global energy sector, providing the primary sources of 
fuel for various sectors, such as transportation, indus-
try, and residential use. The OGI encompasses a wide 
array of activities, from the exploration, extraction, and 
refinement to the distribution of hydrocarbon resources, 
such as crude oil and natural gas [1]. Within this indus-
try, the complexity of operations, vast infrastructure, 
and the presence of high-value assets underline the 
critical importance of efficient maintenance and reli-
ability management. This is pivotal for achieving opti-
mal production, ensuring safety, and enhancing cost-
effectiveness [2]. Predictive maintenance (PdM) is the 
methodology employed in this context, incorporating 
diverse approaches like data analysis, machine learning 
(ML) algorithms, and sensor technologies to gather and 
analyze real-time operational and sensor data from cru-
cial equipment [3]. Through the application of predictive 
models, it becomes feasible to discern intricate patterns 
and anomalies in equipment performance. This foresight 
enables the early identification of potential failures, thus 
adopting a proactive stance in mitigating the repercus-
sions of unexpected downtime. PdM has proven to be 
a valuable asset to the oil and gas industry, helping to 
optimize its performance and cost-effectiveness [2]. PdM 
is crucial in the OGI, improving operational efficiency, 
reducing downtime, and optimizing maintenance strate-
gies. Water Injection Pumps (WIPs) are vital for smooth 
operations and maximizing production concerning 
reservoir pressure and oil recovery [4]. PdM leverages 
advanced technologies and data analytics to predict fail-
ures and enable proactive maintenance based on real-
time conditions [5]. This is especially critical for demand-
ing equipment like Water Injection Pumps (WIPs) in the 
Oil and Gas Industry (OGI). Implementing AI-based PdM 
for these pumps offers enhanced strategies through 
cutting-edge AI techniques, including Machine Learn-
ing (ML) and deep learning (DL). These AI approaches 
can analyze extensive data to identify early warning 
indicators of potential failures, enhancing operational 
efficiency and reducing downtime [6]. Proactive main-
tenance planning, efficient resource allocation, and 
optimized spare parts inventory can be achieved based 
on real-time equipment conditions. Traditional mainte-
nance approaches often result in unnecessary actions 
and costly disruptions, while reactive maintenance poses 
safety and environmental risks [7]. PdM addresses these 
challenges by leveraging advanced technologies and 
data analytics to monitor the real-time health and per-
formance of upstream rotating equipment in the OGI 

[6]. Through the continuous collection, harnessing, and 
analysis of real-time data sourced from a diverse array 
of outlets, encompassing sensors, control systems, and 
historical maintenance records, PdM models possess 
an inherent capability to identify anomalies, decipher 
patterns, and recognize early signals that may signify 
potential equipment failures [3]. By means of this exten-
sive data scrutiny, PdM models facilitate the prompt 
detection of potential issues, thus enabling proactive 
maintenance interventions. This comprehensive data-
driven approach equips organizations to preemptively 
anticipate and address impending challenges, effectively 
curtailing downtime, optimizing maintenance strategies, 
and augmenting operational efficiency [7]. The integra-
tion of PdM models instates a proactive maintenance 
paradigm that bolsters reliability, curtails costs, and 
extends the lifecycle of critical assets. The early identi-
fication and resolution of potential issues before they 
escalate into substantial failures empower operators 
to avert expensive breakdowns, mitigate production 
losses, and ensure the continuity of operations. Moreo-
ver, PdM offers the potential for more efficient resource 
planning and allocation [8, 9]. With the capability to 
accurately forecast maintenance needs, operators can 
optimize spare parts inventories, diminish the necessity 
for unplanned repairs, and streamline their maintenance 
schedules. PdM for upstream rotating equipment is 
increasingly vital due to industry complexity and critical-
ity [4]. Digitalization and IoT provide abundant data for 
monitoring and optimizing equipment, enabling proac-
tive maintenance and operational efficiency. Advanced 
analytics, ML, and AI in PdM unveil hidden patterns for 
more accurate maintenance recommendations [10]. This 
research aims to comprehensively review AI-based PdM 
of WIPs in the OGI. It provides insights into the theo-
retical foundations and applicability of AI-based models 
for WIPs. To achieve this objective, the following specific 
research objectives have been identified:

	 (i).	 To examine the advancements in AI-based models 
for PdM of WIPs in the OGI.

	 (ii).	 To identify the challenges associated with imple-
menting AI-based models for PdM of WIPs.

Driven by the research objectives, the central inquiry 
that directs this paper from a theoretical standpoint is: 
What are the advancements and challenges encountered 
in the application of AI-based models for PdM of WIPs in 
OGI? This research question serves as a guiding framework 
for the literature review, theoretical analysis, and explora-
tion of the identified objectives. By addressing this ques-
tion, the research aims to contribute to understanding AI-
based PdM in the context of WIPs, enabling researchers, 
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practitioners, and decision-makers to gain insights into 
the theoretical underpinnings and practical implications 
of implementing AI in maintenance strategies.

2 �  Overview of predictive maintenance 
techniques

Instead of hinging on fixed maintenance schedules or 
waiting for failures to manifest, PdM harnesses data-driven 
insights to optimize maintenance activities [11]. Gallab 
et al. [12] discusses an anticipation and decision-making 
approach (Prediction Model) in LPG sector maintenance 
activities with Multi-Agent Systems derived from AI. Their 
proposed approach aims to facilitate a better comprehen-
sion of maintenance activities within the LPG supply chain 
and ultimately lead to more effective safety analysis, ena-
bling maintenance actors to make well-informed decisions 
for minimizing risks [5–9].

Several techniques are commonly employed in PdM to 
monitor and analyze equipment conditions [1–4, 13–15]. 
These techniques include:

(1)	 Ongoing Monitoring of Condition Condition monitor-
ing entails the continuous or periodic measurement 
of various parameters like vibration, temperature, 
pressure, and oil analysis. Its purpose is to detect any 
abnormal behavior or changes in these parameters 
that may indicate potential equipment failures.

(2)	 Analysis of Failure Modes and Effects (FMEA) FMEA is 
a systematic method for identifying potential failure 
modes, their causes, and the effects these failures can 
have. It aids in prioritizing maintenance tasks and 
determining the criticality of different failure modes.

(3)	 Utilization of Statistical Analysis Statistical techniques, 
such as regression analysis, time series analysis, and 
pattern recognition, are employed to analyze histori-
cal data and identify trends, patterns, and anomalies. 
Statistical analysis aids in predicting future equip-
ment behavior and identifying potential failure pat-
terns.

(4)	 Adoption of Reliability Centered Maintenance (RCM) 
RCM is a structured maintenance approach that 
focuses on identifying the most critical maintenance 
tasks based on the equipment’s function, failure 
consequences, and risk analysis. The aim of RCM is 
to optimize maintenance efforts by prioritizing tasks 
that have the greatest impact on reliability and safety.

Proper maintenance is crucial for optimizing the per-
formance and safety of oil and gas operations, offer-
ing benefits like improved safety, increased efficiency, 
and cost savings [3–6]. Comprehensive maintenance 

programs, including regular inspections and preventa-
tive measures, along with training and acquiring nec-
essary tools, are essential [11]. PdM, utilizing data and 
technology to anticipate failures, is particularly relevant 
in the OGI due to its serious consequences [8–10]. By 
implementing PdM with technologies like sensors and 
ML, companies can enhance safety, efficiency, and cost-
effectiveness in their operations [7].

3 � Methodology

This study follows the systematic review approach and 
adheres to the review phases protocol outlined by Khan 
et al. [10]. The selection process for included studies 
aligns with the guidelines proposed by Munim et al. [16]. 
Figure 1 represents the stages and steps encompassed 
by the review protocol, presenting a flowchart that out-
lines the selection process for the studies included in the 
analysis. Subsequent sections delve into comprehensive 
elucidations of the review protocol and elaborate on the 
meticulous search and selection procedures undertaken 
within the systematic literature review.

Stages Progressions

Planning

Articulate the research motivation and outline the objectives.

Refine the approach used for conducting the search.

ResourcesSearch terms

Search & Selection

Research process, assessment, screening out the 

irrelevant, Scrutiny.

