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Abstract
Energy forecasting is crucial for efficient energy management and planning for future energy needs. Previous studies 
have employed hybrid modeling techniques, but insufficient attention has been given to hyper-parameter tuning and 
parameter selection. In this study, we present a hybrid model, which combines fuzzy c-means clustered adaptive neuro-
fuzzy inference system (ANFIS) and genetic algorithm (GA), named GA–ANFIS–FCM, to model electricity consumption 
in Lagos districts, Nigeria. The model is simulated using the algorithms’ control settings, and the best model is identified 
after assessing their performance using renowned statistical indicators. To further narrow down the best viable model, 
the impact of the core parameter of the GA on the GA–ANFIS–FCM optimal model is examined by varying the crossover 
percentage in the range of 0.2–0.6. Firstly, the results reveal the better performance of the hybridized ANFIS model than 
the standalone ANFIS model. Additionally, the best model is obtained with the GA–ANFIS–FCM model with four clusters 
at a crossover percentage of 0.4, with mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient 
of root mean square error (CVRMSE), root mean square error (RMSE) values of 7.6345 (signifying a forecast accuracy of 
92.4%), 706.0547, 9.4913, and 918.6518 during the testing phase, respectively. The study demonstrates the potential of 
the proposed model as a reliable tool for energy forecasting.

Article highlights

•	 Integrating evolutionary algorithms with ANFIS can 
boost its performance, resulting in a more accurate and 
reliable model.

•	 Achieving accuracy with fuzzy c-means-based mod-
els, hybrid or stand-alone, requires appropriate cluster 
quantity

•	 Determining the optimal crossover percentage for GA–
ANFIS models is crucial to accuracy, requiring multiple 
experiments for the model.
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1  Introduction

The prevalence of data-driven decision-making in the 
energy sector has enabled the service and industrial 
sectors to make informed strategic decisions [1]. As a 
result, modern manufacturing systems have undergone 
significant changes, driven by data-driven processes 
such as prediction. Accurate prediction of energy usage 
is necessary to ensure a reliable energy supply and ena-
ble end-users to optimize their business performance. 
Electric utility companies are responsible for generating, 
transmitting, and distributing power to meet demand 
and provide uninterrupted electricity supply. To achieve 
this goal, they need to make precise energy predictions 
that anticipate fluctuations in demand and adjust energy 
production and distribution accordingly. Precise energy 
prediction helps power providers reduce operating 
costs, maintain an economically efficient power system, 
and enhance social and economic benefits. Therefore, it 
is essential to make accurate energy usage estimates to 
improve the reliability and efficiency of the power sup-
ply system.

SC and ML techniques have been proven to be 
highly effective in solving complex problems in vari-
ous domains, including energy prediction. The com-
bination of SC and ML techniques can efficiently ana-
lyze large datasets and identify patterns, trends, and 
correlations, allowing for accurate energy predictions. 
Furthermore, the advanced algorithms used in SC and 
ML enable computers to learn and adapt to new data, 
making these techniques ideal for tackling challenges 
involving vast volumes of data and complex analysis. 
The computational structures and methods provided 
by SC and ML techniques can facilitate the optimization 
of energy systems, and result in improved efficiency, 
reduced costs, and enhanced performance. Using SC 
and ML approaches, energy providers and stakeholders 
can generate more precise and reliable energy forecasts, 
allowing for better decision-making [2].

Artificial Neural Networks (ANNs) are a powerful 
example of ML techniques. They consist of a network of 
linked nodes, or neurons, that perform complex compu-
tations and make predictions or classifications by using 
weighted connections between them. These nonlinear 
mapping structures are modeled after human neurons 
and have been effectively used to solve a wide range 
of problems across different fields. With their ability to 
learn and adapt from experience, ANNs are a popular 
tool for tasks such as image and speech recognition, 
natural language processing, and even financial forecast-
ing [3]. Consequently, previous works have considered 
the implementation of ANN for electricity projection. 

For instance, Shukri et al. [4] predicted the electricity 
obtained from wind energy using an ANN-based model. 
Chen et al. [5] investigated the use of an ANN model to 
forecast the electricity demand of an office building by 
dividing the time horizon into occupancy rate-based 
segments. The study findings suggest that this approach 
can improve the accuracy of electricity demand forecast-
ing. Kim et al. [6] evaluated the accuracy of two models - 
classical linear regression and ANN - for predicting power 
usage in a campus building based on occupancy rates 
and weather factors. The study findings provide insights 
into the strengths and weaknesses of each approach. In 
another work, Yuan et al. [7] used Japan as a case study 
to provide an ANN-based prediction model for seasonal 
hourly power usage across three sections of a university 
campus. Using Feed-forward ANN trained using Leven-
berg-Marquardt (LM) back-propagation techniques, the 
suggested model produced ideal results with Correla-
tion coefficients between 0.95 and 0.99. However, one 
major drawback of ANN is that they can demand a lot of 
computing power and time, especially when training big 
and complicated models. To enhance modeling speed, 
fault tolerance, and addictiveness, Jang [8] developed 
the Adaptive Neuro-Fuzzy Inference System (ANFIS) in 
1993. ANFIS has a competitive edge over ANN since it 
merges the strengths of both fuzzy logic and neural 
networks, enabling the modeling of complex systems 
with enhanced precision and accuracy, while also being 
capable of processing both numerical and linguistic 
data, making it ideal for diverse applications. The ANFIS 
however, may not always be precise due to the fact that 
its parameters need to be optimally designed to evade 
getting stuck at a local point and not reaching its opti-
mal value [9]. Adequately optimizing the parameters 
of the ANFIS is a difficult task. Hence, the parameters 
of the ANFIS can be optimized utilizing by employing 
Evolutionary-based predictive soft computing (EPSC) 
methods. The fusion of ANFIS and SC techniques is often 
referred to as hybrid modelling.

