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Abstract
There is a fundamental interest in studying travertine rocks, and this is to understand their structure, their geomechanical 
behavior and other particularities in order to guarantee their proper use in different engineering and architectural appli-
cations, and thus, evaluate the sustainability of the travertines, natural resources, the stability of slopes, the preservation 
of cultural heritage and the mitigation of possible anthropic risks. Travertine has petrological and mechanical properties 
similar to carbonates from oil fields such as those found in El Presal-Brazil, which currently contain the largest hydrocarbon 
reserves in the world. Given the impossibility of obtaining rock samples from this deposit to carry out the study, rocks 
similar to these were used. The present study specifically used samples of Lapis tiburtinus rocks, coming from the west of 
the city of Tivoli in Italy and these showed resistance to uniaxial and triaxial compression, and showed mechanical resist-
ance due to increased porosity and brittleness. The investigation carried out an analysis of the geomechanical behavior 
travertine through an experimental program, which includes a petrological, structural, and mechanical characterization. 
It was determined the travertine is mainly composed of micrite and spastic calcite without the presence of grains or 
allochemical cements and presents high porosity of the fenetral and vulgar type. Macro and micropores were found to 
be chaotically distributed in the rock and have low connectivity, which demonstrates the complexity and heterogene-
ity of the porous structure of Roman travertine. Uniaxial and triaxial compressive strength tests were also carried out, 
observing a decrease in its mechanical strength due to the increase in porosity, presenting a property of brittleness in 
its behavior. The results were consistent and valid for this type of rock compared to other studies; determining that there 
is a correct and adequate operation of the triaxial cell used in the mechanical resistance tests.
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Article Highlights

• Roman travertine presents two facies, a complex 
porous structure with low connectivity and average 
porosity of 12.59%.

• Travertine is a rock of very low resistance, influence 
by the porosity, and the pores collapse in the banded 
facies.

• The Roman travertine has a higher stiffness compared to 
other similar strength travertines and carbonates.
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1 Introduction

Carbonates in recent years have gained importance in indus-
try, science, and technology, it is considered that approxi-
mately 60% of hydrocarbon reserves and 40% of world gas 
reserves are located where carbonate rocks are found [1, 2]. 
Within carbonate rocks, the precipitation of calcium sulfate 
bicarbonates and the varieties of minerals found in them 
are known. One aspect that is considered in the literature 
is establishing the formation of bacteria in the travertine 
formation and consequently the abundance for the forma-
tion of deposits [3, 4]. These are found in deposits of car-
bonate, fractured limestone, and interbedded dolomites [5, 
6], presenting conditions of heterogeneity, anisotropy, and 
complex porosity systems that are not well studied and are 
affected by natural processes [7], such as diagenesis, pre-
cipitation, fracturing, originating pore systems of different 
sizes, ranging from a few micrometers to several meters. 
Travertine is currently used in the construction industry, 
due to its appearance and durability, for which geological 
and paleoclimatic information is required [8], such as its 
slope stability, erosion conditions and understanding of the 
appearance. Physical–chemical, to achieve conservation and 
restoration strategies [9].

The rocks of Israeli origin show pores in limestone and 
dolomite concentrating stresses. According to Palchick and 
Hatzor [10], influencing the resistance of the rock, where the 
Young’s Modulus and the resistance stress increase as the 
porosity decreases and with an increase in the incidence 
of pores, both the Young’s modulus and the resistance 
decrease, therefore, the compressive strength is influenced 
by porosity [11, 12], being an important parameter and 
agreeing with the modeling of geotechnical predictions 
for the texture coefficient of this type of rocks [13], these 
parameters control the physical and mechanical response 
of oolithic carbonates [14, 15], controlling by the distribu-
tion of microporosity within the ooids,whose characteristics 
establish their mechanical resistance conditions such as 
grain size, internal structure and composition of the min-
eral present [16, 17]. Other studies carried out the analysis of 
petrographic and petrophysical data of different limestone 
lithofacies and their dolomitized equivalents within a car-
bonate succession with slope of a fault block, relating the 
distribution of fractures with the textural and mechanical 
properties of limestone lithofacies [18, 19].