Extraction of data

Execution Data synthesis and 

Fig. 1   The sequential phases and steps of the review protocol
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3.1 � Inclusion and exclusion criteria for study 
selection

To ensure the meticulous selection of relevant studies, 
the review establishes precise inclusion and exclusion 
criteria. The inclusion criteria are specifically designed to 
encompass studies that delve into AI-based models or 
approaches for PdM of WIPs within the OGI, utilizing cut-
ting-edge AI techniques such as ML or DL. Selected studies 
specifically discuss the PdM of WIPs, providing theoreti-
cal perspectives and methodologies related to AI-based 
models. Only peer-reviewed journal articles, conference 
papers, and scholarly publications are considered for 
inclusion to ensure high quality. Exclusion criteria elimi-
nate studies that do not address AI-based models for PdM, 
focus on different equipment or industries, lack theoretical 
insights, or have redundant findings. Non-English studies 
are excluded due to resource limitations. By adhering to 
these criteria, the review selects relevant and high-quality 
studies to support the research objectives and address the 
research question effectively.

4 � Research approach and strategy

This paper offers an in-depth examination through a sys-
tematic literature review of AI-based models utilized for 
PdM of WIPs within the OGI. Relevant studies were identi-
fied through systematic searches in academic databases 
such as Scopus, IEEE Xplore, ScienceDirect, and ACM Digi-
tal Library. The data extraction encompassed a range of 
elements, including research objectives, methodologies, 
theoretical frameworks, algorithms utilized, and discover-
ies concerning progressions and challenges. Employing 
thematic analysis on this data yielded a comprehensive 
portrayal of AI-based models for PdM, elucidated within 
the context of their theoretical foundations and frame-
works. The findings were subsequently deliberated in 
the context of the research objectives, delivering theo-
retical implications and recommendations for both future 
research endeavors and practical applications. Systematic 
investigations occupy a prominent role in the realm of 
research, contributing valuable insights into the scholarly 
landscape and pinpointing areas of knowledge deficiency. 
These studies utilize quantitative techniques to scrutinize 
diverse facets of scientific publications, encompassing ele-
ments like citation patterns, collaborative networks, and 
prevailing research trends. By scrutinizing bibliographic 
data, researchers can attain a more profound comprehen-
sion of the existing corpus of literature, identify domains 
warranting further exploration, and gauge the influence 
and impact of specific research topics or disciplines. One 
application of bibliometric analysis lies in its ability to 

explore the relationship between bibliographic coupling 
and countries. This analytical approach enables research-
ers to delve into collaborative patterns and knowledge 
exchange between scholars from different nations.

By studying the shared references among articles, 
researchers can identify clusters of countries that are closely 
connected in terms of their research output and collabo-
ration networks. Figure 2 portrays the correlation between 
bibliographic coupling and countries, showcasing the inter-
relationship observed when employing the keywords "Pre-
dictive Maintenance" and "AI" in a search query. A total of 
345 relevant document results pertaining to the topic were 
obtained from the search, specifically focusing on studies 
conducted between 2013 and 2023. Figure 2 highlights 
a substantial number of research studies focusing on this 
area, indicating the significance and interest in PdM using 
AI across multiple countries. Figure 3 presents the relation-
ship between co-occurrence and index keywords. Notably, 
it is evident that PdM has garnered substantial attention 
in recent research. The figure showcases the frequency of 
co-occurrence of keywords related to PdM, highlighting 
its prominence, and indicating a strong research focus in 

Fig. 2   Visualization of bibliographic coupling and country relation-
ships

Fig. 3   The relationship between co-occurrence and index key-
words
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this area. When the keyword combination of TITLE-ABS-
KEY ("Predictive Maintenance" AND "AI" AND "OIL") was 
used, the search yielded a total of 16 document results. Fur-
thermore, Fig. 4 provides a visualization of the dominant 
keyword research in the OGI in the context of the search 
query. It offers insights into the collaborative patterns and 
knowledge exchange among different countries. This fig-
ure showcases the frequency and associations between 
different keywords, providing valuable information about 
the research landscape and areas of focus in the field. After 
refining our search criteria using the keywords "Advance-
ments" OR "Challenges" AND "AI-Based Model" AND "Predic-
tive Maintenance" AND "Water Injection Pumps" AND "Oil 
and Gas," and subsequently focusing the search to "AI-Based 
Model" AND "Predictive Maintenance" AND "Water Injection 
Pumps" AND "Oil and Gas," we successfully identified rele-
vant literature. Furthermore, when we further narrowed our 
search by utilizing the keywords "Predictive Maintenance" 
AND "Water Injection Pumps," we uncovered a deeper layer 
of related research. This extensive body of related work has 
been meticulously reviewed and critiqued in this study.

The limited availability of research on PdM for WIPs in the 
OGI highlights a significant research gap. To date, no studies 
have been found that specifically investigate the prediction 
of maintenance requirements, considering causes such as 
equipment type, operating conditions, age of equipment, 
quality of maintenance, environmental factors, type of oil 
or gas, and safety considerations, as well as effects including 
wear and tear, corrosion, clogging, electrical issues, leaks, 
and performance improvements.

5 � Water injection pump in the oil and gas 
industry sector

Water injection pumps are essential equipment in the 
OGI, used to increase pressure and enhance production 
by injecting water into wells. They play a crucial role in 
maintaining production levels and improving recovery 
rates [17]. Data mining techniques are utilized in the 
industry to address challenges and support decision-
making, including the maintenance of production levels 
through methods like water injection. Lubricant analysis 
is crucial for monitoring pump condition and reliability 
[11–13]. While previous studies have utilized data min-
ing techniques for lubricant analysis, they often rely on 
laboratory data. This research focuses on predicting the 
lubricant service life of WIPs using real-time field data 
from a crude oil production facility. It considers data 
pre-processing and the choice of regressor to assess 
prediction accuracy [18]. Data mining predictions’ accu-
racy is influenced by factors such as algorithm choice, 
data volume, and data pre-processing [19]. This study 
focuses on the impact of data pre-processing on predict-
ing lubricant service life for WIPs in a crude oil recov-
ery facility. The dataset is divided into five categories 
based on different combinations of motor and pump 
data to identify factors affecting lubricant service life. 
Electric motor-driven WIPs in Sumatra, Indonesia, were 
examined using condition monitoring techniques like 
vibration monitoring, infrared scanning, and lubricating 

Fig. 4   Dominant keyword 
research in OGI
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oil analysis. Various approaches exist for data pre-pro-
cessing and lubricant service life prediction in the OGI, 
including ML, statistical analysis, expert systems, and 
physical modeling [7]. Statistical techniques like regres-
sion analysis can predict maintenance needs by mod-
eling the relationship between lubricant condition and 
equipment performance. Expert systems provide guid-
ance based on expert knowledge, and physical models 
utilize known equipment and lubricant properties for 
prediction. The choice of data pre-processing and pre-
diction method depends on organizational needs and 
resources [20]. Regular lubricant analysis, depicted in 
Fig. 5, helps identify issues like contamination, degra-
dation, or wear, enabling timely action to prevent equip-
ment damage or failure.

5.1 � Analysis and anticipation of pump failures

Prognostics constitutes a substantial area of inquiry due 
to its foundational role in advanced predictive technolo-
gies [21]. This field not only assists in appraising the per-
formance of equipment but also plays a pivotal role in 
forecasting the timing of potential failures and mitigating 
the impact of unexpected breakdowns [21]. The central 

focus of prognostics and health management (PHM) appli-
cations lies in the realm of prediction, encompassing the 
determination of a system’s Remaining Useful Life (RUL) 
and the formulation of a contemporaneous maintenance 
strategy [21]. It is essential to distinguish between diag-
nosis and prognosis, with the pivotal distinction residing 
in their temporal orientation. Diagnosis is concerned with 
identifying the nature and cause of a specific issue, typi-
cally applied after a system failure has transpired [21]. In 
contrast, prognosis, rooted in the Greek concept denot-
ing foreknowledge and fore-sensing, is geared toward 
predicting faults before they manifest. The primary aim of 
prognosis is to anticipate events before their occurrence, 
thereby emphasizing the critical element of timing in this 
context, as opposed to diagnosis [15–17]. Figure 6 pro-
vides an overview of Condition-Based Maintenance (CBM), 
encompassing diagnostic and prognostic maintenance, in 
accordance with the framework by Tchakoua et al. [22]. 
CBM is orchestrated through three fundamental processes, 
as illustrated in Fig. 7, which encompass data collection 
through sensors, signal processing utilizing diverse data 
techniques, and the extraction of features comprising 
characteristics facilitating the assessment of the equip-
ment’s current state [23].

