
Vol.:(0123456789)

SN Applied Sciences           (2023) 5:148  | https://doi.org/10.1007/s42452-023-05364-1

Research Article

A geo‑spatial assessment of drought impacts on forest cover in yabello 
forest, in the semi‑arid region of Ethiopia

Bayisa Negasa Wolteji1   · Fayera Gizawu Garbaba1

Received: 29 December 2022 / Accepted: 12 April 2023

© The Author(s) 2023    OPEN

Abstract 
Drought is a key challenge for third-world countries whose economies are based on agriculture. Also, lack of rainfall 
plays a major role in accelerating climate change. Drought is resulting in a decline in vegetation greenness and plant 
mortality specifically in the semi-arid region. In this study, satellite-based drought assessment was used to characterize 
drought and its impact on forests in the semi-arid regions of Ethiopia. Drought severity and forest cover change were 
detected over the period between 2014 and 2022 Using geographic information systems and remote sensing tech-
niques. Vegetation condition index (VCI) and Normalized difference vegetation index (NDVI) were used to detect drought 
severity in the present study. Results of this study showed that 2017, 2015, 2022 and 2019 were the most drought years. 
The forest resource is significantly decreased during severe drought years. The Minimum dense forest was observed in 
2017 and 2015 over a spatial extent of 193 ha and 217 ha respectively during drought years. To evaluate how precipita-
tion deficit affects forest function, simple linear regression is performed. Results of this linear regression “R2 = 0.49 and 
P = 0.05” indicated that nearly 50% of forest greenness is influenced by precipitation deficit. This study suggested that 
remote sensing indices are very crucial to characterize drought patterns at a small “scale”, particularly in the assessment 
of drought impact on forest resources.

Article Highlights

•	 Satellite indices like NDVI and VCI help to monitor the 
drought impact on forest cover.

•	 When severe drought is occurred along with precipita-
tion deficit, the forest cover is decreased.

•	 Remote sensing data provide clear information for deci-
sion-making regarding drought’s impact on the forest.
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1  Introduction

Drought is described as a situation when there is insuf-
ficient precipitation or lack of enough water which affects 
vegetation greenness and health, plant mortality, reduced 

water levels, and other adverse ecological and/or biophysi-
cal conditions [1, 2]. Water-stressed plants typically close 
stomata to reduce water loss and prevent the develop-
ment of excessively low water potentials, which signifi-
cantly affect photosynthesis activity. This situation result in 
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carbon stress, reduced growth, and greater susceptibility 
to insects, disease, and plant mortality [3, 4]. Rapidly the 
decrement in forest areas is negatively affected ecosystem 
function because there is a strong relationship between 
forest and ecosystem components. Changing environ-
mental conditions and nutrients can affect the biota and 
related services provided by forests. Species disturbances, 
migration and extinction can happen as a result of forest 
degradation along with climate changes[5-7]. Therefore, 
gathering information required to monitor this natural 
resource is of utmost importance to maintain biodiversity 
conservation [8].

In recent decades, remotely sensed normalized differ-
ence vegetation index (NDVI) is used as a proxy for earth 
vegetation productivity that allows for continuous and 
long-term monitoring of information on the relationship 
between vegetation and climate and is one of the most 
widely used indicators in studies involving vegetation 
dynamics and ecosystem health across the world [9, 10]. 
Monitoring and assessing droughts in the semi-arid region 
at high resolution is also required the use of Remote Sens-
ing based data and methods to fill a gap in in-situ data due 
to the drawbacks of using only ground-based data, such as 
inadequate spatial and temporal coverage of meteorologi-
cal station data [11].

Changes in vegetation cover have attracted a focus of 
researchers to the assessment of vegetation response to 
changes in air temperature, precipitation, solar radiation, 
and sea surface temperature [12].

Precipitation variability is extra-ordinarily responsible 
for vegetation change in vegetation-atmosphere interac-
tions when compared to the aforementioned climate vari-
able due to the great role that precipitation plays in water 
availability. It is the leading factor controlling ecosystem 
structure and driving biological processes on over 40% of 
the earth’s vegetated surfaces [13, 14].

Moreover, examining the relationship between NDVI 
and climate variables helps us to recognize the most influ-
ential climatic variable in a particular region [15].