These rocks depend on microstructural characteristics 
and specific resistance changes [20–22], but the range in 

which each of these properties varies is very wide, which 
makes difficult to predict its mechanical behavior. The dis-
persion of this property of the rock is relevant, observing 
in studies that the greatest dispersion is associated with 
the resistance depending on the alignment of the hydro-
mechanical microfractures, on the evolution of its miner-
alogical and volcanic geomechanical characterization [23, 
24]. In addition, in the mineralogical composition of the 
carbonates, the presence of minerals and abundance of 
quartz, feldspar and mica are found, establishing condi-
tions of reduced rock resistance [25, 26].

Likewise, physical and chemical changes are related 
to geomechanical behavior, the degree of alteration 
being influenced by the density and porosity of the rock, 
referred to in the literature on weathering by Pola et al. 
[27, 28]; they can also present areas of smectic, argillic and 
propylitic alteration, found in ignimbrite and andesite, 
established by the interaction of components found in 
geothermal fields [29, 30]. Another fundamental aspect 
is the validation of the geomechanical behavior, in refer-
ence to the formation of carbon [31] and to establish the 
types of rocks, such as those of the lithofacies type, that 
involve the characteristics whether or not they have a sig-
nificant effect. in the fracture of chained dolostonic rocks, 
which are analogous to travertine, which would show a 
great dependence on the physical–mechanical properties 
referred to the geometry and morphology of the presence 
of grains and pores, which establish their relationship with 
the failure mode of each deposit specimen studied.

A study of the mineral composition of a fine-grained 
lacustrine carbonate deposit, formed of different compo-
sition, is carried out by means of X-ray diffraction (XRD) 
analysis; description of the microstructure such as the 
morphology of the minerals pyrite and calcite, through 
scanning electron microscopy (SEM) and that the studies 
give the relevance of being able to understand and charac-
terize the travertine rocks, to later analyze the influence of 
the porosity and the structure of the lithofacies in its resist-
ance to uniaxial and triaxial compressive stresses, being 
able to contribute significantly to engineering, geology 
and the conservation of cultural heritage and other related 
areas.

The document is divided into parts, first there is the 
abstract, then the introduction. Then we explain how we 
have carried out the experimentation, we continuously 
explain the results and finally the corresponding conclu-
sions and acknowledgments.
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2  Materials and methods

2.1  Materials

The rock used in this study was Lapis Tiburtinus, found in 
Italy, west of the city of Tivoli, Acque Albule Basin, 30 km 
east of Rome in the Lazio region, in the Apennine Belt 
Centrals [32]. The study area is bounded on the south 
by the Aniene River, and is surrounded by the Lucretili, 
Tiburtini, and Cornicolani mountains. See Fig. 1.

The deposit where this rock can be found dates from 
approximately 0.22 M.a. corresponding to the Middle-
Upper Pleistocene, here, sedimentary rocks such as 
travertine preserve a composition of paleofluids and 
paleoprecipitation [33]. This deposit is known worldwide 
as one of the biggest deposits with travertine rocks of 
quaternary age, [34]. The travertine in this region is hori-
zontally stratified in laterally continuous strata along a 
wide area of approximately 30  km2 [35].

2.2  Methodology

In this study, cylindrical and thin section samples were 
selected and prepared. To characterize the petrology, 
structure, and mechanical strength of the rock, the 

following procedures were made: petrological, mineral-
ogical, and chemical analyzes, X-ray tomography, and a 
uniaxial and triaxial compression strength test as estab-
lished in the American Society for Testing and Materi-
als—ASTM International Standard D7012-13.