Figure 6 demonstrates how information from the sys-
tem’s current and past statuses, drawn from the collected 
data, can be harnessed to identify or predict faults in 
pumps. Upon diagnosis of a defect, corrective mainte-
nance is employed to rectify the issues. Conversely, if a 
failure is foreseen, preventative maintenance is executed 
in advance of the impending fault occurrence. It is note-
worthy that faults in pumps can emanate from operational 
causes, system-related issues, mechanical malfunctions, 
or a combination thereof [20, 21]. Mechanical issues in 
pumps transpire due to problems with components like 
bent rotors, misalignments, and bearing complications. 
System-related flaws entail improper installation and 

Fig. 5   The lubricant sampling points of WIP are used to predict the 
service life of the oil [20]

Data acquisi�on, 
Signal Processing 

and Feature 
extrac�on 

Condi�on 
Monitoring 

Preven�ve 
Maintenance 

(Fault Preven�on)

    Prognos�c

Correc�ve Maintenance (Fault detec�on)Diagnos�c

Fig. 6   A summary of CBM [23]

Fig. 7   Analysis of distribution in causes of failure and associated 
repair costs [23]
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leakage. Operational faults, primarily arising from obstruc-
tions, cavitation, and flow-related matters, manifest during 
the active operation of the pump [24].

Per Tiwari et al. [25] findings, cavitation, attributed to 
pressures falling below the vapor pressure at the suc-
tion, stands out as the most prevalent and recurrent issue 
encountered in pump systems, a consensus supported 
by several studies [21–23, 25]. In addition to cavitation, 
another frequently recurring challenge in pumps relates 
to damage occurring in the casing and impeller, which can 
be attributed to the pulsation of pressure linked to internal 
recirculation. Furthermore, blockages in the suction and 
discharge pipes caused by solid particulates and impuri-
ties within the pumped liquid represent a recurring issue 
[23–25]. It is worth noting that these faults can manifest 
at any stage of the pump’s operation. A study conducted 
by Grundfos Research and Technology [26] provides a 
detailed breakdown of the root causes of pump failures, 
along with descriptions of the associated repair costs, as 
illustrated in Fig. 7. Historically, the process of diagnosing 
faults has predominantly relied on physical assessments 
of equipment health. This approach introduces labor-
intensive procedures that can, in turn, affect the precision 
of fault diagnosis. At its core, fault diagnosis methodolo-
gies can be broadly categorized as either model-based or 
data-driven. Model-based fault diagnosis methods involve 
the utilization of a mathematical model representing the 
observed system [26]. By employing such a model, esti-
mations of system or process outputs are generated and 
subsequently compared against actual process outputs to 
yield a residual signal or innovation. These residual signals, 
in turn, provide insights into potential fault conditions 
based on a comparison between the model-generated 
outputs and the actual system outputs [26].

5.2 � Factors affecting the maintenance prediction 
of water injection pump

WIPs are commonly used in OGI operations to increase 
reservoir pressure and enhance oil recovery. Several fac-
tors can influence the maintenance needs of these pumps. 
The type of oil or gas being injected can impact corrosion 
resistance and maintenance frequency [13–16]. Operating 
conditions, including temperature, pressure, and flow rate, 
also affect maintenance requirements [8, 10–13]. Older 
pumps are generally more prone to failure and may need 
more frequent maintenance. Considering these factors is 
crucial for planning PdM and ensuring equipment reliabil-
ity [7, 27]. Proper maintenance is essential for equipment 
reliability, operational efficiency, and overall performance 
[28]. Several problems with water pump injection systems 
in the OGI may require maintenance and repair. Some 
common issues are listed below [7, 27, 28].

	 (i).	 Wear and tear on mechanical components Water 
pump injection systems contain various mechani-
cal components such as bearings, seals, and 
impellers that may wear out over time and require 
replacement.

	 (ii).	 Corrosion Water pump injection systems may be 
exposed to corrosive substances, such as saltwater, 
that can cause damage to the system over time.

	 (iii).	 Clogging Water pump injection systems can 
become clogged with debris or scale, which can 
reduce the efficiency of the system and require 
cleaning or maintenance.

	 (iv).	 Electrical issues Water pump injection systems may 
experience electrical problems such as short cir-
cuits or power surges, which can cause the system 
to fail.

	 (v).	 Leaks Water pump injection systems may develop 
leaks in the piping, seals, or other components, 
which can cause the system to lose efficiency and 
require repair.

It is important to regularly maintain and service water 
pump injection systems to ensure that they operate 
at peak performance and to prevent costly repairs or 
downtime.

5.3 � Critical discussion of previous studies

Numerous research studies have explored DL techniques 
in the realm of PdM. For instance, Janssens et al. [29] inves-
tigated the application of CNNs for monitoring the health 
of machines, leveraging infrared thermal images. Although 
the study demonstrates the potential of CNNs in detecting 
anomalies in rotating machinery, it lacks specific informa-
tion about the types of machinery used, limiting the gen-
eralizability of the findings. An alternative strategy for PdM 
revolves around the utilization of artificial neural networks 
(ANNs) to predict failures. Sampaio et al. [30] proposed an 
ANN-based model to predict motor failure time, with an 
evaluation conducted on an AK-FN059 with a 12 cm cool-
ing fan. However, the study lacks a comprehensive analysis 
of the ANN’s performance and its comparison with other 
PdM methods [26–28]. While the authors mention the 
possibility of integrating fault diagnosis and prediction 
systems using ANNs for maintenance planning, no con-
crete results or insights are provided in this regard. Pertain-
ing to data pre-processing and analysis, Bekar et al. [13] 
introduced an intelligent approach for PdM with a spe-
cific emphasis on machine motors. The study incorporated 
K-means clustering and principal component analysis 
(PCA) for data pre-processing. However, the research lacks 
detailed information about the specific motor types and 
data sources used, limiting the applicability of the findings. 
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Incorporating data from a multitude of sources stands as 
a pivotal element within the framework of PdM. Cheng 
et al. [11] focused on PdM in MEP systems for OGI facili-
ties, combining ANNs and SVMs, but their study lacked 
specific MEP component details and thorough system 
assessment. In the realm of PdM, algorithm selection is 
crucial for accurate predictions. Falamarzi et al. [14] used 
ANN and SVR for tram track gauge deviation prediction 
but lacked comprehensive model performance analysis 
and comparative assessments. Susto et al. [31]. proposed 
a PdM system for epitaxy processes with linear regulariza-
tion and Ridge regression but lacked equipment context 
and performance evaluation, using LiR, RF, and BN with-
out comprehensive assessments. Praveenkumar et  al. 
[32] diagnosed automobile gearbox faults using SVM, but 
both studies lacked detailed comparative assessments. 
Abu-Samah et al. [33] introduced proactive maintenance 
with Bayesian Networks (BN), monitored pump machine 
condition with MGGP but did not include comparisons 
with alternative techniques. Prytz et al. [27] used Ran-
dom Forest (RF) for vehicle compressor PdM but lacked 
in-depth assessments regarding the incorporation of vehi-
cle data for improved predictions. Biswal and Sabareesh 
[34] developed a test rig to examine condition monitoring 
aspects in WIPs by integrating ANNs into their methodol-
ogy. Another relevant work by Susto and Beghi [35] pre-
sented a PdM system for epitaxy processes, utilizing SVM 
and k-Nearest Neighbors (k-NN) for predictive purposes. 
However, the study did not offer detailed discussions on 
the performance of the proposed system or comparisons 
with other PdM techniques. Durbhaka and Selvaraj [36] 
conducted an in-depth investigation into the realm of 
PdM specifically for wind turbine diagnostics. Their study 
revolved around the analysis of vibration signals and 
involved the application of k-NN, SVM, and k-means algo-
rithms. Mathew et al. [37] introduced a regression kernel 
for prognostics with the application of SVM. Regrettably, 
the study did not provide specific information regarding 
the domain in which this approach was applied, nor did it 
offer comprehensive performance assessments. Kulkarni 
et al. [17] devised a PdM strategy tailored to pump sys-
tems, incorporating Random Forest (RF), with a particular 
emphasis on root-cause analysis for defects. In the realm of 
PdM, various machine learning algorithms like SVM, ANN, 
RF, and others have demonstrated their effectiveness [7, 
38]. SVM is known for exceptional accuracy, making it a 
preferred choice for classification and regression tasks [30, 
33]. Kumar et al. [39] developed a big data-driven frame-
work for gas turbine CBM prediction with FURIA. Lasisi and 
Attoh-Okine [40], used LDA, SVM, and RF for track qual-
ity indexing. Amruthnath and Gupta explored early fault 
detection with unsupervised ML methods, suggesting 
broader research with more parameters and emphasizing 

multiple ML methods [7]. Huuhtanen and Jung [28], 
focused on photovoltaic panel PdM with DL and CNN. 
Kolokas et al. [41] explored upstream industrial equip-
ment fault prediction using DT, RF, NB-G, NB-B, and ANNs, 
highlighting the importance of equipment data. Luo et al. 
[41] proposed early fault detection in machine tools with 
innovative ML algorithms, particularly DL, centered around 
pump machines. Abdalla et al. [42] utilized XGBoosting 
for Electrical Submersible Pumps (ESPs) PdM but didn’t 
provide specific performance discussions or comparisons 
with other PdM techniques. Table 1 offers a comprehensive 
overview of previous PdM studies, aiding in comparisons 
and identification of key findings in the field.