In Ethiopia, many studies have highlighted differences 
in NDVI changes and their response to climatic factors 
[16-18]. Therefore, those studies suggested that rainfall 
is the most crucial element to characterize the impact of 
drought on the environment in east Africa, particularly 
the semi-arid region of Ethiopia. In Ethiopia even though 
the relationship between remote sensing indices and pre-
cipitation was evaluated, the relationship between them 
has been not recognized at a small scale with improved 
resolution. In another way, many studies assessed agricul-
tural drought using remote sensing indices from medium 
to large scale [15, 19, 20]. All previous studies reported 

that crop yield has declined as a result of drought severity 
specifically in the lowland region of Ethiopia. Although the 
importance of satellite indices is well recognized to assess 
drought impact on agriculture from medium scale to large 
scale, assessment of drought impact on forest resource at 
small scale has not been recognized.

Furthermore, several studies found that forests have 
been depleted as a result of anthropogenic activity in 
many regions of the country without considering drought 
impact on the forest ecosystem, using remote sensing Spa-
tio-temporal forest change detection techniques [21-24]. 
Therefore, the novelty of this study is the time series analy-
sis of drought severity assessment and its impact on the 
Yabello forest, using satellite drought indices, and assess-
ing the relationship between forest and precipitation.

2 � Materials and methods

2.1 � Study area description

This study was conducted on the drought-prone region of 
Ethiopia, the Yabello forest, and its surrounding. The forest 
is located in the Yabello district of Borana Zone, southern 
Oromia. The total area of the study sites is 26,956.7 ha and 
its altitude range between 1438 and 2354 m. m.s.l [25]. The 
absolute location of this area lies between 4° 45′ 0" N to 4° 
57′ 0" N and 38° 1′ 0" E to 38° 10′ 30" E (Fig. 1). The Yabello 
district has a bi-modal rainfall pattern with the main rainy 
season between March and May with high precipitation in 
April. The mean annual rainfall of the district is 587.2 mm. 
The mean annual temperature varies from 15 to 24 °C and 
shows little variation across the seasons [26]. At the Zonal 
level, the mean annual precipitation of the zone ranges 
from 352 mm in the southern part to 605 mm to the north-
ern part of the zone. Geologically, most of the area which 
accounts for 40% is dominated by quaternary deposits, 
38% basement complex formations, and 20% volcanic [27]. 
The region has a semi-arid savannah landscape, marked by 
gently sloping lowlands and flood plains vegetated pre-
dominantly with grass and bush-land. According to [27], 
this study area comprises three main soil types, 53% loam 
soil, 30% black clay, volcanic light-colored silty clay, and 
17% silty. Five major land use/covers, namely; grassland, 
woody vegetation, cultivated, settlement, and bare land 
were identified in the district [22, 28]. Evergreen and semi-
evergreen bush-land and thickets, rangeland dominated 
by shrubby Acacia, Commiphora, and allied genera, and 
dwarf shrub grassland to shrub grassland are also found 
in the area. The district has a total population of about 
128,762 (64,692 Males and 64,070 Females) [29].
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2.2 � Data sources

In the present study, Landsat 8 OLI/TIRS with a 30-m 
spatial resolution (www.​usgs.​gov) was used as the data 
source to calculate NDVI and used to generate LULC, from 
the year 2014 to 2022. Since satellite images are applica-
tion specific Landsat 8 is capable to detect forest cover 
changes at a small scale. These years were selected based 
on forest area a demarcated year and data availability. A 
total of twenty-two Landsat data was downloaded during 
the short rainy season (September to November) and for 

each month cloud-free satellites were downloaded in 2016 
and 2020 more than 10% of cloud free data were omitted, 
and the mean of NDVI was used for each year (Table 1). 
This season was selected because of its higher rainfall 
variability [26]. Additionally, the most common statistical 
methods applied to time series of NDVI and precipitation, 
such as simple linear correlation or regression analyses; 
produce inaccurate results if seasonality is not taken into 
account [30]. Therefore, this research was undertaken to 
demonstrate a statistical modeling technique that would 

Fig. 1   Map of Yabelo forest

Table 1   Specifications of 
Landsat data used in the study

Path raw September October November Resolution Year Source

Landsat 8 168_57 18 19 07 30 m 2014 https://​www.​usgs.​gov
Landsat 8 168_57 05 06 10 30 m 2015 https://​www.​usgs.​gov
Landsat 8 168_57 08 – 28 30 m 2016 https://​www.​usgs.​gov
Landsat 8 168_57 10 11 31 30 m 2017 https://​www.​usgs.​gov
Landsat 8 168_57 13 15 31 30 m 2018 https://​www.​usgs.​gov
Landsat 8 168_57 16 01 21 30 m 2019 https://​www.​usgs.​gov
Landsat 8 168_57 19 20 – 30 m 2020 https://​www.​usgs.​gov
Landsat 8 168_57 05 06 26 30 m 2021 https://​www.​usgs.​gov
Landsat 8 168_57 24 09 05 30 m 2022 https://​www.​usgs.​gov

http://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
https://www.usgs.gov
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account for the seasonal timing effects of precipitation on 
the forest.