2.2.1  Petrological, chemical and mineralogical 
characterization

Fourteen rock cylinders were drilled with 2 inches in diam-
eter and 4 inches in length (L/D ≈ 2), and 8 thin section 
sheets of different directions of the travertine block were 
prepared. In 14 rock cylinders, the physical indexes were 
determined using a method established by the Interna-
tional Society of Rock Mechanics (ISRM) which began with 
the vacuum water saturation test, the test bodies were 
submerged in water distilled inside a desiccator and all 
the air was extracted with a vacuum pump for one hour, 
stirring every often to remove the air trapped in the rock, 
then the test bodies were remove and weight, this meas-
urement was recorded with saturated mass. After that, the 
test bodies were placed in an oven at a constant tempera-
ture of 110 °C and weights were recorded until constant 
weight, which was recorded as dry mass [36].

On the other hand, four thin sheets were impregnated 
with a blue dye and examined in a transmitted light micro-
scope of the Axio Skop Zeiss model. The other 4 sheets 

Fig. 1  a Geological Mapo f Central Italy in Rome, showing the location of the Tivoli Travertine Plateau, in the Acque Albule Basin. b map of 
the Acque Albule Basin and the delimitation of the study area
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were metalized in gold for analysis in the scanning elec-
tron microscope (SEM) Jeol JSM—6610 Thermo Scientific 
brand, allowing an increase of up to 300,000X. Energy dis-
persive X-ray spectrometry (EDS) elemental analysis was 
also performed.

The mineralogical analysis was performed using three 
samples (M1, M2, M3) that were ground and passed 
through a N°. 200 sieve, and analyzed by X-ray diffraction 
with the D8 Discover diffractometer of the Bruker brand 
that allows a reading of the diffraction angle from 0° to 
90°. The same samples were used for the chemical analysis 
carried out by dispersed energy X-ray fluorescence and 
elementary chemistry analysis, using the Shimadzu 800 HS 
spectrometer and EA 1112 elemental analyzer.

2.2.2  Porous structure characterization

The porous structure of the 14 drilled rock cylinders were 
scanned along their axial axis (4 inches), using a Micro-
Tomograph V Tome × L300 of the GE/Phoenix brand 
provided by the Centro de Pesquisas Leopoldo Américo 
Miguez de Mello research unit (CENPES). A scanning was 
performed through X-ray computed tomography with 2D 
inspection (microCT) with details of up to 1 μm, generat-
ing images of 880 × 880 × 1700 pixels, with a resolution of 
60 µm. These data were then processed in the Phoenix 
Data X 2.0 rec program. To improve the visualization of the 
rock phase and the porous phase, and to reduce the exist-
ing noise, the Avizo Fire 8.0 program was use to visualize 
the 3D images, using the Non-Local Means filter.

Geomechanical analyzes of the behaviors of rock fail-
ure mechanisms, composed of isotropic conditions at the 
micro-level, were compared [37]. This procedure consisted 
of the visualization of the digital reconstruction of the test 
bodies through the position of the images obtained by 
microtomography. After that, the porosity was determined 
through an image analysis performed with the "Image J" 
software, on each of the images, by the difference between 
the total volume of the test body and the volume of the 
solid matter scanned. It is worth mentioning that a statisti-
cal analysis was not carried out but rather a complete scan 
of all images for the determination of porosity.

2.2.3  Mechanical characterization

Uniaxial and triaxial compression tests were performed 
based on the ASTM D7012-13 standard. Cylindrical speci-
mens were used for these tests, five samples were num-
bered: 1, 2, 3, 9 and 13 for uniaxial compression tests and 
six samples as: 4, 5, 6, 7, 8, 12 for axisymmetric triaxial com-
pression tests. These tests were carried out in a high rigid-
ity triaxial cell, designed and manufactured for the present 

study, with an axial load capacity up to 2.5 MN and a radial 
confining pressure up to 140 MPa. To measure the axial 
and radial displacement, resistive strain gauges and clip-
type gauges were used, applying a controlled displace-
ment with speeds between 0.0008 and 0.0009 mm/min.

