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Abstract
In view of the problems such as poor diagnostic capability and generalization ability of wind turbine generator bearing 
fault diagnosis methods caused by complex wind turbine generator bearing conditions and few fault samples under 
actual operating conditions, a wind turbine generator bearing vibration signal data enhancement method based on 
improved multiple fully convolutional generative adversarial neural networks (MCGAN) was proposed. Firstly, two-dimen-
sional time-frequency features are extracted from the raw data using a Short-Time Fourier Transform (STFT). Secondly, 
by incorporating multiple CGANs of different scales and a hybrid loss function, the original GAN network was enhanced 
to learn the intrinsic distribution of bearing vibration signals and generate diverse vibration signals with distinct bearing 
fault characteristics, resulting in an expanded dataset. Finally, a comparative experiment was conducted using real wind 
turbine generator-bearing data. The results demonstrate that the augmented samples generated by MCGAN contain 
rolling bearing fault information while maintaining sample distribution and diversity. By utilizing the augmented dataset 
to train commonly used fault diagnostic classifiers, the diagnostic accuracy for the original vibration signals exceeds 80%, 
providing a theoretical basis for addressing the scarcity of fault samples in practical engineering scenarios.

Article highlights

1.	 A data enhancement method for turbine generator 
bearing based on improved multiple full convolutions 
generating adversarial neural networks (MCGAN) was 
proposed, which can effectively solve the problem of 
data imbalance.

2.	 STFT was used to extract the TF features of the original 
data as the input of MCGAN. Compared with CWT, GI, 
WVD and EMD algorithms, STFT can generate samples 

with richer TF information, which was conducive to 
MCGAN feature extraction.

3.	 By designing multiple CGAN of different scales and 
corresponding mixed loss functions, the original GAN 
network is improved to learn the internal distribution 
of bearing vibration signals and generate samples with 
fault characteristics and diversity of the original data.
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1  Introduction

As an important component of wind turbines, the health 
of rolling bearings directly affects the operating stability 
of wind turbines [1–3]. The continuous operation of wind 
turbines in variable speed and heavy load environments 
leads to the inevitable failure of generator bearings such 
as pitting, wear, and gluing, which seriously affects the 
operation stability of wind turbines, and the bearing 
replacement time is long and the cost is high. Once the 
failure occurs, it will lead to significant economic losses 
[4, 5]. Therefore, it was of great significance to study an 
effective fault diagnosis method for generator bearing 
to reduce operating cost and extend bearing service life 
[6–8].

Traditional rolling bearing fault diagnosis methods 
mainly include envelope spectrum analysis, stochastic 
resonance demodulation, etc. [9–11]. Traditional diag-
nosis methods are simple in principle but require a lot 
of professional knowledge and a complex feature extrac-
tion process, low fault diagnosis accuracy, and high 
research cost [12]. Zhao et al. [13] proposed a rolling 
bearing fault feature enhancement method based on an 
adaptive noise reduction algorithm and maximum cor-
relation kurtosis deconvolution (MCKD). Deng et al. [14] 
proposed a composite fault diagnosis method based on 
MCKD and sparse representation and verified the supe-
riority of the proposed method through simulation sig-
nals and laboratory data. With the large-scale develop-
ment of wind turbines, its system complexity increases, 
and the traditional fault diagnosis method can’t meet 
the needs of fault diagnosis due to its limitations. With 
the development of deep learning (DL), its power-
ful feature extraction capability was extensive used in 
image processing, fault diagnosis, and other fields [15, 
16]. Petrauskiene et al. [17] converted the vibration sig-
nals into color recursion graphs for fault classification 
through convolutional neural networks (CNN). Jiao et al. 
[18] proposed a model combining transfer learning and 
residual network to extract bearing depth features. 
Zhang et al. [19] proposed an information flow fusion 
semi-supervised learning intelligent fault diagnosis 
method based on CNN structure to address the problem 
of limited labeled data in practical engineering. Zhang 
et al. [20] proposed a bearing anomaly detection method 
for wind turbines based on CNN and LSTM. Hou et al. [21] 
proposed an attention based parallel fusion encoding 
network, and used public datasets to verify the accuracy 
and robustness of the method. Liu et al. [22] proposed 
a fully dynamic model and sub-domain adaptive intelli-
gent diagnosis framework based on the variable working 
conditions of bearings, which can achieve bearing fault 

diagnosis under different working conditions. Adaiton 
et al. [23] proposed a bearing diagnosis method based 
on a variational autoencoder to address the problem of 
poor interpretability of intelligent diagnosis algorithms 
based on DL. The features were projected onto a low 
dimensional space, and two experimental cases were 
used to verify the interpretability and diagnostic accu-
racy of the method.