The CHIRPS rainfall data was downloaded from the 
Famine Early Warning Network (FEWS). CHIRPS is a quasi-
global (50ºS–50ºN) gridded product available from 1981 
to near present at 0.05º spatial resolution (∼5.3 km) and 
at daily, pentadal, decadal, and monthly temporal resolu-
tion. It is developed by the U.S. Geological Survey (USGS) 
and the Climate Hazards Group (CHG) at the University of 
California [31]. Data were downloaded from 2014 to 2022 
during the short rainy season (September to November) 
from the CHG web page (http://​chg.​geog.​ucsb.​edu/​data/​
chirps/​index.​html). [32] used CHIRPS rainfall data for 
validating the drought monitoring tool in food-insecure 
regions of Ethiopia. In the same way, CHIRPS rainfall data 
was validated and showed the best performance than 
other rainfall data sources in Ethiopia [33, 34]. In this 
study, CHIRPS rainfall data was used for linear regres-
sion analysis between NDVI and precipitation.

2.3 � Data analysis

2.3.1 � NDVI calculation

During the early 1980s, the NDVI was defined and 
developed by scientists at NASA’s Goddard Space Flight 
Center, Greenbelt, Md. for monitoring vegetation health 
based on the difference between absorption and reflec-
tance of green leaves of the red and near-infrared band 
of visible light, respectively[35]. The value of NDVI of 
each pixel is estimated by dividing the reflectance dif-
ference by the sum between NIR and the Red band. 
Its value range between − 1 and + 1, and lower values/
near to zero represent stressed vegetation, negative 
values represent open water or high moisture content, 
and + 1 indicates healthy vegetation cover, respectively. 
Seasonal NDVI (September to November) was used in 
this study. To calculate NDVI indices from Landsat data, 
there are the pre-requested procedure which is guided 
by USGS, these include;

VNIR spectral radiance data were converted to top of 
atmosphere planetary reflectance using the reflectance 
rescaling coefficient provided in the Landsat Metadata 
file. The following equation is used to convert DN val-
ues to the top of atmosphere reflectance for the Landsat 
image.

where ρλ = TOA planetary reflectance without correction 
for the solar angle.

(1)�� = M�×Qcal + A�

Mρ = represents a band-specific multiplicative rescal-
ing factor from the Metadata Reflectance Mult-Band X 
where X is the band number.

Qcal is quantized and calibrated standard product 
pixel value (DN).

Aρ represents the band-specific additive rescaling fac-
tor from Metadata Reflectance-Add-Band-X, where X is 
the band number. The next procedure is correcting the 
reflectance value with the sun angle.

The formula for correcting this value is;

where ρλ = TOA-planetary reflectance.ɵSE = local sun 
elevation angle, the scene center sun elevation angle in 
degrees is provided in metadata (sun elevation).

The local zenith angle is calculated as Eq. (3)

To obtain more accurate results, its unit should be con-
verted from radian to degree. These procedures were car-
ried out for all bands used in this study which operate in 
the optical region of the electromagnetic spectrum (bands 
4 and 5). Finally, after these corrections were completed 
bands were extracted into the study area by using an Arc-
GIS extraction tool. Then NDVI was generated by using an 
ArcGIS raster calculator.

2.3.2 � Vegetation condition index

VCI is useful for vegetation condition assessment, as it 
assesses changes in NDVI through time since vegetation 
is water-stressed due to water deficiency such as during 
drought as stated by [36].

According to Kogan-VCI is measured as a percentage 
with values ranging between 0 (Lowest) and 100 (Highest) 
as in Eq. 5 with values equal to or below 40% considered as 
drought to varying degrees of severity (Table 2).