The uniaxial mechanical characterization was carried 
out without confinement in the triaxial cell, for which the 
dimensions of the test body (diameter and height) were 
first recorded, then it was covered with a heat shrinkable 
membrane, instrumented with strain gauges, placed in 
the interior of the triaxial cell [38] and the axial load was 
applied. The same procedure was followed for the triaxial 
test, however, the test bodies were instrumented with 
axial and radial displacement sensors and the axial and 
radial loads were applied. The data from the uniaxial and 
triaxial tests were recorded in an auxiliary CPU control and 
monitoring system using the Triaxial Rocha V1 program. 
The modulus of elasticity was calculated by least squares 
using the data from the straight section prior to the peak 
of the deformation curve; referred to the determination 
of the resistance to deformation by uniaxial compression 
and rock.

The uniaxial test was carried out inside the triaxial 
cell but without any confinement. To carry out this test, 
the dimensions of the test bodies whose ratio height to 
diameter is greater than 2 were first recorded, then the test 
bodies were covered by a membrane. heat-shrinkable and 
axial and lateral strain gauges were glued to the middle of 
each sample.

After the instrumentation of the test body, it is placed 
inside the triaxial cell, verifying the correct coupling 
between the test body and the plates of the triaxial cell, 
finally an axial load is applied. At a rate of 0.5–1 MPa/s until 
rupture occurs, recording the ultimate value, which is the 
uniaxial compressive strength.

For the execution of the triaxial test, the test bodies 
must have the same dimensions as for the uniaxial test. In 
a similar way, the test body must be covered with a heat-
shrinkable membrane and instrumented with strain gauge 
sensors. Later, it must be placed inside the cell, verifying 
the correct coupling with the triaxial cell plates. In this 
case, the test begins by applying a hydrostatic load that 
consists of applying a confining and axial load of equal 
value but less than the uniaxial resistance, later this load 
can be increased to the desired value but simultaneously 
in both the axial and lateral axis.

The data from the uniaxial and triaxial tests were 
recorded in an auxiliary CPU control and monitoring sys-
tem using the Triaxial Rocha V1 program. The modulus of 
elasticity was calculated by least squares using the data 
from the straight section prior to the peak of the deforma-
tion curve; referred to the determination of the resistance 
to deformation by uniaxial compression and rock. Young’s 
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modulus was determined by measuring the slope of the 
straight line segment of the stress–strain curve. To obtain 
said slope, the method of least squares must be used, 
which allows adjusting an equation of the line, where the 
slope of this line is the modulus of Young.

3  Results

3.1  Petrological, chemical and mineralogical 
characterization

Macroscopically, travertine is a light beige rock with high 
porosity of the vugular and fenestral type, it presents 
irregular fracture and different facies, which are: mas-
sive facies, formed by strata with thicknesses of 0.5–5 cm, 
normally dense with a low porosity of about 5%; Banded 
facie, formed by strata from 0.5 to 8 cm and characterized 
by areas of porosity greater than 6%. The rock presented 
a hardness of 3–3.5 on the Mohs scale; and generated a 
strong reaction to cold hydrochloric acid, indicating the 
presence of calcium carbonate.

According to the results of the elemental chemical 
analysis by X-ray fluorescence, shown in Table 1, the rock 
is predominantly composed of Calcium, Carbon and Oxy-
gen (Calcite  CaCO3), with Ca being the component with 
the greatest presence, also shows traces of sulfur, iron, 
strontium, potassium, hydrogen and nitrogen. The results 
obtained by X-ray diffraction show us that the rock is com-
posed of 99.872% and 100% calcite and a non-represent-
ative part of quartz; Similar results were reported in the 
study conducted by Giustini et al. [39], who determined 
that the travertine north of Rome is composed entirely of 
calcite, other studies refer to rocks associated with syenite 
and pyroxenite with a high presence of strontium for car-
bonate rocks and low limestone [40–44].