Several hybrid models can be found in the literature. 
For instance, using the Indian electricity market as a case 
study, Yodav et  al. [10] developed a hybrid model for 
Solar photovoltaic (PV) power. ANFIS was integrated with 
a genetic algorithm (GA) and evaluated against several 
models. The suggested GA-based ANFIS, according to the 
authors, provided the best accurate forecasts. Luo and 
Oyedele[11] predicted the electricity usage of educational 
buildings using the combination of the Long short-term 
memory (LSTM) neural network model and GA. Based on 
their results, the LSTM-based GA performed better than 
the LSTM models using grid search, Bayesian optimization, 
and particle swarm optimization (PSO). Didem[12] worked 
on the determination of industrial energy demand in 



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:186  | https://doi.org/10.1007/s42452-023-05406-8	 Research Article

Turkey using multiple linear regression (MLR), ANFIS, and 
PSO-ANFIS. According to their findings, when compared 
to MLR and ANFIS models, the PSO-ANFIS model deliv-
ered greater prediction accuracy with the least amount of 
estimate error. Emerging Harris Hawks Optimization (HHO) 
and PSO algorithms were combined with SVR for load 
demand forecasting and optimal sizing of stand-alone 
hybrid renewable energy systems in [13, 14]. ANFIS was 
combined with PSO algorithms by Nou et al. [15] to model 
the geometric properties of the scour hole of ski-jump 
spillways. A comparison of simulation results revealed that 
the proposed model outperformed other methods under 
some prominent error calculation indices. Souhe et al. 
[16] presented a hybrid model for predicting electrical 
consumption based on support vector regression (SVR), 
Firefly Algorithm (FA), and ANFIS. ANN was combined with 
the PSO algorithm in forecasting the energy consumption 
for a multi-campus university in [1]. Their work employed 
a dataset division of 70% and 30% for training and test-
ing, respectively. The results of their work showed that the 
ANFIS-based PSO delivered optimal results compared with 
the standalone ANFIS model.

2 � Research gap and motivation

Although previous studies have used hybrid models to pre-
dict energy consumption, they have not fully accounted 
for the impact of hyperparameter tuning and the optimal 
selection of some key parameters of the hybrid model. It 
is important to note that these vital parameters are pre-
determined for the optimal performance of the model. 
To address these issues, the present study utilizes a state-
of-the-art algorithm, namely the genetic algorithm (GA) 
[17], to optimize the ANFIS structure. The advantage of 
this proposed approach lies in the fusion of ANN relational 
structures and learning skills, the intrinsic dynamic quali-
ties of fuzzy logic in decision-making, which are contained 
in ANFIS, and the parameter-tuning capabilities of evolu-
tionary algorithms, such as GA. Furthermore, meticulous 
consideration is given to the impact of the core parameter 
of GA on the accuracy of the proposed hybrid model. The 
effectiveness of GA is primarily influenced by crossover, 
followed by mutation rate, population size, re-randomi-
zation points, and elite selection, as stated by previous 
studies [18, 19]. Although some studies have utilized the 
GA hybrid models, they have overlooked the importance 
of these key parameters. Considering this, our study inves-
tigates the impact of the crossover rate parameter on the 
proposed hybrid model.

In terms of the clustering approach, the FCM is chosen 
for the proposed model. FCM is a well-known clustering 
approach for automatically organizing a broad range of 

information and obtaining reliable categorization. FCM 
is preferred over other clustering algorithms because of 
its fast-processing time and its benefit of allowing items 
to be part of several groups rather than just one [20]. In 
addition, the FCM is resilient to ambiguity and has the abil-
ity to retain significantly more data than any other hard 
clustering method [21]. Nevertheless, the number of clus-
ters used for the FCM-clustered neuro-fuzzy model can 
have diverse effects on the performance, computational 
complexity, and interpretability of the model. Increasing 
the number of clusters may lead to overfitting, while hav-
ing too few clusters can result in underfitting. Therefore, 
it is important to choose an appropriate number of clus-
ters based on the specific application and the character-
istics of the data to ensure optimal performance of the 
model. Hence, we carried out a variety of experiments in 
which the number of clusters was varied in order to ascer-
tain the optimum quantity that is appropriate for the 
GA–ANFIS–FCM model that was proposed.