(2)�� =
��

cos �SZ
=

��

sin �SE

(3)��
◦

− θSE

(4)NDVI =
NIR − RED

NIR + RED

Table 2   VCI and Drought severity class

VCI range (%) Drought severity class

 > 40 No drought
30–40 Mild drought
20–30 Moderate drought
10–20 Severe drought
0–10 Extreme drought

http://chg.geog.ucsb.edu/data/chirps/index.html
http://chg.geog.ucsb.edu/data/chirps/index.html
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Therefore, in the present study drought severity dur-
ing the growing season (short rainy season) was measured 
using the NDVI-based Vegetation Condition Index (VCI) for 
8 years, for the same period using the ArcGIS raster calcula-
tor tool as in Eq. (5).

where
NDVI = the value of NDVI at the time of observation.
NDVI min = Absolute minimum NDVI value of 8 years.
NDVI max = Absolute maximum NDVI value of 8 years.

2.3.3 � Forest cover change

To access drought’s impact on the forest, forest cover 
change was evaluated during the study period. Land use/
land cover of 2021 was used as the reference to evalu-
ate the variability of forest cover change as the result of 
drought. This year was selected because a large portion 
of the region was covered by forest and to minimize the 
contribution of settlement and agricultural activity in the 
result of this finding.

Recently, settlement and agricultural activity are rap-
idly increasing. Therefore, in this study settlement and 
others human activities were maxed out from the study 
area to identify drought impact on the forest region by 
omitting the impact of anthropogenic activities. Land 
use/land covers were classified based on the NDVI clas-
sification range as used by [37] at twelve districts of 
Ethiopia, which belong to the same drought-prone area. 
These NDVI ranges were >  =  − 0.3 <  = 0.084 is a water 
body, > 0.084 < 0.18 is bare land, >  = 0.18 < 0.3 is sparse 
vegetation, and >  = 0.3 < 0.6 is dense vegetation. Based 
on these NDVI ranges spatial–temporal forest covers were 
evaluated over 8 time series years using ArcGIS image 
analysis.

2.3.4 � Correlation analysis between precipitation and NDVI

A simple linear regression model was applied to examine 
how the precipitation–NDVI, relate to each other based on 
their mean values using “Microsoft excel”. The mean values 
for both variables for each year were evaluated.

Besides, the Pearson correlation matrix was applied to 
evaluate the relationships of an index. The linear regres-
sion model was computed as follows.

(5)VCI = 100 ×
NDVI − NDVImin

NDVImax − NDVImin

(6)Yi = �0 + �1Xi + �i

where
Yi = NDVI, for the ith period, Xi = precipitation, 

β0 + β1Xi = linear relationships between Yi and Xi, 
β0 = mean of Yi when X = 0 (intercept), β1 = change in the 
mean of Y when X increases by 1 (slope), εi = random error 
term.

The results of simple linear regression or Pearson cor-
relation can be positive or negative. This ranges between 
0 and + 1. Regression or Pearson correlation values close 
to zero indicate no relationship between the indices. How-
ever, if one index increases as the other index (e.g., NDVI) 
decreases, then the relationship is negative (Fig. 2).

3 � Results

3.1 � Drought severity

The vegetation condition index revealed drought years 
over the study area during the study period.

Accordingly, the most drought years were detected 
in 2015, 2017, 2019, and 2022  years as it’s shown in 
Fig. 3. Spatially, in 2015, 2017, 2019, and 2022 years, 
severe drought covered 177.5 ha, 537.9 ha, 69.7 ha, and 
80.6  ha corresponding to the aforementioned years 
(Table 3). Northwest, central, and southeast of the forest 
were frequently affected as the result of drought (Fig. 3). 
Also moderate drought was detected in these years 
over the spatial magnitude of 2,994.49 ha, 7,116.2 ha, 
7,359.7 ha, and 4,449.6 ha corresponding to above years. 
In these years, only 1,397 ha, 4420.7 ha, 8,563.7 ha, and 
14,381.4 ha were not affected by drought (Table 3).