The above methods realize bearing fault diagnosis in 
their respective diagnosis fields, but are based on the 
training set contains plentiful and evenly distributed fault 
data. In practical engineering, wind turbines usually oper-
ate in a healthy state, and it was easy to obtain massive 
health state data. However, the fault data samples are very 
limited, and the practical application of the above model 
is severely limited. Therefore, it is urgent to realize gener-
ator-bearing fault data enhancement under the condition 
of insufficient fault samples [24, 25]. Li et al. [26] use the 
recursive neural network of a two-stage attention mecha-
nism for data expansion. Wei et al. [27] balance the data set 
by oversampling the sample features. Although the above 
method solves the problem of data imbalance to a certain 
extent, the quality of the generated samples is not high, 
and there is a large deviation from the original data. data 
augmentation (DA) makes up for the lack of fault data by 
learning the distribution of original data samples to gener-
ate new samples and then trains the diagnosis model to 
realize fault diagnosis under the condition of insufficient 
samples [28, 29].

Because of its powerful data generation capability, 
generative adversarial network (GAN) was widely used in 
the fields of speech recognition, fault diagnosis, and data 
enhancement. Hu et al. [30] proposed a wind turbine-
bearing fault diagnosis strategy based on a conditional 
variational GAN model and fusion of multi-source signals. 
By learning the original data features through GAN, sam-
ple labels were introduced to solve the problem of limited 
fault samples. Liu et al. [31] introduced the Harr wavelet 
into GAN, constructed a new loss function to improve 
the quality of generated data, and realized bearing fault 
diagnosis under the condition of limited fault data. Fan 
et al. [32] proposed a fault diagnosis method based on the 
combination of GAN. Tang et al. [33] used GAN to balance 
samples and CNN to monitor the status of rolling bear-
ings. Although the above methods have achieved good 
diagnostic results in the field of bearing fault diagnosis, 
most of these studies are based on laboratory fault data, 
there are significant differences between different fault 
samples, and there are few signal interference factors. In 
practical engineering, different faults are often irregular 
from degradation, the data set imbalance ratio is high, and 
affected by strong background noise and other equipment 
excitation sources, the practical application effect of the 
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above method is not ideal. And the traditional GAN has 
the problem of gradient disappearing and gradient explo-
sion, which reduces the quality of generated samples. The 
nonlinear characteristics of the one-dimensional vibration 
signal also limit the effect of the GAN model.

To overcome the shortage of GAN, this paper proposes 
a data enhancement method based on multiple fully 
convolutional generative adversarial networks (MCGAN). 
Taking TF graph of the bearing vibration signal of a wind 
turbine generator through STFT as the input of the model, 
the inherent time and frequency distribution characteris-
tics of the TF graph are learned, and then the expanded 
samples with bearing fault characteristics, similar to the 
real vibration signal distribution and have diversity are 
generated to solve the problem of data imbalance. Com-
pared with the existing research, the proposed method 
can effectively solve the problem of GAN gradient disap-
pearance and gradient explosion, generate high-quality 
samples, and then balance the data set, effectively solve 
the problem of generator bearing imbalance in practical 
engineering wind turbines, and improve the fault diagno-
sis accuracy. In Sect. 2, the basic structure of GAN network 
was introduced. In Sect. 3, the basic principle, loss func-
tion and diagnosis process of MCGAN were introduced. In 
Sect. 4, the proposed method was experimentally verified 
by using the actual collected bearing data of wind turbine 
generator, and is compared with other feature generation 
methods to verify the superiority of the proposed method. 
In Sect. 5, the proposed method was summarized and con-
clusions are drawn.

2 � Theoretical background

2.1 � Generative adversarial network

GAN was one of the commonly used methods for DA. 
GAN consists of a generator (G) and a discriminator (D), 
as shown in Fig. 1. The generator takes random noise z 
as input and generates a fake sample that can “fool” the 

discriminator. The discriminator is used to determine 
whether the input sample is a fake sample or a real sample.