Microscopically, travertine is composed of dark gray 
microcrystalline or micrite calcite inside the pore, and 
spastic or sparitic calcite mainly on the pore surface next 
to the micritic structures, without the presence of allo-
chemical grains such as ooids, oncolite, intraclasts, exhib-
iting a calcareous rock with diffuse contact between these 
components and crystalline mosaic textures, due to the 
fact that the sparites are larger and are observed in the 
form of mosaic and intersecting crystals on the inner 
edges of the pores [45]. The EDS analyzes and the SEM 
images confirmed that the rock is mainly composed of 
crystalline calcium carbonates, without the presence of 
cement between the calcite crystals as shown in Fig. 2. 
According to the high percentage of calcium carbonate 
and considering the low percentage of Magnesium found, 
this rock is classified as a calcitic carbonate, according to 
the MgO/CaO [46, 47]. Travertine, based on the relative 
proportions of the natural carbonate rock components 
can be classified as a spatic dysmicrite or mud-cement 
reef. The classifications of the physical and mechanical 
properties of the primary rocks are related to the depth 
at which they are found, and also to the different altera-
tions by hydrothermal methods, using optical mineralogy 
that presents in the different zones of smectite, argillic and 
propylitic alteration.

3.2  Porous structure characterization

Travertine, being a heterogeneous mineralogy rock, has 
a complex porous structure probably due to its genesis, 
showing an effective porosity between 8.4 and 14.66%, 
with a specific mass of 2.15–2.41 g/cm3, which reflects the 
complexity and heterogeneity of the porous structure of 
carbonates in general.

In the analysis with an optical microscope, the presence 
of pores of irregular geometry was observed, distributed 
in a dispersed way and with high density, distinguishing 
pores with sizes greater than 100 microns with low con-
nectivity. See Fig. 3. Spheroid and irregular shaped pores 
were associated with vugular, fenestral and intercrystal-
line porosity [48], these have micron sizes. Microporosity 
is characterized by diameters less than 100 µm and macr-
oporosity by diameters greater than 100 µm. Through the 
SEM, it was recognized that the microporosity is consti-
tuted by pores of the interparticle and intraparticulate 
type and without the presence of any filling in the pores. 
Travertine rock presents vugular type porosity but with 
little connectivity with the porosity conditions of the rock, 
manifesting as vuggy macropores that have little influence 
on capillary water absorption, strength, and elasticity 
characteristics, whose microporosity factor is a determin-
ing factor for rock resistance [49–51]. The fenestral and 

Table 1  Chemical composition of Roman travertine by X-ray fluo-
rescence analysis

Element M 1 (%m/m) M 2 (%m/m) M 3 (%m/m)

Ca 47.950 48.839 47.109
C 12.838 12.633 13.001
O 38.514 37.899 39.003
K 0.196 0.000 0.186
S 0.167 0.185 0.143
Sr 0.092 0.115 0.103
H 0.155 0.136 0.177
Fe 0.033 0.170 0.170
N 0.055 0.022 0.109
Total 100% 100% 100%
Composition M 1 (%) M 2 (%) M 3 (%)
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intercrystalline type porosity has higher connectivity, this 
being the type of pores registered inside of spastic calcite.

From the analysis of the two-dimensional and three-
dimensional images observed through the microtomog-
raphy, it is verified that the pores have a large dispersion, 

Fig. 2  a Calcite crystals with-
out the presence of cement, 
observed through the SEM 
with an increase of 300,000 
X; b Results of EDS, which 
indicate the predominant com-
position of calcium carbonate

Fig. 3  Optical microscope features: a scattered distribution and irregular geometry of the pores; b intercrystalline porosity in the spastic 
calcite
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presenting areas of greater density and concentration cor-
responding to the banded facies, apparently with low con-
nectivity. In the images taken with the Microtomograph, 
it is possible to verify for each body test the existence of 
large pores, without contact with the surface, mainly of the 
vugular and fenestral type, and all this without fracturing 
it, being this one of the main advantages of this technique.