The main contributions of the study are as follows:

(a)	 The development of a hybrid model which consists of 
fuzzy c-means clustered adaptive neuro-fuzzy infer-
ence system and genetic algorithm (GA), for electric-
ity prediction using weather information, and histori-
cal electric loads.

(b)	 Compare overall prediction performances of stan-
dalone ANFIS–FCM and GA–ANFIS–FCM, as well as 
examine the impact of the number of clusters on the 
developed models under renowned performance 
evaluation metrics.

(c)	 Investigate the robustness of the optimal model in (b) 
by comparing it with other GA–ANFIS–FCM sub-mod-
els which involved varying the crossover percentage 
of the GA.

(d)	 Compare the proposed model with other hybrid mod-
els.

The rest of the paper is organized as follows: In Sect. 3, 
we present the data collection and processing. Section 4 
contains the methodology. In Sect.  5, we present the 
results and discussion. Then, we conclude and present 
future work in Sect. 6.

3 � Data collection

Lagos, one of the most populated cities in Africa, is situ-
ated in the southwest of Nigeria. It is well-known for being 
the biggest city in Nigeria and the primary regional center 
for air, land, and sea transport. It is located on latitude 6° 
27′ 55.5192″ N and longitude 3° 24′ 23.2128″ E, respec-
tively. The high-density metropolitan region is made up 
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of 16 of the 20 local government areas (LGA) in the region. 
The state has two distinct climatic periods: the wet sea-
son, which lasts from April to October, and the dry season, 
which lasts from November to March. This study utilizes 
electricity consumption data from 10 districts in Lagos 
during the wet season to develop the model.

The experiment utilizes a real dataset of electricity con-
sumption for ten districts, acquired from the Eko Electric-
ity Distribution Company (EKEDC), for the wet months of 
2020, which encompass May to October 2020. Figure 1 
shows a varying electricity consumption pattern for the 
wet months. The data consist of 31 records per month for 
each wet month, except for May and September, which 
have a different number of records consisting of 30 days 
each. The climatic information, including maximum tem-
perature, minimum temperature, humidity, wind speed, 
and dew, was acquired from the Visual Crossing Weather 
Data stations in accordance with the study area. Electric-
ity consumption is the output of the model, measured in 
MWh. The statistical properties of the input and output 
data are presented in Table 1. The total amount of data 

collected was split into three categories for the model’s 
development: training (70%), testing (15%), and validation 
(15%).

4 � Methods

4.1 � Adaptive neuro‑fuzzy inference system (ANFIS)

In 1993, Jang [8] introduced the Adaptive Neuro-Fuzzy 
Inference System (ANFIS). This unique composite model 
employs both neural network and fuzzy logic character-
istics in its structure, which complement each other. In 
other words, ANFIS is an adaptive hybrid multi-layer feed-
forward network that leverages the dual learning capa-
bilities of ANN and FIS to emulate the process by which 
humans arrive at intelligent decisions [22]. The Takagi-
Sugeno fuzzy system, which forms the basis for the ANFIS 
modelling approach can be divided into two categories: 
antecedents and consequences. The ANFIS concep-
tual framework consists of five levels, namely the fuzzy, 

Fig. 1   Daily consumption of the study area during the season

Table 1   Statistical properties 
of the input and output data

Input Output

Max 
tempera-
ture
(°C)

Minimum 
tempera-
ture
(°C)

Average dew Humidity
(%)

Windspeed
(m/s)

Electricity 
consumption 
(MWh)

Maximum 35.00 28.00 26.60 98.30 75.60 12386.30
Minimum 25.10 20.00 21.10 76.60 9.40 4241.90
Mean 30.50 24.12 24.01 84.86 23.07 9530.44
Standard deviation 2.26 1.59 1.09 4.04 9.65 1378.70
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product, normalization, defuzzification, and summation 
layers, arranged in ascending order from layer 1 to layer 
5. It consists of a learning approach that optimizes model 
parameters via methods such as back-propagation gradi-
ent descent and least squares techniques. As illustrated in 
Fig. 2, the basic ANFIS model comprises five layers, each 
of which employs fuzzy IF-THEN rules to create a nonlin-
ear map linking the input and output. In the first layer, 
two inputs are received, x and y, and each node’s output 
is determined by the generalized Gaussian membership 
function (µ). These stages are presented as Eqs. (1)–(3) 
below [8]:

Ai and Bi represent the membership values; μ represents 
the Gaussian MF; μAi

 and μBi represents the membership 
degree; ρi and αi represent the premise parameter set.