The objective function of GAN is:

 where: z is random noise, Pz is the distribution of random 
noise, P is the distribution of real samples, D is the genera-
tor, and G is the discriminator. By replacing G(z) with x̃ , 
formula (3) can be rewritten as:

Through the adversarial training between the G and the 
D, P(z) = P(x), that is, the sample data generated by G con-
forming to the real distribution, the model reaches Nash 
equilibrium.

3 � Data enhancement method based 
on MCGAN

A bearing fault diagnosis method based on MCGAN data 
augmentation was proposed to address the issues of 
complex working conditions of wind turbine generator 
rolling bearings, abundant normal samples, and limited 
fault samples, resulting in poor diagnostic and generaliza-
tion capabilities of wind turbine generator bearing fault 
diagnosis methods. MCGAN can utilize a small number of 
samples to learn the internal distribution features of each 
time-frequency map sample generated by STFT, and then 
generate samples with diversity similar to the actual sam-
ple distribution, achieving data augmentation and obtain-
ing an expanded dataset.

3.1 � MCGAN data enhancement

Traditional GAN requires a large number of data samples 
as input and generates samples with similar distribution 
by learning the distribution of a large number of training 

(1)

L(G,D) = min
G

max
D

{
Ex∼P(x)

[
logD(x)

]
+ Ez∼Pz (z)

[
log(1 − D(G(z)))

]}
,

(2)

L(G,D) = min
G

max
D

{
Ex∼P(x)

[
logD(x)

]
+ Ez∼Pz (z)

[
log(1 − D(x̃)

]}
.

Fig. 1   GAN network structure diagram
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samples. However, in practical engineering, it was difficult 
to obtain enough fault data. MCGAN was proposed in this 
paper focuses on learning the internal distribution char-
acteristics of a very small number of training samples. To 
ensure that MCGAN can effectively extract the fault char-
acteristics of vibration signals, MCGAN takes TF features 
obtained from STFT as input and intercepts TF according 
to different scale receptive fields. Gradually learn the inter-
nal distribution characteristics of time and frequency in 
the vibration signals of wind turbine generator bearings, 
to generate high-quality and diverse samples with the 
same internal distribution as the original data.

MCGAN is composed of multiple CGAN networks, and 
the structure is shown in Fig. 2. Where {G0, G1, …, GN} and 
{D0, D1, …, DN} are the generator and discriminator of 
CGAN respectively, and the generator of each CGAN has 
the same receptive field as the discriminator. With the 
deepening of the MCGAN network, the receptive field 
gradually becomes smaller, and more fine-grained features 
are gradually learned. MCGAN takes the time-frequency 
graph generated by the bearing vibration signal through 
STFT as input, {x0, x1, …, xN} TF graph x intercepts samples 
according to different receptive fields, that is, xn is the sam-
ple obtained by x with r > 1 as the lower sampling rate. 
Each generator generates a sample with similar xn distri-
bution for the corresponding truncated signal. The corre-
sponding discriminator attempts to distinguish whether 
the input sample is a true truncated sample or a generator. 
After the antagonistic training of the generator and dis-
criminator, the model can generate samples with similar 
internal distribution characteristics.

MCGAN uses multiple CGANs to gradually generate fake 
samples from large receptive fields to small receptive fields 
and from low resolution to high resolution. The sample 
generation starts at the larger scale, passes through the 
generator successively until it reaches the smallest scale, 
and adds noise to the input of the generator at each scale. 
All CGAN generators and discriminators have the same 
receptive field, so the scale captured by the model gradu-
ally decreases during sample generation. At the largest 
scale, GN maps spatial Gaussian white noise ZN to image 
sample x* N:

At this stage, the receptive field is set to half the length 
of the vibration signal of the rolling bearing, which helps 
the sample generated by GN to take into account the over-
all layout and local distribution at the same time. The input 
Gn ∈

{
G0,⋯ ,GN−1

}
 is not only the noise signal, but also 

the upsampled signal of the signal obtained by the upper-
level generator is added, namely:

 where: ⊗ indicates the up-sampling process. The upsam-
pling signal obtained by the upper level generator of Gn 
input can help the model learn higher resolution and finer-
grained features. In addition, each level of Gn input con-
tains noise information, which can improve the model’s 
generalization ability in small sample environments.