In the profiles of variation of the total porosity obtained 
from the microtomography images, strong variations can 
be perceived, these variations were from 3 to 23% approxi-
mately, for 12 mm of the total test bodies, demonstrat-
ing the sharp variation of the porosity in the body test, 
thus determining the complexity and heterogeneity of 
the porous structure of the travertine, since the area of 

pores had to vary rapidly in a small space, this same poros-
ity behavior is observed in each of the test bodies. See 
Fig. 4. A pore diameter statistic was made, where 45% cor-
responds to intercrystalline type porosity, 55% to vugular 
and fenestral type porosity. This would indicate the greater 
occurrence of empty spaces during their formation due to 
the expulsion of the gases contained within the sediments 
and the growth of the crystals would occur, considering 
that the geometry, intensity, and direction of the longest 
pores depend on the direction of deposition, and these 
are established parameters for the strength of anisotropic 
travertine [52, 53].

3.3  Mechanical characterization

The results of the Uniaxial Compressive Strength (UCS) 
tests are shown in Table 2, the resistance of the traver-
tine varied between 13.26 and 48.04 MPa with a poros-
ity of 8.40 to 14.66% respectively, determining that the 
mechanical resistance of the travertine is influenced by 
the porosity. Figure 5a shows the stress curves, this is the 
deformation of the travertine recorded during the axial 
load [54]. The stress–strain curves under uniaxial loading 
show a typical brittle behavior in all test bodies [42, 43, 55]. 
In Fig. 5b uniaxial resistance can be seen as a function of 
porosity, indicating a non-linear behavior characterized by 
a potential type curve, a similar behavior is also observed 
for the porosity obtained from the Image J program, these 
results show that the test bodies with less porosity show 
higher strength values, which occurs because the pores 
admit greater plastic deformation without exceeding the 
strength limit or without the pores collapsing; this occurs 
in test bodies with high porosity, they have low strength, 
and their pores collapse with small deformations. Some 
studies refer to the alterations generated by the increase 
of porosity and permeability, and the reduction of density, 
such as the elastic wave speed and the force, generating 
greater fragmentation.

The results of the Uniaxial Compression Resistance 
(UCS) tests are shown in Table 2, the resistance of the trav-
ertine varied between 13.26 and 48.04 MPa with a poros-
ity of 8.40–14.66% respectively, determining that the 

Fig. 4  a Two-dimensional and three-dimensional images observed 
with microtomography; b profile of porosity variations

Table 2  Influence of porosity vs. mechanical resistance

CP Effective 
porosity (%)

UCS (MPa) E (GPa) Poisson 
radio, (ʋ)

TR 01 8.57 35.98 32.27 0.23
TR 02 8.40 48.04 39.67 0.37
TR 03 11.62 19.31 37.33 0.38
TR 09 13.21 16.32 27.57 0.22
TR 13 14.66 13.26 57.17 0.34
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mechanical resistance of the travertine is influenced by 
porosity; establishing that the shear modulus and the Pois-
son coefficient would be defined to the damping of the 
resistance between the applied effort and its deformation 
in the relationships of 0.37 and 0.34 and its deformation.

Figure 5c, shows the uniaxial strength as a function of 
the specific dry mass or density of the material, generating 
an exponential relationship between these two proper-
ties, this behavior indicates a fast increase of the uniaxial 
strength with a slight variation of the specific dry mass. A 
small variation of the pores with a diameter greater than 
the indicated dimension could imply a significant increase 
in the value of the total porosity, related to the onset of 
fractures due to micro defects (micropores), which indi-
cates that the greatest concentration of stresses would 
be at the end of the (micropore) with a smaller radius of 
curvature. It was also observed that the direction of the 
fracture is parallel to the direction of maximum tension, 
but the beginning of these occurred at the tips of the 
pores [56].

In triaxial trials, Fig. 5d, where axial and lateral stress 
were applied, travertine showed an increase in strength 
with an increase in lateral stress of confinement stress; 
these results were influenced by the porosity and the 
greater presence of banded facies as shown in Table 3, 
where the test bodies with a higher percentage of porosity 
(greater amount of porous facies) presented collapse frac-
ture of their pores with lower resistance values compared 
to the test bodies with lower porosity that presented 
higher strength value, and rupture of the test body due 
to shearing and fendilament or cracking.