During the subsequent phase of ANFIS, the output of 
each node in the second layer, also known as the firing 
strength of a rule, is determined by using Eq. (4) [8]:

Equation (5), which is also known as the normalized fir-
ing strength, describes the output of the third layer node 
as follows [8]:

 where wi  is the normalized firing strength from the third 
layer.

The adaptive node located in the fourth layer receives 
the output O3i from the third layer and proceeds to calcu-
late its own output in the following manner [8]:

(1)O1i = μAi (x), i = 1,2,

(2)O1i = μBi−2(y) i = 3, 4,

(3)μ(x) = e
−
(

x−ρi

αi

)2

,

(4)O2i = μAi
(x) × μBi−2(y)

(5)O3i = w̄i =
𝜔i∑2

(i−1)
𝜔

�

1

where pi , qi and ri is the consequent parameters of the 
node i  . The last layer of the ANFIS model consists of a sin-
gle node, and the output of this layer is computed as fol-
lows [8]:

4.2 � Fuzzy c‑means (FCM) clustering technique

By employing FCM for clustering, data points can belong 
to multiple clusters with different degrees of member-
ship, rather than being rigidly assigned to a single cluster. 
FCM functions by iteratively partitioning data into clusters 
according to their similarity to one another. The degree of 
membership of each object to each cluster is represented 
by a fuzzy membership value ranging from 0 to 1. The pro-
cedure begins by randomly setting the centers of the clus-
ters and then iteratively adjusting them depending on the 
objects’ relative membership in each cluster. A complete 
clustering solution is reached after all object membership 
values have stabilized. The capacity of FCM to deal with 
overlapping and ambiguous data has led to its widespread 
use in a variety of domains, including pattern identifica-
tion, picture segmentation, data mining etc. In addition, its 
unsupervised data processing and model creation make 
it useful in image analysis, medical diagnosis, astronomy, 
chemistry, and agricultural engineering [23]. Using FCM 
for ANFIS has several advantages. Firstly, FCM can help 
determine the initial parameters for the ANFIS model. The 
clustering process of FCM can assign initial membership 
degrees and centroid values to the fuzzy sets in the ANFIS 
model, resulting in improved accuracy and speed of the 
learning process. Moreover, FCM’s ability to clarify the con-
nection between input and output variables may enhance 
the interpretability of the ANFIS model. By dividing the 

(6)O4i = w̄ifi = w̄i

(
pix + qiy + ri

)

(7)O5 =
∑
i

wifi

Fig. 2   ANFIS model architec-
ture
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input space into fuzzy areas, FCM simplifies the identifica-
tion of input variables that are most relevant to the mod-
el’s predicted output. The expression given in Eq. (8)[24] is 
used to determine the ideal distance center to each datum 
for every fuzzy group n and vector xi , wherei= 1, 2 …n.

where m represents the weighting exponent in the range 
of (1 ≤ m ≤ ∞) , the degree of membership is denoted by 
Um
ij

 ∈ (0, 1), the data point is represented as xi , the centroid 
of clusters is depicted as cj , and the number of clusters is 
denoted as C . The Uij of the data point in the j cluster at any 
iteration is given as [24]:

4.3 � Genetic algorithm‑ANFIS

Holland [17] is credited with the invention of the first genetic 
algorithm (GA). It is a well-known evolutionary algorithm 
that simulates how nature works by selecting the strongest 
individuals to survive in accordance with Darwinism. The 
GA optimization technique is one of the most renowned 
EA-based state-of-the-art algorithms that has been exten-
sively researched and shown to be very successful in a 
variety of industrial applications. A substantial amount of 
interest in the method may also be attributed to the fact 
that GA, which is a search-based algorithm, has the ability 
to address optimization challenges that arise in machine 
ML. The search for the best possible solution is carried out 
in three stages—population initialization, GA operators, 
and evaluations—using probabilistic transition rules rather 
than deterministic ones in GA optimization approaches [25]. 
Selection, crossover, and mutation are three operators used 
by the GA to offer an optimal solution with a reduced local 
minimum convergence. The fact that error function deriva-
tives are unneeded is a key advantage of the GA approaches, 
making them suitable for continuous and discrete optimiza-
tion problems. The optimization of the Sugeno-based FIS 
membership function may be improved upon using GA in 
conjunction with ANFIS, which results in an increase in pre-
diction accuracy and a reduction in error rates [26]. Figure 3 
describes the flowchart for the hybrid GA–ANFIS. The param-
eter settings for the proposed GA–ANFIS are presented in 

(8)E =

N∑
i−1

n∑
k=0

Um
ij

‖‖‖xi − c2
j

‖‖‖

(9)Uij =

⎛
⎜⎜⎜⎝

C�
k=1

⎛
⎜⎜⎝

���xi − cj
���

���xi − cj
���

⎞
⎟⎟⎠

2

m−1 ⎞⎟⎟⎟⎠

−1

Table 1. The first step is initialization and the generation of 
the initial population. Fitness evaluation of each population 
member and selection of a membership pair from the popu-
lation string for breeding come next. In addition to that, a 
ranking of the individuals in the population based on their 
level of fitness is carried out. The next step is to give each 
pair a place in the passing population. This process is con-
tinued until all the slots for the temporary population have 
been filled. In the next stage, individuals of the outgoing 
population and a subset of the current population are inte-
grated into the existing population to form the new whole. 
Using the population’s ideal value, the ANFIS parameters are 
adjusted and terminate GA–ANFIS. This process keeps on 
till the predetermined endpoint is reached. Otherwise, the 
process returns to the assignment and determination of the 
fitness of each member of the population.