All generators Gn have the same structure, as shown in 
Fig. 3. The specific operation is:

(3)x∗
N
= GN

(
ZN

)
.

(4)x∗
n
= Gn

(
Zn, x

∗
n+1

⊗ r ↑
)
, n < N,

Fig. 2   MCGAN structure diagram
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 where: �n represents five nonlinear maps with a convo-
lution structure with 3 × 1@32 convolution kernel, BN, 
and LeakyReLU activation function. Adding BN layers in 
Gn and using LeakyReLU activation functions instead of 
commonly used ReLU activation functions can effectively 
improve the stability of CGANs.

3.2 � MCGAN loss function

In the process of training the model, the training starts from 
the N layer, and the parameters are fixed immediately after 
the training of each layer, and then the next layer is trained. 
To ensure the similarity between the generated sample and 
the real sample, this paper adds the reconstruction loss 
based on the adversarial loss of each CGAN:

 where {Z, N, Z, N-1 …, Z’ 0}={Z’, 0, …, 0} is a selected set 
of random noise, and increasing the reconstruction loss 
will ensure that the sample obtained by the noise genera-
tor is similar to the real sample distribution, that is, the 
generated sample contains time-frequency characteristics 
similar to the real sample. Thus, the loss function for each 
CGAN is:

 where � is the equilibrium parameter and La(Gn, Dn) is the 
adversarial loss. Then the loss function of MCGAN is:

(5)x∗
n
= x∗

n+1
⊗ r ↑ +𝜑n

(
Zn + x∗

n+1
⊗ r ↑

)
,

(6)

x∗
n
= x∗

n+1
⊗ r ↑ +𝜑Lr(Gn,Dn) =

{‖‖‖
GN(Z

�

) − xN
‖‖‖

n = N
‖‖‖
Gn(0, x

∗
n+1

⊗ r ↑) − xn
‖‖‖
n < N

,

(7)min
Gn

max
Dn

La
(
Gn,Dn

)
+ �Lr

(
Gn,Dn

)
,

(8)min
G

max
D

∑

n

La
(
Gn,Dn

)
+ �nLr

(
Gn,Dn

)
.

3.3 � Fault diagnosis method of the rolling bearing 
of wind turbine based on MCGAN data 
enhancement

The proposed fault diagnosis method of wind turbine 
generator bearing based on MCGAN data augmentation 
is shown in Fig. 4, and the specific steps are as follows:

(1) The collected bearing data of the wind turbine 
generator was preprocessed, and TF characteristics are 
extracted by STFT;

(2) Construct a training set and a test set according to a 
certain proportion of TF images;

(3) Input the unbalanced fault samples in the training 
set into the initialization parameters of the MCGAN model, 
and train the CGAN model in layers to obtain the data-
enhanced model MCGAN.

(4) The MCGAN model was used to expand the training 
set, and the expanded data set with a balanced, sufficient, 
and diverse sample size was obtained;

(5) Using the extended data set to train the fault diag-
nosis model;

(6) Input the test set into the fault diagnosis model to 
obtain the fault diagnosis result.

4 � Test verification

To verify the effectiveness of the MCGAN method to 
enhance bearing vibration signal information, the actual 
collected bearing data of the wind turbine generator was 
used for test verification.

4.1 � Introduction to wind turbine bearing data

The test data are from a 1.5 MW unit in a wind farm in 
Shandong province. The generator is Xiangtan motor and 
the bearing model is SKF6332. The parameters of the gen-
erator are shown in Table 1. The acceleration sensor model 
is B&K Vibro AS-020, which is installed on the bearing end 

Fig. 3   Gn structure diagram of 
generator
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cover of the generator and collects acceleration signal 
data from the drive end and free end of the generator. 
16,384 Hz was the sample frequency, and the single sam-
pling duration is the 20s. Data collection is shown in Fig. 5.