Different types of rupture were identified during the 
tests, the test bodies with less porosity (< 12%) showed 
fractures of the shearing and fendilament type, while the 
test bodies with higher porosity (> 12%) presented frac-
tures of the cracking or fendilament type with the occur-
rence of pore collapse in the banded facies, where the 
high porosity decreased the load area allowing the ten-
sions to concentrate in the solid structure between the 

Fig. 5  a Tension-deformation curve of uniaxial tests; b uniaxial resistance as a function of porosity; c uniaxial strength depending on the 
specific dry mass; d tension deformation curves of triaxial tests
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pores, subsequently generating its destruction due to the 
increase in these tensions.

In triaxial tests, Fig. 5d, where axial and lateral stresses 
were applied, travertine showed an increase in strength 
with an increase in lateral confining stress; these results 
were influenced by porosity and the greater presence of 
banded facies as shown in Table 3, where the test bodies 
with the highest percentage of porosity (greater quantity 
of porous facies) presented fracture by collapse of their 
pores with resistance values lower in comparison with the 
test bodies with lower porosity that presented a higher 
resistance value, and rupture of the test body by shearing 
and fendilation or cracking, establishing that the property 
of the Poisson’s ratio and its decrease to the Young’s modu-
lus, determines the deformation stress curve depending 
on porosity conditions, increasing its resistance.

The stress–strain curves show a brittle-ductile behav-
ior in the different test bodies, because the graph shows 
a stress peak, typical of a brittle regime, followed by a 
drop in softening due to deformation, however it is also 
observed that the pressure load increases slightly as does 
the strain rate, which is typical of the ductile regime in 
porous rocks [16]. The direction of the fractures does not 
follow the orientation of the pore but aligns with the direc-
tion of maximum stress and the fractures begin at the type 
of the pores. The types of fractures observed were like 
those registered in the uniaxial tests with a similar poros-
ity dependence. Considering the classification of intact 
rock [57], travertine is considered a rock of low to very 
low strength. Characteristic parameters were determined 
according to the strength criteria of Mohr–Coulomb, Hoek 
& Brown, and Kim & Lade.

Pregunta 9 Uniaxial and triaxial compression tests 
were performed based on ASTM Standard 7012-13. For 
these tests were used only cylindrical test bodies having 
been made five “5” uniaxial compression tests and six “6” 
axisymmetric triaxial compression tests. These tests were 
performed in a high rigidity triaxial cell, designed, and 
manufactured for the present study, with axial loading 
capacity up to 2.5 MN and radial confinement pressure up 
to 140 MPa. To measure the axial and radial displacement 
were used, resistive strain gauges y clip gauge, applying 

a controlled displacement with rates between 0.0008 and 
0.0009 mm/min.

4  Discussion

Different studies have been carried out for rocks such as 
Turkish travertines, Hungarians from Itaboraí in Brazil, 
dolomites from Turkey, and carbonates from Israel, these 
studies are related to our observations, they demonstrate 
in this way the geometry of pores, the distance, the lami-
nation and the direction of these influence the resistance 
of the rock, as well as the fractures contribute to the tex-
tural mechanical properties of the carbonate rock in its 
dolomitization phases. [58], the travertines have heteroge-
neous structures, showing different geometries and pore 
sizes [59], the phenomena of fracturing the rock masses 
and pre-existing joints determine their compression 
referred to the geometric parameters [60].

Young’s Modulus was plotted as a function of poros-
ity. Figure 6a shows a decrease in Young’s Modulus with 
increasing porosity, which implies that carbonates rap-
idly lose their stiffness with increasing porosity. It is also 
observed that Young’s Modulus has very high values for 
high porosity values (n% > 30%); According to the litera-
ture, when porosity is large, there is a significant impact 
on strength [61–63]. It is also observed that the Roman 
Travertine has Young’s Modulus value of medium to high 
according to the point cloud, but the Itaboraí travertine 
has even higher values indicating that it is more rigid than 
most carbonates.