Implementing PdM programs in the oil and gas sec-
tor in developing countries faces challenges like limited 
skilled personnel, access to specialized sensors and soft-
ware, infrastructure constraints, financial limitations, and 
cultural obstacles [27, 36]. In the Gulf Cooperation Council 
(GCC) countries, which heavily rely on oil and gas produc-
tion, challenges include overdependence on oil, environ-
mental impacts, social issues, and infrastructure limitations 
[48]. Efforts are being made to address these challenges 
through initiatives like reducing carbon emissions, diver-
sifying the economy, and improving working conditions 
[48]. Maintenance challenges in the GCC countries include 
aging infrastructure, harsh climates, skill shortages, limited 
access to modern technologies, and financial constraints. 
Initiatives and policies are being implemented to improve 
sustainability, transparency, and diversification in the oil 
and gas sectors, along with investments in training and 
infrastructure development.

6 � Applications of artificial intelligence 
in predictive maintenance

AI-based model has gained significant attention and dem-
onstrated remarkable potential in the field of PdM. This 
section provides an overview of AI-based model for PdM, 
highlights relevant case studies and research papers that 
focus on AI in PdM, and emphasizes the importance of 
AI in the context of PdM for WIPs [6]. AI-based model for 
PdM leverages the power of AI techniques, such as ML, DL, 
and data analytics, to enable more accurate and efficient 
prediction of equipment failures [14]. These models utilize 
historical and real-time data from sensors, maintenance 
records, and other relevant sources to identify patterns, 
detect anomalies, and forecast the RUL of equipment. 
ML algorithms, including regression models, decision 
trees, and SVM, can be trained on historical data to pre-
dict the likelihood of equipment failures based on various 
parameters and environmental conditions [6–10]. These 
algorithms learn from the data patterns and adjust their 
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predictions as new information becomes available. DL 
techniques, such as CNNs and recurrent neural networks 
(RNNs), are capable of handling complex and unstruc-
tured data. They excel in feature extraction and can cap-
ture intricate relationships within the data, enabling more 
accurate fault diagnosis and prediction of failures [23, 
25–27]. AI-based model for PdM offers several advantages, 
including early detection of equipment degradation, 
reduced downtime, optimized maintenance schedules, 
and improved cost-efficiency. By accurately predicting 
failures and identifying maintenance needs in advance, 
these models empower maintenance teams to take proac-
tive measures and prevent costly breakdowns [13–18]. For 
WIPs in the OGI, specific case studies and research papers 
have explored the application of AI in PdM [3, 10]. These 
studies have emphasized the use of AI algorithms, such 
as ML and DL, to analyze sensor data, monitor pump per-
formance, and detect potential faults or deviations. These 
case studies and research papers showcase the practical 
implementation of AI-based model in WIPs ’ PdM. They 
provide valuable insights into the benefits, challenges, and 
lessons learned from using AI techniques in this specific 
context [6–8].

6.1 � Barriers to using ML for predictive maintenance

The organization of this literature review is structured 
around the ML techniques and categories utilized, the 
equipment and devices employed for data acquisition, the 
attributes of the utilized data (including size and type), and 
various other factors. This review shows that PdM plays 
a vital role in enhancing efficiency within environments 

where machines undergo gradual deterioration and wear 
over time. The proliferation of inexpensive, interconnected 
sensors within the IoT enables a growing abundance of 
data for ML algorithms to facilitate PdM [13]. The study 
provides an extensive examination of ML techniques 
employed in recent years for PdM of industrial compo-
nents [36]. The review explores potential market prospects 
for PdM and the challenges associated with implementing 
ML algorithms for PdM in the context of Industry 4.0, as 
delineated in Table 2. A survey by Prytz et al. [27] found 
that only 11% of companies surveyed had successfully 
implemented ML-based PdM. 

6.2 � Importance of AI in water injection pumps’ 
predictive maintenance

By employing AI-based model for PdM, operators can 
proactively identify potential issues, monitor pump per-
formance, and take preventive measures to avoid costly 
downtime [6]. AI algorithms can analyze sensor data in 
real-time, detect abnormal pump behavior, and provide 
early warnings for impending failures [13]. This enables 
maintenance teams to schedule maintenance activities, 
order spare parts, and allocate resources in a timely man-
ner, minimizing disruptions and maximizing pump avail-
ability [24]. By leveraging AI in WIPs ’ PdM, operators can 
optimize maintenance strategies, reduce unnecessary 
inspections or repairs, and enhance the overall reliability 
and productivity of their operations. In conclusion, the 
application of AI in PdM offers significant advantages for 
WIPs in the OGI [45]. AI-based model enables accurate 
failure prediction, optimized maintenance schedules, 

Table 2   Barriers to using ML for PdM

References Hurdles Reflections

[49] Determining the necessary 
data to gather

The launch of connected machines can be difficult for several reasons:
(1) Unclear evidence of data that provide value: It can be difficult to know which data is valuable 

when launching connected machines, as it is not always clear how the data is used or what 
insights they would provide. This can make it challenging to justify the time and resources 
required to collect and analyze the data

(2) Unclear business goal and planning: Without clear business goals, it is difficult to determine 
which data are necessary to collect and how they should be used to inform business deci-
sions. Without a plan for how to use the data, it is also difficult to know how to collect and 
analyze the data

(3) Limited resources: Launching connected machines often requires significant time and 
resources. If one is unsure about which data is valuable or how to use them, it can be challeng-
ing to justify the use of these resources

(4) Complexity: Connected machines can be complex systems, and it can be challenging to 
effectively collect and analyze the data they generate

[11] Collecting necessary datasets Due to large dataset requirements, data preparation and computational expenses, establishing 
ML solutions can be time-consuming and resource intensive

[44] Optimized data science Selecting an appropriate method of analyzing data involves choosing the right approach to 
extract meaningful insights, such as statistical techniques, data visualization, or ML algorithms
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and improved cost-efficiency, ensuring the reliable and 
efficient operation of water injection systems [35].

6.3 � AI models for predictive maintenance of water 
injection pumps

In recent years, a range of AI models have been employed 
for PdM of WIPs in the OGI. These models utilize advanced 
techniques such as ML, DL, and hybrid approaches to 
enable accurate prediction of pump failures, estimation of 
RUL, and optimization of maintenance strategies [36]. This 
section provides an overview of the AI models commonly 
used in water injection pump maintenance, highlighting 
their key characteristics, functionalities, and advantages. 
ML-based models, including regression models, decision 
trees, SVM, RF, and ANN, have demonstrated success in 
predicting pump failures based on historical sensor data, 
operational parameters, and maintenance records [10–14]. 
These models employ various algorithms to learn from 
the data patterns and identify potential failure modes. 
They can estimate the probability of pump failures, clas-
sify fault types, and optimize maintenance schedules to 
minimize downtime [27, 33]. DL-based models, such as 
CNNs and RNNs, have shown remarkable performance 
in analyzing sensor data and capturing complex patterns 
in water injection pump operation. CNNs excel in image-
based fault detection by extracting spatial features from 
pump component images or spectrograms [45]. RNNs, on 
the other hand, are effective in analyzing sequential sen-
sor data and capturing temporal dependencies for accu-
rate failure prediction [8, 43]. These DL models enable 
more accurate fault diagnosis and prediction, leading to 
improved maintenance decision-making. Hybrid mod-
els, which integrate ML algorithms with DL architectures, 
have been developed to leverage the strengths of both 
approaches. These models combine feature extraction 
capabilities of CNNs with sequence modeling capabilities 
of RNNs, allowing for comprehensive analysis of both spa-
tial and temporal aspects of water injection pump opera-
tion [33–36].