According to the bearing data of turbine 33 in the wind 
field, four status data of health status (N), outer ring fail-
ure (OR), inner ring failure (IR), and rolling failure (B) at 
1350RPM were selected. A sliding window with 200 steps 
and a window length of 2048 intercepts signals as samples. 
Health state data is easy to obtain, so health state vibration 
samples are sufficient, so this paper only enhanced the 
data of IR, OR, and B fault states. To verify the effective-
ness of MCGAN for data enhancement on a small number 
of samples, only 5 samples of each fault state are taken as 
the training set of MCGAN for expanding the data set. 100 
sample were selected for each of the four types of health 
status data as a test set to test the quality of the expanded 

data set obtained by MCGAN information enhancement. 
The specific data division is shown in Table 2.

4.2 � Analysis of test results

According to the time-frequency graph obtained by STFT 
from the vibration data of turbine generator bearings, the 
MCGAN setting is composed of three-stage CGAN, whose 
receptive fields are 64, 32 and 11, respectively. The gen-
erator of each CGAN layer is the same as the discriminator 
structure, consisting of five 3 × 1@32 convolution layers, 
a BN layer and LeakyReLU as the activation function. For 
each level of CGAN training 200 times, the learning rate is 
set to 0.005. Figure 6 shows the comparison between the 
original STFT data and the generated STFT time-frequency 
graph.

Fig. 4   Fault diagnosis method of the rolling bearing of wind turbine based on MCGAN data enhancement
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As can be seen from the comparison in Fig. 6, the time 
spectrum generated under different states is similar to the 
original spectrum, retaining the bearing fault characteris-
tics. To further evaluate the similarity between the gener-
ated sample and the original sample, a multi-index evalu-
ation system is established to evaluate the quality of the 
generated sample. Fréchet Inception Distance (FID) [34] 
and Structural Similarity Index Metric (SSIM) [35] are used 
to measure the distribution difference between the gener-
ated sample and the real sample. The calculation formulas 
for FID and SSIM are as follows:

(9)FID =
‖‖
‖
ux − uy

‖‖
‖

2

+ Tr(
∑

x

+
∑

y

−2(
∑

x

∑

y

)
1

2 ),

(10)SSIM(x, y) =

(
2uxuy + c1

)(
2�x�y + c2

)

(
u2
x
+ u2

y
+ c1

)(
�2
x
+ �2

y
+ c2

) ,

 where: ux represents the mean value of the original image, 
uy represents the mean value of the generated image, 

∑
x 

represents the covariance matrix of the original image, 
∑

y 
represents the covariance matrix of the generated image, 
�2
x
 represents the variance of the original image, �2

y
 repre-

sents the variance of the generated image, L is the dynamic 
range of pixel values, k1 = 0.01, k2 = 0.03.

 MCGAN was used to expand the 5 samples under each 
fault category in Tables 2 to 100, forming a sample-bal-
anced data set, and using the expanded data set to calcu-
late FID and SSIM according to the formula, FID = 0.2943, 
SSIM = 0.9582. When the generated image is closer to the 
original image, the FID is smaller and the SSIM is closer to 1. 
It can be seen from the calculation results that the samples 
generated by MCGAN have the same characteristics as the 
original samples, which can effectively enhance the data and 
make up for the data imbalance in the actual bearing fault 
diagnosis of wind turbines.

4.3 � Comparison of different pretreatment methods

MCGAN uses TF graphs obtained from STFT as input. To 
verify the suitability of STFT and MCGAN models, traditional 
data preprocessing methods are adopted. Grayscale image 
(GI), continuous wavelet transform (CWT), and Wigner–Ville 
distribution (WVD) are used as inputs to MCGAN. The train-
ing set of IR, OR, and B samples was expanded to 100 sam-
ples respectively.

To further evaluate the quality of samples generated by 
different methods, FID, SSIM, maximum mean discrepancy 
(MMD), and KL divergence were used to measure the dis-
tribution difference between the generated samples and 
the real samples. The formulas for MMD and KL divergence 
are as follows:

 where P and Q are the probability distributions of real 
samples and generated samples respectively, xi andx′

i
 are 

the ith real samples and generated samples respectively, 
m and n are the number of real samples and generated 
samples respectively.