In Fig. 6b, the results of Young’s Modulus versus uni-
axial strength were plotted. It was observed that Roman 
travertine shows higher stiffness compared to other simi-
lar strength travertines and carbonates. This stiffness was 
higher in the travertines with pore collapse, compared 
to the observations made to the thermal properties that 
presented failures. Uniaxial compressive strength, elastic 
modulus parameters and Poisson’s ratio are also observed 
[64–66]. See Table 2.

Figure 6c shows that, in general, strength decreases 
with the increase in porosity, such as the wide range of var-
iation of the strength and the porosity of the carbonates. 

Table 3  Results of triaxial trials CP σ1 (MPa) σ3 (MPa) Voltage desv. 
(MPa)

E (GPa) Poisson CP

TR 04 22.3 4.14 18.12 22.32 0.23 12.54
TR 05 44.9 6.90 38.03 33.24 0.25 10.84
TR 06 35.3 4.14 31.13 6.10 0.44 9.38
TR 07 52.4 2.76 49.60 36.73 0.28 8.89
TR 08 64.0 5.52 58.53 36.65 0.25 9.02
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Being the limestones, dolomites and Chalk studied by 
Azimian et al. [67] that show a greater dispersion, it can 
also be seen that the results of the Roman Travertine are 
located in the area of the highest density of other traver-
tine points, showing a good coherence of the results with 
other investigations [68, 69].

In Fig. 6d, different correlations are observed for the uni-
axial strength referring to the dry mass of different carbon-
ates, whose result establishes the increase in strength con-
cerning the increase in specific dry mass; whose adjustment 
is observed in Itaboraí travertines little distant from the point 
cloud, showing low resistance despite having a specific dry 
mass greater.

Correlation rates obtained in this study and the corre-
sponding correlation for the different lithologies and coef-
ficients of uniaxial strength as a function of the specific dry 
mass, show a good fit with the “point cloud” results, and the 
comparisons observed with the Itaborai travertine study in 

a narrow behavior and little distance between the points 
found despite having a specific mass greater in the results.

5  Conclusions

The rock presented a complex porous structure charac-
terized by pores of the vugular, fenestral (macropores), 
intraparticle and intercrystalline (micropores) type, which 
present low connectivity and large variations in the size, 
distribution and density of the pores, presenting an aver-
age porosity of 12.59%.

According to the uniaxial resistance of travertine, it is 
observed that it is a rock of low to very low resistance, 
whose mechanical properties are strongly influenced by 
porosity, showing that the test bodies of low porosity are 
more resistant, presenting fractures of the fendilation type 
and shear, while the high porosity rocks are less resistant, 

Fig. 6  a Young’s modulus based on porosity; b Young’s modulus as a function of resistance; c uniaxial strength as a function of porosity; d 
uniaxial resistance depending on the specific mass
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showing fendilation type fractures with the occurrence of 
pore collapse mainly in their high porosity banded facies.

In triaxial compression tests, increasing the confin-
ing stress provided increased strength. This increase in 
strength is also dependent on porosity, as opposed to 
confining stress.

The travertine resistance parameters for the adjustment 
of the Mohr–Coulomb criterion lead to a friction angle 
ϕ = 32° and cohesion c = 7.561 MPa.

For the Hoek & Brown criterion, its parameters are 
mi = 6.072, s = 1, a = 0.5 and C0 = 27.056 MPa, and for the 
adjustment of the Kim & Lade criterion, the following 
parameters are used: n = 2.9 × 106 em = 1.42.

The correlations obtained with respect to other studies 
for different travertines and carbonates, show that for the 
Roman travertine the correlations are coherent and valid, 
observing the correct functioning of the triaxial cell used 
in the respective mechanical resistance tests, whose infor-
mation on the geological conditions contributes to the 
understanding of geotechnical properties, such as com-
pressive strength, tensile strength, modulus of elasticity, 
permeability, and porosity.

The characterization techniques allowed a clear and 
detailed interpretation of the porous systems of the rock, 
allowing us to predict the elastic resistivity subject to 
the action of decomposition agents, suggesting a better 
exploration of other factors that influence the deformation 
related to faults.
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