6.4 � Data collection and processing

Effective data collection and processing are crucial com-
ponents of AI-based model for PdM. This section discusses 
the data sources and collection methods commonly used 
in PdM, the preprocessing techniques employed for AI 
models, and the associated challenges and considera-
tions in data collection and processing [34]. To effectively 
implement PdM programs, organizations rely on a range 
of data sources to gather the requisite information for pre-
dictive analytics and ML models. Among these sources, 
sensor data plays a pivotal role. Sensors are strategically 

placed on equipment to collect real-time data on param-
eters such as temperature, vibration, pressure, and flow. 
For instance, in the case of wind turbines, vibration sen-
sors are employed to monitor the condition of bearings 
and gearboxes, facilitating the early detection of poten-
tial faults [13]. Another crucial data source is Internet of 
Things (IoT) devices. IoT devices are becoming increasingly 
prevalent for data collection in PdM [36]. IoT devices, when 
integrated into machinery and equipment, offer continu-
ous data streams, enabling remote monitoring and cen-
tralized issue detection [27]. Historical maintenance logs 
provide valuable insights into past equipment failures and 
maintenance activities, aiding in predicting future mainte-
nance needs. Environmental data, including temperature, 
humidity, and weather conditions, can impact equipment 
health; correlating this data with performance enhances 
PdM model accuracy [14]. PdM utilizes various data collec-
tion methods, such as continuous condition monitoring 
for real-time sensor data, particularly beneficial for early 
anomaly detection in critical assets like engines and tur-
bines [13]. IoT technology simplifies remote monitoring 
by gathering data from diverse locations, facilitating wide 
geographical equipment failure management [7]. Data his-
torians represent specialized systems that collect and store 
historical data for analysis. They are commonly employed 
in industries such as oil and gas, where significant data 
volumes are generated. Data historians provide a histori-
cal perspective on equipment performance, aiding in the 
development of effective PdM strategies [50]. ML and AI 
techniques play a crucial role in analyzing and making 
predictions based on the collected data. These algorithms 
are capable of identifying patterns, anomalies, and trends 
that may not be immediately apparent through manual 
analysis. Consequently, they enhance the accuracy of PdM, 
contributing to reduced downtime and cost savings [14].

6.5 � Data preprocessing techniques for AI models

Data preprocessing plays a pivotal role in preparing data 
for AI models, encompassing crucial tasks such as data 
cleaning, transformation, and organization [38]. This 
step is indispensable for enhancing data quality, consist-
ency, and suitability, ensuring that the data is primed for 
effective analysis. Several preprocessing techniques are 
commonly employed in the context of AI-based model 
for PdM [27]. Data cleaning involves identifying and cor-
recting or removing errors, outliers, missing values, and 
noise from the data. This step ensures that the data used 
for analysis is accurate and reliable. Data normalization 
is often applied to scale the data to a consistent range, 
enabling fair comparison and preventing the domi-
nance of certain features. Common normalization tech-
niques include min–max scaling, z-score normalization, 
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or logarithmic scaling. Data integration, as performed 
by combining data from multiple sources or sensors, 
ensures a comprehensive view of equipment condition, 
enhancing predictive model accuracy [7]. Hybrid AI mod-
els, achieved through integrating various AI techniques, 
improve PdM system performance. Accurate evaluation 
and validation of AI models are crucial for assessing their 
reliability in PdM of WIPs.

6.6 � Challenges and considerations in data 
collection and processing

Data collection and processing for PdM pose several chal-
lenges and require careful considerations [34, 44]. Some 
of the key challenges include:

7 � Data Availability and Accessibility

(1)	 Obtaining access to high-quality and relevant data 
can be a challenge, especially in cases where data 
is dispersed across different systems or not readily 
available. Collaboration with data owners, data shar-
ing agreements, and data integration techniques may 
be necessary to address these challenges.

(2)	 Data Volume and Velocity PdM generates large vol-
umes of data, particularly in real-time monitoring sce-
narios. Handling and processing such high-velocity 
and high-volume data require efficient storage and 
computational infrastructure.

(3)	 Data Quality and Consistency Ensuring data quality 
and consistency is crucial for reliable predictions. 
Data cleaning techniques need to be applied to 
address errors, outliers, and missing values. Addition-
ally, consistency in data collection across different 
sensors and systems is essential to maintain accuracy 
and reliability.

(4)	 Data Privacy and Security Protecting sensitive data 
and ensuring compliance with privacy regulations 
are critical considerations. Proper anonymization 
techniques and data governance practices must be 
implemented to safeguard the privacy and security 
of collected data.

(5)	 Domain expertise plays a crucial role in comprehend-
ing the collected data and contextualizing equipment 
behavior. Effectively interpreting this data necessi-
tates a deep understanding of the specific domain. 
Collaborative efforts between data scientists and 
subject-matter experts are vital to guarantee precise 
analysis and interpretation of the data, leveraging 
their respective knowledge and skills.

8 � Role of artificial intelligence on predictive 
maintenance in the oil and gas industry

It is increasingly applied in the OGI for PdM programs. 
There are several ways in which AI can enhance PdM in 
the OGI [13–19]:

	 (i).	 Predictive modeling AI algorithms can be utilized 
to create predictive models that analyze data on 
equipment performance and identify potential 
issues before they occur.

	 (ii).	 Real-time monitoring AI-powered sensors and 
monitoring systems can be used to collect data on 
equipment performance in real time, allowing for 
the early identification of potential issues.

	 (iii).	 Machine learning AI algorithms can learn from data 
over time, allowing them to improve their predic-
tive capabilities and become more accurate at iden-
tifying maintenance needs.

	 (iv).	 Automated maintenance scheduling AI can be used 
to automate the scheduling of maintenance, ensur-
ing that it is performed at the optimal time to mini-
mize downtime and optimize equipment perfor-
mance.

Overall, the use of AI in PdM can help oil and gas com-
panies improve safety, efficiency, and cost-effectiveness. 
By identifying and addressing potential issues before they 
occur, AI can reduce downtime and improve overall pro-
duction efficiency.

8.1 � Performance of predictive maintenance 
in the oil and gas industry

Predictive Maintenance is a crucial technique in the OGI, 
anticipating equipment failures and proactively address-
ing maintenance needs [7–23, 25–35]. It offers benefits 
such as increased operational efficiency, improved safety, 
cost savings, and environmental advantages [17, 29]. The 
theories guiding PdM include "wearout failure," addressing 
gradual equipment degradation [13], and "infant mortal-
ity," mitigating failures in new equipment [6]. Reliability 
engineering emphasizes designing reliable systems and 
conducting regular inspections and tests [33]. Risk-based 
maintenance prioritizes tasks based on potential impacts, 
utilizing techniques like failure mode and effects analysis 
[19]. The goal of PdM is to minimize equipment failure risk, 
optimize operations, reduce costs, and improve produc-
tion through PdM, CBM and ML techniques [28, 30].

PdM, utilizing historical data and ML tools, enables 
timely fault detection and enhanced equipment condi-
tion [3]. The primary goal of every maintenance strategy 
is to minimize failure rates, improve equipment conditions, 
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extend lifespan, and reduce costs. PdM is a highly prom-
ising approach that possesses significant potential for 
achieving these objectives [33]. However, it is crucial to 
carefully choose ML techniques, data types, and sizes 
that are practical for industrial applications. This review 
provides guidance for researchers and practitioners in 
selecting the most suitable ML techniques, data sizes, 
and types [13, 43]. Figure 8 illustrates the different main-
tenance types in two scenarios: when the system is well-
planned and when it is not well-planned. ML, a subset of 
AI, is a powerful tool for creating predictive algorithms by 
training models on historical data to forecast future out-
comes. ML demonstrates exceptional proficiency in man-
aging high-dimensional multivariate data and uncovering 

concealed relationships within intricate environments 
[51]. ML techniques have widespread applications across 
diverse manufacturing domains, encompassing mainte-
nance, optimization, troubleshooting, and control [32]. 
This review provides an overview of recent advancements 
in ML techniques for PdM, categorizing them based on 
ML technique, category, equipment, data acquisition, 
description, size, and type. The review is based on a com-
prehensive search of the Scopus database, covering the 
current field, background, methodology, and a thorough 
review of ML techniques for PdM [7]. It also offers conclu-
sions and future research guidelines. PdM utilizes AI and IT 
technology to maintain equipment safety through defect 
detection and RUL estimates, reducing costs and extend-
ing equipment lifespan.