4.4 � Performance evaluation

Performance metrics may be used to evaluate the model’s 
predictions’ precision and accuracy. By contrasting the mod-
el’s output with the actual data, it is possible to assess how 
effectively the ANFIS model can represent the underlying 
connections between the inputs and outputs. Moreover, the 
comparison of many models to see which one performs bet-
ter in terms of accuracy and precision is made possible by 
the use of statistical performance indicators. This is thought 
to be vital for choosing the optimum model to be utilized 
in real-world applications, where precise predictions are 
thought to be critical. Therefore, this study employ some 
common performance indicators such as mean absolute 
percentage error (MAPE), mean absolute error (MAE), coef-
ficient of root mean square (CVRMSE), and root mean square 
error (RMSE). Their descriptions are as follows:

where yk andŷk are the actual and predicted values; k is the 
sample index; 

−

Y  is the average of the actual values.

(10)MAPE =
1

N

N∑
k=1

||yk − ŷk
||

yk
× 100%

(11)MAE =
1

N

∑N

k=1
||yk − ŷk

||

(12)RMSE =

√√√√ 1

Ns

Ns∑
i=1

(
yk − ŷk

)2

(13)CVRMSE =
100
−

Y

�∑N

k=1

�
yk − ŷk

�2
N



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:186  | https://doi.org/10.1007/s42452-023-05406-8	 Research Article

5 � Results and discussion

In this section, we present and discuss the summary of 
the experimental and statistical findings. The models 
were implemented on a Microsoft Windows 10 operating 
system, utilizing an Intel (R) CPU @3.20 GHz and 16 GB of 
RAM. The performance of the model was statistically evalu-
ated based on the 30% hold-out data. As mentioned, the 
cluster of choice in this work has been the FCM clustering 

technique due to its outstanding performance in previous 
works. To start with, different cluster sizes were used to 
conduct several trials for each model. The purpose of these 
trials is to assess the accuracy of the models for varying 
cluster sizes and to determine the cluster size that would 
produce the most optimal results. Multiple sub-models 
utilizing a different cluster size are developed as a result 
of the trials. The performance of these sub-models are 
then thoroughly evaluated using the same framework to 

Fig. 3   GA–ANFIS model
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compare their accuracy. The sub-model with the highest 
accuracy is identified, and the optimal number of clusters 
for each model is selected through this evaluation pro-
cess. The bold fonts in Tables 3–8 indicate the best results. 
Table 2 shows the parameters of the proposed models.

The performance of the standalone ANFIS model was 
examined by varying the number of clusters in the model. 
The ANFIS model was evaluated using five sub-models, 

which were trained and tested with different numbers 
of clusters. The number of clusters determines how the 
input data is partitioned, and this affects the model’s 
ability to capture patterns in the data. As a result of this 
investigation, five sub-models were developed, and their 
performance was evaluated. The results are presented in 
Table 3. From the table, it was found that ANFIS-FCM1, 
which used 2 clusters, was the best model during the test-
ing phase. The statistical measures MAPE, MAE, CVRMSE, 
and RMSE yielded values of 8.2698, 754.4429, 10.5766, and 
1.0147e + 03, respectively. The accuracy of the best model 
was 91.7% (MAPE = 8.2698), which suggests a good match 
between the observed and expected electricity use. As 
observed in Table 3, the model’s accuracy decreased as the 
number of clusters increased from 3 to 4. This shows that 
using more clusters in the ANFIS model did not necessarily 
lead to better accuracy, and a smaller number of clusters 
may produce better results. Figure 4 shows the graphical 
representation of both observed and expected electricity 
consumption, along with their corresponding error plots.