The wettest years were also identified during the 
study period. For example, in 2014 even though a severe 
drought occurred over 80.1 ha, a large portion of the region 
(15,783.7 ha) remained normal (Table 3). In 2016, severe 
drought covered only 7.6 ha, and moderate drought cov-
ered 665.3 ha whereas, a larger area (19,048.7 ha) remained 
without being affected by drought. In 2018, severe drought 
covered 43.6 ha, moderate drought covered 1,591.2 ha 
of the Yabalo forest, and 15,581.2  ha was not affected 
by drought (Table 3). Similarly, in 2020 and 2021, severe 
drought did not occur in the Yabalo forest. In 2020, only 
37.9 ha belonged to moderate drought stress, and the 
maximum spatial extent of the wettest forest condition 
(24,644.2 ha) was detected this year. In 2020, 37.9 ha mod-
erate drought might be indicated that forests are recover-
ing from the drought that occurred in 2019 (Table 3). Even 
though severe drought was not recorded in 2021, there was 
an implication to drought occurrence from analyzed data. 
For instance, the maximum normal forest coverage in 2020 
(24,644.2 ha) was decreased to 18,403.5 ha in 2021. Also, 
the mild drought of 269.9 ha in 2020 increased to 6,568.5 ha 
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in 2021. In2021, moderate, mild, and normal drought cat-
egories covered 4.3 ha, 6,568.5 ha, and 18,403.5 ha of land 
respectively (Table 3). Following 2021, drought severity was 
detected in the region in 2022. In 2022 severe, moderate, 
mild, and normal forest land mass expanded over 80.6 ha, 
4,449.6 ha, 6,050.3 ha, and 14,381.4 ha respectively. In all 
of the detected drought year, the northwest, central, and 
southeast of the forest was the most affected portions of 
the Yabelo forest (Fig. 3).

3.2 � Impact of drought on forest

NDVI-based LU/LC revealed that forest cover has been not 
stable during the study period. For instance, as indicated 
in Table 4 in 2014 dense forest, sparse forest, and bare land 
covered 305 ha, 19,660 ha, and 4,995 ha respectively. But 
following 2014, in 2015 the dense forest was decreased 
while sparse forest and bare land were increased. This 
is maybe because of the drought that occurred in the 

Yabello forest in 2015. The dense forest was decreased by 
88 ha and bare land was increased by 39 ha as compared 
to 2014. Thus, 88  ha of dense forest was converted to 
sparse forest and 39 ha of sparse forest was converted to 
bare land as the result of drought. The result found that in 
2016 the maximum dense forest was detected during the 
entire study period. Accordingly, 424 ha of dense forest 
was detected and increased by 207 ha. Sparse forest and 
bare land decreased this year. This indicated that sparse 
forests were rehabilitated and changed to the more dense 
forest while bare land was rehabilitated into the sparse for-
est during this time. Contrary to 2016, in 2017 dense forest 
was significantly decreased by 231 ha. Though the sparse 
forest was increased, the maximum bare land area was 
registered this year. As indicated by the above VCI result 
maximum extreme drought was registered in 2017. As 
the result, 100 ha of sparse forest was lost to drought this 
year as it’s indicated in Table 4. In 2018 both dense forest 
and sparse forest increased and bare land decreased. This 

Fig. 2   Methodological flow-
chart of the study
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indicated that because the study area experienced normal 
climatic variables; vegetation was recovered during this 
time. Hence, the dense forest was increased by 179 ha, the 
sparse forest was increased by 268 ha and the bare land 
was decreased by 457 ha. This study found that drought 
that occurred at every interval of 2 years (2015, 2017, and 
2019) brought significant change to forest resources. For 
instance, in 2019 dense forest and sparse forest decreased 
by 140 ha and 163 ha respectively as compared to 2018, 
and bare land increased by 303 ha. Following 2019 the two 
consecutive years thus 2020 and 2021 were experienced the 
normal year. Hence, both dense forests and sparse forests 
increased while bare land decreased. Contrary, in 2022 both 

Fig. 3   Spatial map of drought 
severity class

Table 3   Spatial extend of drought class during 2014–2022

Year Severe(ha) Moderate(ha) Mild(ha) Normal(ha)

2014 80.1 2048.8 7048.4 15,783.7
2015 177.5 2994.4 8691.9 13,097.2
2016 7.6 665.3 5240.3 19,048.7
2017 537.9 7116.2 12,887.5 4420.7
2018 43.6 1591.2 7744.7 15,581.2
2019 69.7 7359.7 8969.3 8563.7
2020 0 37.9 269.9 24,644.2
2021 0 4.3 6568.5 18,403.5
2022 80.6 4449.6 6050.3 14,381.4

Table 4   Forest covers change

Years Dense 
forest(ha)

Sparse forest(ha) Bare land(ha)

2014 305 19,660 4995
2015 217 19,709 5034
2016 424 19,575 4961
2017 193 19,718 5059
2018 372 19,986 4602
2019 232 19,823 4905
2020 374 19,685 4901
2021 380 19,904 4556
2022 327 19,821 4612

0
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Fig. 4   Dense forest, Precipitation, and Severe drought trend during 
the study period
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dense forest and sparse forest decreased whereas bare land 
increased.