PHM systems have become necessary for effective 
equipment maintenance. PHM systems, utilizing advance-
ments in AI and IT, assess equipment health systematically 
[6]. PdM, a PHM approach, collects data on equipment’s 
physical health and performance (e.g., pressure, vibra-
tion, temperature) to detect faults early, assess health, 
and predict future states. This approach reduces mainte-
nance costs and extends the equipment’s RUL by avoid-
ing potential failures [51]. ML, a subfield of AI, learns and 
improves without explicit instructions, finding applica-
tions in various fields, including manufacturing for tasks 
like maintenance, optimization, and control [51]. PdM 
implementation typically encompasses a diverse array of 
technologies, including smart sensors, networks, AI, Big 
Data, and cloud systems. Figure 9 visually represents these 
technologies, outlining the process and components of 
PdM. The technologies can be categorized into sensors, 
networks, integration, augmented intelligence, and aug-
mented behavior. Sensors play a crucial role in collecting 
data pertaining to machine operations and environmental 
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conditions, while the network facilitates data storage and 
transfer, utilizing technologies such as Bluetooth and WiFi. 
Effective data management and consolidation are made 
possible through the integration of various technologies, 
facilitated by IoT [13]. Augmented intelligence plays a 
pivotal role in data processing and analysis, enhancing 
the overall capabilities of the system [49]. Augmented 
behavior, enabled by applications and ticketing systems, 
offers virtualization, computing, and service platforms to 
support operators in their tasks. Furthermore, ML algo-
rithms are categorized into supervised, unsupervised, 
and reinforcement learning methods, providing distinct 
approaches for data analysis and decision-making [49]. 
By combining and applying these algorithms, their clas-
sification power can be enhanced in both supervised and 
unsupervised learning scenarios.

The main categories of ML algorithms consist of super-
vised learning, unsupervised learning, and reinforcement 
learning. In supervised learning, algorithms leverage 
labeled data to make predictions and identify patterns. 
Unsupervised learning algorithms, on the other hand, 
work with unlabeled data to discover inherent patterns 
and relationships. Lastly, reinforcement learning algo-
rithms involve an agent interacting with an environment 
to learn a sequence of actions that maximize a reward or 
outcome [3–7]. Some algorithms can be applied to both 

unsupervised and supervised learning, and different algo-
rithms can be combined to improve classification accu-
racy [38, 45]. Unsupervised ML is a type of AI in which 
the algorithm uses existing data to identify patterns or 
clusters without guidance or feedback from an external 
expert. This is different from supervised learning, which 
involves providing the algorithm with labeled examples to 
learn from. Unsupervised learning encompasses a range 
of techniques, including clustering, self-organizing maps, 
and association rules. In the presented study, the reviewed 
articles are categorized into three main ML categories: 
classification, regression, and clustering, as illustrated in 
Fig. 10.

This categorization allows for a comprehensive under-
standing of the ML techniques employed across the ana-
lyzed articles. The data employed in These articles can 
be categorized into two primary types: firstly, real data 
acquired from genuine real-world sources, and secondly, 
simulated, or synthetic data generated with specific objec-
tives in mind [13]. Reinforcement learning, on the other 
hand, represents a particular type of ML that entails pro-
viding the algorithm with information regarding the out-
comes resulting from specific actions. Through a process 
of trial and error, the algorithm learns which actions yield 
the most favorable results, thus optimizing its decision-
making capabilities. Some researchers consider reinforce-
ment learning to be a special form of supervised learning, 
while others see it as distinct [27]. There are several differ-
ent algorithms that can be used for supervising ML in PdM 
or manufacturing, each with its own strengths and limi-
tations. Selecting the best algorithm for a specific prob-
lem can be difficult. To become proficient in applied ML, 
it is important to gain experience working with a variety 
of datasets [29]. Different approaches, data preparation, 
and modeling methods may be necessary for different 
problems. Datasets used in ML can be divided into two 
categories: real datasets collected from actual production 
processes and synthetic datasets created for ML.

8.2 � Applications of ML algorithms in predictive 
maintenance

ML algorithms play a pervasive role in the field of PdM, 
finding extensive utilization in diverse areas such as manu-
facturing systems, tools, and machines. This stems from 
their remarkable capability to analyze vast volumes of data 
and address a wide range of problems [19]. Within PdM, 
a multitude of ML algorithms are frequently employed, 
including but not limited to ANN, reinforcement learning, 
SVM, logistic regression, and decision trees [7]. Develop-
ing an ML algorithm involves historical data selection and 
pre-processing, model choice, training and validation, and 
ongoing performance maintenance [27]. ANNs, inspired by Fig. 10   Classifications within ML techniques [52]
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biological neurons, excel in handling complex, nonlinear 
data and have been applied in soft sensing and predictive 
control systems [14]. They demonstrated superior perfor-
mance in classifying tool state and predicting equipment 
failures compared to SVM and K-Nearest Neighbors (KNN) 
models [14, 50]. In rail track PdM, SVMs and ANNs are 
highly effective in predicting degradation and distinguish-
ing healthy from faulty states [7, 37]. While physics-based 
models are adept at representing degraded conditions, 
ANN models perform strongly for equipment in optimal 
condition [27]. SVM, renowned for its exceptional accuracy 
in classification and regression, adapts and learns from 
data, excelling in pattern recognition, classification, and 
regression. It is successfully used in PdM for equipment 
status identification. In a study [14], both SVM and ANN 
models predicted gauge degradation for rail tracks, with 
SVM slightly outperforming ANN, particularly for curved 
segments. Xiang et al. [53] achieved over 80% accuracy 
in diagnosing and predicting machine conditions using 
SVM in a data-driven framework. Decision Trees, a versa-
tile ML algorithm, create tree-like models for classification 
and regression tasks, processing large datasets, handling 
missing values, and working with categorical data. Their 
interpretability and visualizability make them effective 
for explaining predictions. RF, an ensemble ML method, 
integrates multiple decision trees to make predictions 
and excels in handling high-dimensional data and miss-
ing values [13]. In the realm of PdM, RF is highly favored 
for its capacity to manage large datasets, missing data, and 
nonlinear relationships. It predicts the RUL of machines 
by learning from present condition and past performance 
data, making it a reliable method for industrial equipment 
PdM [11–21]. SVM surpasses traditional ML algorithms and 
excels in tasks such as modeling machinery condition, 
detecting drifting behavior in continuous data streams, 
and diagnosing failures in rotating machines and aircraft 
maintenance systems [31]. RF combines predictions from 
multiple decision trees and is versatile for both classifica-
tion and regression, known for its resistance to overfit-
ting. Logistic Regression (LoR), a supervised algorithm, 

estimates the probability of an event based on independ-
ent variables and is applied in PdM to gauge the likelihood 
of equipment failure, considering maintenance records, 
operating conditions, and environmental factors. LiR is 
particularly useful in the OGI due to its ability to handle 
large datasets, provide accurate predictions, and integrate 
seamlessly into existing maintenance systems [49]. In a 
study comparing LiR with RF and XGBoost, all three algo-
rithms performed well in predicting machine downtime, 
with RF and XGBoost showing slightly better performance 
in decision thresholds [54, 55]. Note that Linear Regres-
sion (LiR) differs from Logistic Regression (LoR) in terms of 
their application domains. LiR is employed to predict con-
tinuous dependent variables, whereas LoR is specifically 
designed to handle binary dependent variables. Further 
details regarding this distinction can be found in Fig. 11.

XGBoost offers potent PdM capabilities. However, its 
complexity, data requirements, computational resources, 
lack of interpretability, model maintenance, and regula-
tory considerations present critical challenges. Success-
ful implementation demands careful planning, expert 
knowledge, and attention to data quality and compliance 
[54, 55]. Its exceptional performance has been evident in 

Fig. 11   Logistic regression [9, 
54]

Fig. 12   XGBoost algorithm tree [9, 54]
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numerous studies, including its ability to forecast machine 
downtime and predict maintenance requirements. 
XGBoost, alongside RF and Logistic Regression, exhibited 
outstanding results in receiver operating characteristic 
curves (ROC), with XGBoost and RF outperforming others 
in decision thresholds. The versatility and effectiveness of 
XGBoost render it an invaluable asset for enhancing main-
tenance processes and minimizing industry downtime [54, 
55]. Figure 12 provides a visual representation of the tree 
structure within the XGBoost algorithm.