The performance of the GA-tuned ANFIS is presented 
in Table 4. With respect to the testing phase, the best 
sub-model was exhibited by GA–ANFIS–FCM3 which 

Table 2   Parameter settings of the proposed models

Clustering techniques Parameters Values

ANFIS-FCM Number of clusters
Number of exponents for 

partitioning matrix
Minimum improvement
Maximum iteration
FIS Structure

2–6
2
1e-5
100
Sugeno-type

GA [27] Crossover percentage ( Pc)
Mutation percentage ( Pm)
Gamma
Selection mechanism
Mutation rate
Beta

0.4
0.15
0.7
Roulette wheel
0.15
8

(a)

(b) (c)

Fig. 4   ANFIS-FCM1 optimal sub-model
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made use of 4 clusters by having the optimal values 
of the MAPE (7.6345), CVRMSE (9.4913), and RMSE 
(918.6518). The MAPE value of 7.6345 signifies a predic-
tion accuracy of 92.4%. This suggests that the observed 
energy use and the expected energy consumption 
are reasonably comparable to one another. That said, 
GA–ANFIS–FCM4 with 5 clusters had a better MAE value. 
Still, GA–ANFIS–FCM4 provided the best general best 
performance. Figure 5 illustrates the observed and fore-
casted power usage test plot. It shows that actual and 

expected power use have a similar pattern. The model 
prediction result shows some under and over-predic-
tions, reflected by marginal variations in chosen test 
samples. The model’s sensitivity and reactivity to severe 
and unexpected climatic conditions on the subsequent 
days may explain these mispredictions.

Table  5 shows the comparison between the two 
optimal sub-models. Regarding the testing phase, the 
performance of GA–ANFIS–FCM3 outscored that of the 
standalone ANFIS–FCM1 in the four statistical metrics. 

Table 3   Results of the ANFIS-
FCM submodels

Sub-models Number of 
clusters

MAPE MAE CVRMSE RMSE

ANFIS-FCM1 2 Training 8.6490 747.6137 10.2117 970.4651
Testing 8.2698 754.4429 10.5766 1.0147e + 03 

ANFIS-FCM2 3 Training 6.3510 570.1213 8.1707 777.549
Testing 10.6367 874.7174 11.9831 1.1460e + 03

ANFIS-FCM3 4 Training 5.2992 490.4329 6.6910 636.2573
Testing 14.5233 1.2904e + 03 21.6552 2.0746e + 03

ANFIS-FCM4 5 Training 5.3178 487.2007 6.6558 634.0194
Testing 11.0774 985.3511 16.0759 1.5339e + 03

ANFIS-FCM5 6 Training 5.0845 461.0842 6.4487 615.1284
Testing 11.4737 1.0535e + 03 16.8724 1.6047e + 03

(a)

(b) (c)

Fig. 5   GA–ANFIS–FCM3 optimal sub-model
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This further reiterated the advantage of hybrid models 
over standalone prediction models as stated in previous 
studies.

Because of the capabilities of the GA, the GA–ANFIS was 
able to perform much better than the standalone ANFIS. 
The capacity of the GA to pick optimum parameters for 
the ANFIS is a critical factor in determining the optimal 
performance of the GA–ANIFIS model. So far, this work has 
reiterated the findings of [28], as reported in [18] that, “GAs 
can find good solutions within a large, ill-defined search 
space, and can be readily adapted to a wide variety of 
search problems.” However, selecting the appropriate con-
trol parameters for a GA in order to get the results that are 
desired has been a problem for a very long time. Previous 
studies that were presented in [18, 19] indicated that the 

most important factor that influences the efficacy of GA is 
the crossover, followed by mutation rate and population 
size, then re-randomization points, and finally elite selec-
tion. Hence, it may be essential to conduct multiple experi-
ments to determine the optimal number of clusters for a 
given model. Consequently, this work further examined 
the impact of different crossover rates on the proposed 
GA–ANFIS model. The crossover percentage ( Pc ) was varied 
at the range 0.2–0.6. The ideal number of clustered items, 
which was determined to be 2, as well as the clustering 
technique (FCM), will be carried over into this session.

As seen in Table 6, the GA–ANFIS–FCM-PC3 maintained 
the best performing model as recorded in previous ses-
sion. It can be inferred from the result that it may not 
always be the case with GA–ANFIS–FCM that increasing 

Table 4   results of the GA–
ANFIS–FCM submodels

Sub-models Number of 
clusters

MAPE MAE CVRMSE RMSE

GA–ANFIS–FCM1 2 Training 9.0075 768.3882 10.6548 1.0111e + 03
Testing 8.7363 786.5425 13.2861 1.2791e + 03

GA–ANFIS–FCM2 3 Training 7.9305 700.1468 9.5222 917.0611
Testing 10.4879 825.1606 12.6981 1.1803e + 03

GA–ANFIS–FCM3 4 Training 9.1119 767.5802 10.7769 1.0203e + 03
Testing 7.6345 706.0547 9.4913 918.6518 

GA–ANFIS–FCM4 5 Training 9.1041 770.1742 10.7327 1.0257e + 03
Testing 7.7978 688.0672 9.6237 911.2772

GA–ANFIS–FCM5 6 Training 8.8911 755.5027 10.6329 1.0004e + 03
Testing 8.3472 785.7999 10.1333 994.7272

Table 5   comparison between 
the best models

Sub-models Number of 
clusters

MAPE MAE CVRMSE RMSE

ANFIS–FCM1 2 Training 8.6490 747.6137 10.2117 970.4651
Testing 8.2698 754.4429 10.5766 1.0147e + 03