(11)c1 =
(
k1L

)2
,

(12)c2 =
(
k2L

)2
,

(13)MMD(P,Q)2 =

‖‖
‖‖‖‖

1

m

∑

xi

�
(
xi
)
−
1

n

∑

x�
i

�
(
x�
i

)
‖‖
‖‖‖‖

2

2

,

(14)KL(P ∥ Q) =
∑

P(X ) log
P(x)

Q(x)
,

Fig. 5   Data acquisition of wind turbine bearing

Table 1   SKF6332 parameters b/mm d/mm D/mm Z (°)

50.8 160 340 8 0

Table 2   Wind turbine bearing data sample construction

Fault type N IR OR B RPM

Train set 100 5 5 5 1350
Test set 100 100 100 100
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Fig. 6   a STFT time-frequency diagram of raw data b frequency spectrum when STFT is generated

Fig. 7   The trend of changes in FID and SSIM during MCGAN training
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Figure 7 shows the trend of changes in FID and SSIM 
during MCGAN training. Overall, as the model iterates, the 
value of FID gradually decreases and the value of SSIM 
gradually increases, indicating that the samples gener-
ated by the model are getting closer to the real samples. 
In addition, in this study, MCGAN consists of three layers 
of CGANs, with each layer trained 200 times. Therefore, the 
decrease in FID and the increase in SSIM tend to occur in 
one stage with 200 iterations. The first two stages change 
rapidly, and after fixing the upper layer CGAN, the two 
indicators show significant fluctuations during the alter-
nating process of training the next layer, but they will soon 
stabilize. This is because the parameters at the beginning 
of the next level model are randomly generated, but due 
to the foundation of extracting features from the upper 
level CGAN, the model tends to stabilize in fewer iterations.

The divergence of FID, SSIM, MMD, and KL between the 
generated samples and the real samples obtained through 
MCGAN with different inputs are shown in Table 3.

It can be seen from Table 3 that among the four meth-
ods, the divergence of data set FID, MMD, and KL gener-
ated by GI as input is the largest, SSIM is the smallest, and 
the data generation effect is the worst. This is because the 
simple conversion of vibration signals into two-dimen-
sional grayscale graphs cannot well characterize the rela-
tionship between the time domain and frequency domain 
of signals. The sample generation effect of CWT and WVD 
is slightly better than that of GI, but it is still lower than that 
of STFT, mainly because CWT is affected by wavelet basis 
function, and WVD produces cross-term interference when 
processing modulated signals. Among the four methods, 
STFT has the best effect of data preprocessing to generate 
data, which is conducive to the fault diagnosis of turbine 
generator bearings. Therefore, the time-frequency graph 
generated by STFT is used as the input of the model in 
this paper.

4.4 � Comparison of different data enhancement 
methods

To highlight the superiority of MCGAN for the bearing 
data enhancement of wind turbines, the present method 
is compared with the commonly used data enhancement 
methods, SMOTE, GAN, and stacked autoencoder SAE. 

Due to the small training sample size, to prevent serious 
overfitting, random noise is added to the data during GAN 
and SAE training. Four methods were used to expand the 
three health state samples OF, IF, and BF in the training set 
to 100, and the data sets generated by SMOTE, GAN, SAE, 
and MCGAN were named D1, D2, D3, and D4, respectively. 
The t-SNE results of the generated data are shown in Fig. 8. 

As can be seen from Fig. 8, SMOTE-generated sample 
D1 was concentrated between the training set samples, 
and the generated data diversity was poor. GAN and SAE 
generated samples D1 and D2 diversity is better than 
SMOTE but generated data is still around the training set 
sample. This is because even if random noise is added to 
the training sample, the amount of data is still insufficient, 
resulting in overfitting of the model. It can be found that 
the quality of the data generated by the three methods 
of SMOTE, GAN, and SAE is greatly affected by the quality 
of the training samples, and the robustness is poor. The 
diversity of data generated by MCGAN is the best, which 
helps in the fault diagnosis of turbine generator bearings.

4.5 � Enhancement effect of data with different 
sample balance degrees

 To further verify the superiority of MCGAN in enhancing 
the bearing data of wind turbine generators under the 
condition of unbalanced data, training sets U1–U4 with 
different proportional and balanced degrees are set, as 
shown in Table 4. SMOTE, GAN, SAE, and MCGAN were 
used to enhance the data sets with different degree of 
imbalance, respectively. The four methods were used to 
enhance the U1–U2 four degree of imbalance data sets, 
to generate FID, SSIM, MMD, and KL divergence between 
the sample and the real sample to evaluate the enhance-
ment effect. The average evaluation index of the data set 
generated by IR, OR, and B categories is shown in Fig. 9.