The Gradient Boosting Machine (GBM) is a powerful 
ensemble learning method used in PdM in the OGI. It can 
handle large datasets with high dimensionality and non-
linear relationships, achieving high accuracy. GBM has 
been successfully applied in predicting equipment failures 
and estimating the RUL of components. In a study [27], 
GBM accurately predicted RUL with less than 5% mean 
absolute error. XGBoost, a specific implementation of GBM, 
is widely used and has achieved state-of-the-art results in 
various applications [13]. LiR is a widely employed statisti-
cal technique utilized for modeling the linear correlation 
between dependent and independent variables. It serves 
as a fundamental method for establishing the statistical 
relationship between these variables. In the OGI, it can be 
used to predict equipment failure or performance deg-
radation based on factors such as operating conditions 
and maintenance history [19]. While LiR is simple and 
efficient, it may not capture non-linear relationships. In a 
study by Abbasi et al. [56], LiR, RF regression, and symbolic 
regression were used for modeling machinery condition 
and predicting drifting behavior (Fig. 13). The effective-
ness of this approach was demonstrated through a real-
world case study conducted on industrial radial fans [56]. 
The study validated the applicability and success of the 
approach in an industrial setting, specifically in the context 
of radial fans.

Symbolic regression is a ML technique used to find a 
mathematical equation that describes a given dataset. 
In the OGI, it can be used to predict the performance of 

wells based on input variables. For example, it can pre-
dict oil or gas production based on factors like well depth, 
rock composition, and pressure [36]. Symbolic regression, 
which utilizes mathematical symbols and functions to 
create a syntax tree, has shown promise in forecasting 
machinery conditions and identifying shifts in concepts 
[50]. Janssens et al. [29] leveraged Convolutional Neural 
Networks (CNNs) for monitoring machine health using 
infrared thermal images, outperforming conventional 
methods in fault detection and oil level prediction. In 
another study [27], CNNs excelled in PdM for electrical 
faults in pumps by accurately estimating power curves. An 
IoT-based cognitive acoustics analytics service exhibited 
exceptional performance when analyzing acoustic data 
in a separate research endeavor [43]. Another research 
effort [33] employed ML techniques to predict RUL of a 
machine process, achieving notable success. Moreover, in 
a separate study [13], PdM techniques were implemented 
in conjunction with a digital twin to actively prevent faults 
in machine tools, showcasing a proactive approach to 
maintenance.

9 � Factors affecting predictive maintenance 
in the oil and gas industry

There are several factors that can affect the effective-
ness of PdM for oil and gas operations. Some of these are 
described below [57].

9.1 � Type of equipment

The type of equipment used in oil and gas operations 
can significantly impact the maintenance needs and the 
effectiveness of PdM. Different types of equipment may 
have different maintenance requirements and may be 
more or less susceptible to certain types of failure [58]. 
For example, some equipment may have complex sys-
tems that require more frequent maintenance, while other 
equipment may be simpler and require less maintenance 
[33–35]. The type of materials used in the construction of 
the equipment can also affect its maintenance needs. For 
example, certain materials may be more resistant to wear 
and tear, which could extend the lifespan of the equip-
ment and reduce the need for maintenance [59].

9.2 � Operating conditions

Operating conditions can significantly impact the main-
tenance needs and the effectiveness of PdM in oil and 
gas operations. The operating conditions of the equip-
ment, such as temperature, pressure, and vibration, can 
affect its reliability and maintenance needs. For example, Fig. 13   LiR in ML [56]
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equipment that operates at high temperatures or pres-
sures may require more frequent maintenance due to the 
increased wear and tear on the equipment [43]. Similarly, 
equipment that is subjected to high levels of vibration 
may require more frequent maintenance to prevent fail-
ure. Operating conditions play a significant role in main-
tenance, especially in challenging environments like off-
shore platforms or remote facilities [60]. These conditions 
affect maintenance frequency, types, and personnel safety. 
To ensure equipment reliability and safety in oil and gas 
operations, it’s crucial to tailor PdM strategies to specific 
operating conditions. Doing so optimizes equipment 
effectiveness and longevity, enhancing overall reliability 
and safety [14].

9.3 � Age of equipment

The age of the equipment used in OGI operations can sig-
nificantly impact the maintenance needs and the effec-
tiveness of PdM. Generally, older equipment is more prone 
to failure and may require more frequent maintenance. As 
equipment ages, it is subjected to wear and tear from reg-
ular use, which can lead to deterioration and an increased 
risk of failure [50]. In addition, older equipment may not 
have the same level of technological advancements as 
newer equipment, which can make it more prone to failure 
and more difficult to maintain. PdM is typically more effec-
tive for newer equipment, as there are greater amounts 
of data available about the equipment’s performance and 
maintenance needs. For older equipment, it may be more 
challenging to predict when maintenance is needed, as 
there may be less data available, and the equipment may 
be more prone to unexpected failures [7]. Overall, the age 
of the equipment is an important factor to consider when 
planning PdM in OGI operations. It is generally more effec-
tive to prioritize maintenance for older equipment in order 
to prevent unexpected failures and extend the lifespan of 
the equipment.

9.4 � Quality of maintenance

The quality of maintenance is an important factor that can 
impact the effectiveness of PdM in OGI operations. Prop-
erly maintaining equipment can help extend its lifespan 
and reduce the need for unexpected repairs. Poor qual-
ity maintenance can lead to equipment failure and unex-
pected downtime, which can be costly and disruptive to 
operations [25]. On the other hand, high-quality mainte-
nance can help prevent equipment failure and improve 
the reliability and performance of the equipment. There 
are several factors that can affect the quality of mainte-
nance in OGI operations, including the skill and training of 
the maintenance personnel, the availability of high-quality 

spare parts and tools, and the use of best practices and 
procedures [61]. To ensure the quality of maintenance in 
OGI operations, it is important to invest in the training and 
development of maintenance personnel, use high-quality 
spare parts and tools, and follow established best practices 
and procedures [44]. Implementing these approaches can 
contribute to enhancing the dependability and efficiency 
of equipment, thereby leading to improved overall perfor-
mance in OGI operations.

9.5 � Environmental factors

Maintenance requirements and the efficacy ofPdM in 
operations within OGI can be substantially influenced by 
environmental factors. These factors exert a noteworthy 
impact on the maintenance demands of equipment and 
the overall effectiveness of PdM practices within OGI oper-
ations [62]. It is imperative to thoroughly consider these 
environmental factors to ensure that PdM strategies are 
suitably tailored to the specific conditions, enabling opti-
mal maintenance outcomes in the OGI. The environment 
in which the equipment is operating, such as offshore plat-
forms or land-based facilities, can impact its maintenance 
needs. For example, equipment that is exposed to harsh 
weather conditions, such as extreme heat, cold, or saltwa-
ter, may require more frequent maintenance due to the 
increased wear and tear on the equipment [27]. Likewise, 
machinery operating in environments prone to corrosion, 
such as offshore platforms, may necessitate more frequent 
maintenance interventions to safeguard against corrosion 
and uphold the equipment’s safety and reliability. Apart 
from directly influencing the equipment, the operational 
environment also exerts an impact on the maintenance 
procedures themselves [18]. It is crucial to consider these 
environmental factors comprehensively, as they signifi-
cantly affect both the maintenance requirements and 
the execution of maintenance activities, contributing to 
the overall effectiveness of the maintenance process. For 
example, if the equipment is located in a hazardous or dif-
ficult-to-access environment, such as offshore platforms or 
remote land-based facilities, it may be more challenging to 
perform maintenance [7]. This can impact the frequency 
and types of maintenance that can be carried out, as well 
as the safety of personnel carrying out the maintenance. 
Overall, it is important to consider the environmental fac-
tors that may impact the maintenance needs of the equip-
ment when planning PdM in OGI operations.

9.6 � Type of oil or gas

The type of oil or gas being processed can impact the wear 
and tear on equipment and may require different types of 
maintenance in OGI operations. Different types of OGI may 
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have different physical and chemical properties, which 
can affect the equipment that is used to process them 
[63]. For example, some types of oil or gas may be more 
corrosive than others, which can impact the corrosion 
resistance of the equipment and the frequency of main-
tenance required [46]. Similarly, some types of oil or gas 
may be more viscous, which can affect other equipment 
used to process the oil or gas. In order to effectively plan 
PdM in OGI operations, it is important to consider the spe-
cific properties of the oil or gas being processed and the 
impact it may have on the equipment [50]. This can help to 
ensure the reliability and performance of the equipment 
and the overall efficiency of the OGI operations.