GA–ANFIS–FCM3 4 Training 9.1119 767.5802 10.7769 1.0203e + 03
Testing 7.6345 706.0547 9.4913 918.6518 

Table 6   comparison between 
GA–ANFIS–FCM models using 
different crossover rate values

Sub-models Pc MAPE MAE CVRMSE RMSE

GA–ANFIS–FCM-PC1 0.2 Training 9.0106 758.8349 10.6927 1.0159e + 03
Testing 8.4355 802.0520 10.4019 998.4555

GA–ANFIS–FCM-PC2 0.3 Training 7.8949 691.3632 9.6394 915.1693
Testing 9.6215 824.6387 11.4520 1.1012e + 03

GA–ANFIS–FCM-PC3 0.4 Training 9.1119 767.5802 10.7769 1.0203e + 03
Testing 7.6345 706.0547 9.4913 918.6518 

GA–ANFIS–FCM-PC4 0.5 Training 7.7739 687.3763 9.2271 891.4313
Testing 11.0289 935.8888 13.4262 1.2385e + 03

GA–ANFIS–FCM-PC5 0.6 Training 8.1799 694.0026 9.9649 945.5839
Testing 9.2242 795.0427 10.9468 1.0539e + 03



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:186  | https://doi.org/10.1007/s42452-023-05406-8	 Research Article

the mutation percentage improves performance. As a 
result, it may be necessary to carry out multiple experi-
ments in order to determine the mutation percentage that 
is best suited for a specific model.

To reveal the competence and reliability of the opti-
mal model (GA–ANFIS–FCM-PC4 ), as indicated in Table 6, 
a comparative analysis was conducted with other hybrid 
models developed using well-known algorithms, including 
differential evolution (DE) [29], particle swarm optimiza-
tion (PSO) [30], pathfinder algorithm (PFA) [31], biogeogra-
phy-based optimization (BBO) [32], and teaching learning 
based optimization (TLBO) [33]. Some of these algorithms 
have been utilized in previous works. For instance in PSO 
was used to optimize the ANN in [34, 35] for predicting 
municipal solid waste generation and prioritizing water 
distribution pipelines rehabilitation. Similarly, the TLBO 
was applied to optimize the NN for water supply pipe con-
dition prediction in [36]. However, this present study con-
sidered using the aforementioned algorithm for optimiz-
ing the ANFIS structure for energy prediction. The hybrid 
algorithms are compared with the optimal model reported 
in Table 6. The purpose of this comparison was to gauge 
the accuracy and efficiency of the model in comparison 
to others. Table 7 shows the parameters of the algorithms 
used in the comparative study.

As demonstrated in Table  8, the superiority of the 
optimal model was maintained by achieving the highest 
prediction accuracy of 92.4%, surpassing all other mod-
els, including PFA–ANFIS (82.8%), TLBO–ANFIS (84.5%), 
BBO–ANFIS (85.8%), DE–ANFIS (85.1%), and PSO–ANFIS 
(91.7%). Furthermore, similar trends in terms of Mean MAE, 
CVRMSE, and RMSE were observed in the optimal model’s 
performance, validating that the selected parameter is 
most suited for energy prediction. In addition, the capabil-
ity of the GA in fine-tuning the optimal parameters of the 
ANFIS structure was exhibited, resulting in a more robust 
and accurate optimal model. Overall, the results provide 
evidence that GA–ANFIS–FCM-PC4 is the most reliable and 
efficient model for energy prediction.

Previous studies have established the criticality of mete-
orological parameters on electricity consumption. For 
instance, using data from high-resolution smart meters, 
Kang et al. [37] investigated the correlations between 
meteorological factors and home power use. In another 

study, Yas and Eman [38] worked on the monitoring of 
the effect meteorological parameters on electrical energy 
generation by solar cells. Meteorological parameters, par-
ticularly temperature, have a direct impact on electricity 
consumption as they affect the usage of air conditioning, 
heating, fans, and potentially lead to outages. However, 
while other factors such as population density, economic 
growth, and technological advancements also influence 
electricity consumption, the impact of meteorological 
parameters is highly essential as considered in this study. 
To enhance the predictive accuracy of electric consump-
tion, the scope of the developed hybrid model can be 
broadened by incorporating additional factors. This expan-
sion allows for more extensive research into predicting 
electric consumption.