As can be seen from Fig. 9, with the decrease of data 
imbalance ratio, FID, MMD, and KL of the four methods 
gradually decreased, while SSIM gradually increased, indi-
cating that the data enhancement effect of the four meth-
ods has been improved, and the enhancement effect of 
MCGAN proposed in this paper is still the best. Compared 
with the same degree of imbalance data set, SMOTE has 

Table 3   Evaluation indicators 
for generating samples using 
different methods

OR IR B

FID SSIM MMD KL FID SSIM MMD KL FID SSIM MMD KL

GI 0.415 0.887 0.398 0.096 0.389 0.943 0.401 0.091 0.399 0.909 0.349 0.099
CWT​ 0.399 0.903 0.356 0.088 0.394 0.933 0.352 0.088 0.403 0.924 0.334 0.078
WVD 0.302 0.924 0.310 0.094 0.335 0.946 0.342 0.075 0.379 0.931 0.315 0.064
STFT 0.275 0.958 0.268 0.053 0.306 0.961 0.301 0.062 0.302 0.956 0.295 0.059
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the worst effect and MCGAN has the best effect. It shows. 
The method proposed in this paper can effectively solve 
the problem of data imbalance in practical engineering.

4.6 � Fault diagnosis

To further test the validity of MCGAN-generated data. Use 
SMOTE, GAN, SAE, and MCGAN to generate datasets D1, D2, 
D3, and D4 to train common classifiers SVM, MLP, Alexnet, 
and ResNet, and perform diagnostics on test sets. The fault 
diagnosis results of four classifiers on four data sets are 
shown in Fig. 10.

As can be seen from Fig. 10, SMOTE, GAN, and SAE 
generated data to train the four classifiers has an unsat-
isfactory effect on the test set. This is because the gener-
ated sample does not learn the distribution of the real 
sample, resulting in a poor effect on the trained classifier. 
The accuracy of the four classifiers on the data generated 

Fig. 8   Different methods to generate data visualization

Table 4   Dataset of different proportional equilibrium degrees of 
wind turbine bearings

Fault type IR IR OR B RPM

U1 100 5 5 5 1350
U2 100 10 10 10
U3 100 20 20 20
U4 100 40 40 40
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by MCGAN is above 80%, among which SVM is a machine 
learning method with an accuracy of 81.4%, and ResNet 
is a deep learning method with the best effect with 
an accuracy of 93.7%. The superiority of MCGAN data 
enhancement is further explained.

5 � Conclusions

Given the problems such as the poor diagnostic ability 
and generalization ability of the fault diagnosis method 
of the turbine generator bearing, which was caused by 
the complex working condition of the turbine genera-
tor bearing and few fault samples under actual work-
ing conditions, this paper proposes a data enhance-
ment method of the turbine generator bearing data set 
based on MCGAN. The following conclusions are drawn 
through comparative experiments.

Fig. 9   Evaluation indicators a FID, b SSIM, c MMD, d KL of U1–U4 data set enhanced by different data enhancement methods

Fig. 10   Fault diagnosis accuracy of four methods on four data sets
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(1)	 MCGAN obtains generated samples by learning the 
distribution characteristics of time-frequency graphs in 
the time domain and frequency domain of STFT. Gen-
erated samples contain fault characteristics, and t-SNE 
visualization finds that generated samples are more 
diverse, which is conducive to bearing fault diagnosis.

(2)	 The distribution difference between the generated 
sample and the real sample is measured by the diver-
gence of FID, SSIM, MMD, and KL. Compared with 
common data enhancement methods, SMOTE, GAN, 
and SAE, the results show that the MCGAN-generated 
sample distribution is the closest to the real sample 
distribution, and the data enhancement effect is the 
best.

(3)	 Using data sets expanded by different methods 
to train fault diagnosis classification models. Fault 
diagnosis is performed on the test set composed of 
real samples. The results show that the results of the 
model generated by MCGAN are all higher than 80%, 
which further indicates the superiority of MCGAN 
model data enhancement and can solve the problem 
of fault diagnosis with few samples in engineering.
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