9.7 � Safety considerations

PdM is a maintenance approach characterized by its reli-
ance on data and analytics to determine when main-
tenance should be performed on equipment. Unlike 
traditional maintenance practices that adhere to fixed 
schedules or wait for equipment failure, PdM leverages 
data-driven insights to proactively identify maintenance 
needs [37]. By continuously monitoring and analyzing 
equipment performance, PdM aims to detect potential 
issues early on, allowing for timely and targeted mainte-
nance interventions [62]. This data-centric approach ena-
bles organizations to optimize maintenance efforts, mini-
mize downtime, and enhance equipment reliability and 
performance. In the OGI sector, it is important to prioritize 
safety in all maintenance activities due to the hazardous 
nature of the work environment [6, 7]. Safety is paramount 
in PdM implementation, ensuring personnel well-being 
and equipment integrity. Robust safety measures miti-
gate risks and foster a secure working environment. This 
includes ensuring that all personnel are properly trained 
and equipped to perform maintenance tasks safely, and 
that the work environment is safe and secure [27]. Addi-
tionally, the safety of the equipment itself must be consid-
ered, as faulty or malfunctioning equipment can pose a 
serious risk to workers and the surrounding environment. 
Overall, safety considerations are critical to the success of 
any maintenance program and must be given the highest 
priority in the OGI sector.

10 � Challenges and future directions

This study highlights the importance of digitizing oil fields 
to improve production efficiency and manage risks. It 
identifies a research gap in the role of machine learning for 
equipment status understanding, especially in WIPs, and 
its use in predictive maintenance to reduce operational 
downtime [43]. Existing literature lacks a comprehensive 

overview, doesn’t address real-time ML complexities or 
provide clear ML architecture guidelines. Moreover, there’s 
a lack of end-to-end solutions and benchmarks for algo-
rithm selection [33]. In the context of AI-based predictive 
maintenance for WIPs in the oil and gas industry, specific 
features like component wear, corrosion, and clogging 
represent unexplored areas for AI-based maintenance pre-
diction [64]. Furthermore, issues like electrical problems 
(short circuits and power surges) within water injection 
systems, and the development of leaks in components 
(piping and seals) causing efficiency reduction and the 
need for repairs, have received limited attention in AI-
based predictive maintenance literature [7, 27]. The lack 
of research dedicated to predicting maintenance needs 
based on these specific WIP features underscores the need 
for further exploration. This study uniquely focuses on 
establishing a connection between these features and AI-
driven PdM solutions in the OGI. The study addresses these 
gaps by investigating the potential of AI algorithms (ANN, 
SVM, and RF) in predicting maintenance requirements 
related to wear and tear, corrosion, clogging, electrical 
problems, and leaks in water injection pump systems [45]. 
By exploring these algorithms in this specific application, 
the study aims to enhance our understanding of AI-based 
PdM models for WIPs in the OGI and fill the research gap.

ANN is a powerful ML technique inspired by the human 
brain [44]. It excels at learning complex patterns and rela-
tionships within data. ANN can handle non-linear relation-
ships and adapt to varying input types, making it suitable 
for analyzing the diverse and dynamic data collected from 
WIPs. Additionally, ANN can handle large datasets and per-
form well in both regression and classification tasks [6]. 
SVM’s ability to handle both linear and non-linear relation-
ships makes it a suitable choice for analyzing the data from 
WIPs, where multiple factors may influence the mainte-
nance needs. RF is an ensemble learning technique that 
integrates multiple decision trees to make predictions. 
Renowned for its remarkable accuracy, scalability, and 
adeptness in handling extensive datasets with numer-
ous features, RF has established itself as a powerful tool 
in ML [65]. RF can capture complex interactions between 
variables and identify important features for PdM analysis. 
This makes it a valuable tool for identifying patterns and 
predicting the maintenance needs of WIPs. Implement-
ing PdM using AI techniques, such as analyzing data from 
WIPs, can offer several benefits, particularly in terms of cost 
optimization [66]. By accurately predicting maintenance 
requirements, companies can adopt a proactive approach, 
scheduling maintenance activities at optimal times. This 
approach can minimize unplanned downtime, prevent 
critical failures, and reduce repair costs [13]. By incorpo-
rating AI-based PdM, companies can potentially reduce 
costs associated with reactive maintenance, which often 
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involves addressing unexpected breakdowns and emer-
gency repairs. With AI-driven maintenance, the timing 
of maintenance activities can be optimized, minimizing 
costly downtime and extending the lifespan of equip-
ment. By allocating resources more efficiently, companies 
can achieve cost savings in the long run. After mainte-
nance, the age of the equipment can be extended due 
to the proactive approach taken with PdM. By addressing 
potential issues before they escalate, equipment reliability 
can be significantly improved. PdM allows for the detec-
tion of early signs of degradation or malfunction, enabling 
timely repairs or replacements [67]. By estimating the RUL 
of equipment, engineers can schedule maintenance activi-
ties more accurately, optimize operating efficiency, and 
avoid unexpected failures or production interruptions [68]. 
The growing use of AI in PdM raises ethical considerations 
that should be addressed. These include:

(1)	 Privacy and Data Security AI models rely on vast 
amounts of data, including sensitive operational and 
maintenance information. Ensuring data privacy, 
security, and compliance with relevant regulations 
are paramount to protect the integrity and confiden-
tiality of the data.

(2)	 Bias and Fairness AI models trained on biased data 
can perpetuate unfair practices and discrimination. It 
is crucial to identify and ensure fairness and prevent 
negative societal impacts, it is essential to actively 
address and mitigate biases in data collection, pre-
processing, and model training processes.

(3)	 Transparency and Accountability Establishing transpar-
ent and accountable AI systems is essential for gain-
ing user trust. Documentation.

11 � Conclusion

This systematic review highlights the benefits of AI-based 
PdM for WIPs in the OGI. It offers early fault detection, 
accurate RUL estimation, and optimized maintenance 
planning. Real-world case studies show improved accu-
racy, reduced downtime, and cost savings, enhancing 
equipment reliability and environmental performance. Yet, 
addressing data challenges and ethical implementation is 
essential for further progress. Embracing these recommen-
dations can optimize operations and decision-making. In 
this study, we examined the recent advancements in AI 
and ML in the oil and gas industries, with a specific focus 
on their application for diagnosing and forecasting WIPs 
defects. We found that the use of AI for WIPs defect diagno-
sis has significantly increased in the past decade, especially 
in oil and gas. AI, driven by Industry 4.0, is transforming 
mechanical manufacturing and automation, enhancing 

data processing, computational power, and storage. It 
improves work efficiency, quality control, safety, problem 
diagnosis, PdM, and supply chain intelligence. The synergy 
between AI and mechanical manufacturing is accelerat-
ing the fourth Industrial Revolution. Our comprehensive 
study identifies common faults, algorithms, and param-
eters used in previous research, offering valuable insights 
for future investigations. However, challenges remain, as 
no universal method exists, and solutions depend on data 
type and algorithm suitability. Notably, ANNs, SVM, and 
hybrid models are frequently used for oil and gas WIPs 
health evaluation, with hybrid models showing the most 
promise. The health of WIPs is influenced by various fac-
tors, yet reliability, precision, and processing time were 
not consistently considered. This research highlights the 
prevalent use of four types of datasets, emphasizing a 
need for more diverse data sources. Currently, the focus is 
primarily on algorithms, and there is a lack of comprehen-
sive data characterization for WIPs condition assessment, 
leading to potential inaccuracies in dynamic operational 
environments.

One significant limitation of the study is related to its 
scope and coverage, as it primarily focuses on AI-based 
PdM for WIPs in OGI, potentially restricting its broader rel-
evance to the wider field of AI in industrial maintenance. 
The study also lacks an in-depth exploration of the chal-
lenges related to data reliability and availability in the 
OGI, which are crucial for the success of AI applications. 
Moreover, the absence of empirical evidence from real-
world applications and the limited discussion on poten-
tial drawbacks or limitations of specific AI techniques for 
PdM are notable limitations. Additionally, the study does 
not explicitly address the practical implementation chal-
lenges and barriers associated with AI-based PdM in the 
OGI, which is vital for industry practitioners and decision-
makers. Future research should aim to overcome these lim-
itations by broadening the scope, addressing data-related 
challenges, incorporating real-world case studies, and pro-
viding a more balanced assessment of AI algorithm limi-
tations and practical implementation challenges, thereby 
enhancing the study’s value and applicability to industry 
professionals in the OGI and beyond.
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