6 � Conclusion

Energy forecasting is a crucial task for efficient energy man-
agement and planning in modern power systems. Accu-
rate energy forecasting can help optimize energy usage, 
reduce costs, and improve energy efficiency. In recent years, 
ML has emerged as a powerful tool for energy forecast-
ing, particularly in combination with MAs. Consequently, 

Table 7   Parameters settings 
for the algorithms

Hybrid models Parameter setting

DE pop = 25, Max_iteration = 100, Cr = 0.2, F = 0.8
BBO pop = 25, Max_iteration = 100, Keep rate = 0.2, Mutation probability = 0.1
PSO [27] pop = 25, Max_iteration = 100, c1 = 1 , c

2
= 2, �damp=0.99, � =1

TLBO pop = 25, Max_it = 100
PFA pop = 25, Max_iteration = 100, β = [0, 1], α = [0, 1]

Table 8   further comparison between optimal models and other 
algorithms

Sub-
models

MAPE MAE CVRMSE RMSE

PFA–
ANFIS

Training 17.4573 1.6509e+03 20.1823 1.9009e +03
Testing 17.1856 1.7748e+03 21.0130 2.0577e+03

TLBO–
ANFIS

Training 12.5568 1.1967e+03 15.6652 1.4950e+03
Testing 15.4906 1.3691e+03 17.1709 1.6311e+03

BBO–
ANFIS

Training 17.1688 1.6470e+03 20.1109 1.9220e+03
Testing 14.2305 1.3923e+03 17.0798 1.6172e+03

DE–
ANFIS

Training 12.8194 1.2157e+03 15.4389 1.4757e+03
Testing 14.8750 1.3246e+03 17.6637 1.6719e+03

PSO–
ANFIS

Training 8.8835 757.9881 10.6890 1.0205e+03
Testing 8.3272 731.6594 9.7551 925.9669

Optimal 
model

Training 9.1119 767.5802 10.7769 1.0203e + 03
Testing 7.6345 706.0547 9.4913 918.6518
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this study compared the performance of a hybrid model 
(GA–ANFIS–FCM) and a standalone ANFIS–FCM model for 
predicting electricity consumption, using Lagos districts, 
Nigeria, as a case study. The minimum and maximum tem-
peratures, humidity, wind speed, and average dew were the 
inputs for this study, while the output was the electricity con-
sumption. Furthermore, 70% of the data set was employed 
to train the model, with the remaining 30% used to verify 
its accuracy and competence. The FCM clustering method 
was employed in both models with varying numbers of 
clusters. The proposed GA–ANFIS–FCM3 delivered the best 
model with the smallest values of the MAPE, MAE, CVRMSE, 
and RMSE. The strength of the proposed model is found in 
its combination of the competence of ANN’s relational struc-
tures and learning abilities with those of fuzzy logic’s inherent 
dynamic properties in decision-making as found in ANFIS, 
and the ability to tune parameters provided by evolutionary 
algorithms. The GA–ANFIS–FCM3 (with 4 clusters) model that 
was utilized in this research produced commendable results, 
which portrayed it as a valuable tool that the power industry 
in Nigeria may use to make choices and prepare for matters 
linked to electricity consumption. In addition, the robust-
ness of the optimal model was investigated by carrying out 
a number of tests in which the core parameter of the GA was 
subjected to a range of different values (mutation percent-
age). The GA–ANFIS–FCM3 maintained its top-notch perfor-
mance throughout the evaluation. The following are some 
major inferences drawn from this study:

•	 The study under consideration suggests that by utiliz-
ing the genetic algorithm (GA) for optimizing the Adap-
tive Neuro-Fuzzy Inference System (ANFIS) structure, 
one can accurately forecast electricity consumption. 
Moreover, the study also investigates the impact of the 
number of clusters on the hybrid model by using the 
fuzzy c-means (FCM) technique.

•	  Furthermore, the research findings indicate that the 
choice of GA parameter significantly affects the per-
formance of the model. Therefore, it is crucial to care-
fully select appropriate parameters for optimal per-
formance. The study highlights the significance of 
the proposed GA–ANFIS–FCM model and compares 
it with other hybrid models. The results show that the 
GA–ANFIS–FCM model outperforms the other models, 
thereby reaffirming its competence in electricity con-
sumption prediction.

•	  Overall, the study provides valuable insights into the 
effectiveness of the GA–ANFIS–FCM hybrid model in 
predicting electricity consumption, demonstrating the 
importance of proper parameter selection and cluster 
analysis in model optimization. These findings can have 
significant implications for enhancing energy manage-
ment systems and promoting energy efficiency.

The current study focused solely on the FCM cluster-
ing technique. Future research should explore the effects 
of other well-known clustering techniques on the hybrid 
approach. Moreover, the study utilized a medium-term 
forecast based on the data collected. However, for a more 
robust model, future research should consider increasing 
the experimental data and input variables. Although the 
number of datasets used in this study is comparable to 
that of other researchers, incorporating more data would 
result in more accurate outcomes.

In addition, future studies could investigate recent 
computational algorithms like the Osprey Optimization 
Algorithm (OOA), Energy Valley Optimizer (EVO), Growth 
Optimizer (GO), Gannet optimization algorithm (GOA), 
and Fire Hawk Optimizer (FHO). Furthermore, the impact 
of other key parameters such as mutation rate and popula-
tion size of the GA in the hybrid GA–ANFIS–FCM approach 
could also be explored.
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