The spatial mapping of the impacts of the major reg-
istered drought event in the study area during the study 
period showed that vegetation activity across the entire 
study area decreased, as drought occurred over the 
region (Fig. 4). Thus, the forest has not stables during the 
study period as the result of climate change. In all of the 
detected drought years, the dense and sparse forest was 
diminished through the Northwest, central, and southeast 
of the forest (Fig. 5).

To explicitly, illustrate the impact of drought on forest 
cover, the below histogram was used to indicate the trend 
of three variables that were purposively selected (Fig. 4).

3.3 � Relationship between precipitation and forest

In this study, the relationship between precipitation and 
NDVI were examined to recognize how precipitation con-
trols the function of environmental resource, particularly 
forest. The result of this finding showed that there is a 
positive correlation between precipitation and NDVI. The 
result of R2 as shown in Fig. 6 is 0.49. Thus, 49% of NDVI 
that indicates vegetation condition can be determined by 
precipitation since the value of R2 was 0.49 in this study 

(Fig. 6). The regression analysis result also showed that 
the relationship between precipitation and NDVI is posi-
tive, (R/P = 0.69/0.05) and statistically significant. Thus, the 
results indicated that when the precipitation increases, 
NDVI also tends to increase. When precipitation deficit 
occurred in this Yabello forest region vegetation cover and 
greenness became decreased and vice versa. For instance, 
in 2018 mean precipitation of the short rainy season was 
195 mm and highest as compared to other years during the 
study period. Also, vegetation greenness was high and the 
maximum NDVI value (0.27) was registered this year (Fig. 6).

Fig. 5   Map of forest cover 
change
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4 � Discussion

Northern, eastern, and southern regions of Ethiopia have 
been frequently affected by drought. The frequency of 
occurrence of drought is becoming beyond the loss of 
livestock and crop failure and resulting in forest degrada-
tion. As indicated in the VCI result, drought has occurred 
in the Yabello forest area nearly every two years. This find-
ing is in line with several studies that projected drought 
occurrence in the lowland region of Ethiopia to have 
occurred every two to five years [38, 39]. Also, the Study 
conducted in the “Yabello and El-Woye area reported that 
Yabello districts had an extremely severe drought with 
SPI value—2.28 at a two-month timescale which belongs 
to the season of this study (September to October) in the 
2015 drought year from 1987 to 2017 [40]. Similarly, the 
drought that occurred in 2017 resulted in severe damage 
to assets and exposed hundreds of thousands to famine 
and costs for relief as highlighted by [41]. According to the 
report of [42], the eastern Horn of Africa region has experi-
enced drought conditions following consecutive poor sea-
sons since late 2020 leading to significant impacts on pro-
duction, vegetation, water resources, food insecurity, and 
livelihoods. In line with this report, the VCI result of this 
study indicated that vegetation greenness was beginning 
to decrease as precipitation deficit was reported for three 
consecutive seasons. Hence, drought severity appeared in 
the Yabello forest. This report stated the drought years of 
2017 and 2019 in the southern region of Ethiopia which 
confirmed the result of this study.

Because of climate extremes like drought, the forest can 
be converted to bare land or the more dense forest can 
be sparsely distributed. Several studies reported as forest 
cover declined as a result of drought. For instance, a study 
conducted on forest cover change and climate variability 
in southern Ethiopia determined that the forest cover was 
decreasing from 10,020.3 ha to 8,851.2 ha, between 1986 
and 2018 respectively as a result of climate change [43]. A 
similar study also found that forest cover was changed as 
a result of rising temperatures from 1990 to 2021 in Turkey 
[44]. The negative impact of rising of temperature along 
with drought is not only confined to the forest. but, it can 
cause migration/diminishing of species [5, 6] Likewise, in 
2015, 2017, 2019, and 2022 drought brought the loss of 
many life stock productions in the Borana lowland region 
of Ethiopia. The drought resulted in the loss of 231 ha of 
dense forest and the loss of 100 ha of sparse forest in 2017 
as compared to 2016 in the Yabello forest. The drought 
resulted in plant mortality as suggested by [30, 45]. But, 
based on vegetation types and structure the ways for-
ests respond to drought are different. For instance, in this 
study dense forest was converted to sparse forest, and 

sparse forest was lost to drought. This study also found 
that drought seriously diminished dense forests in the 
2017 year (Table 4 and Fig. 5). In line with this finding, a 
study conducted on Taltele range land which is a neighbor 
of this study found that the larger change in land observed 
in forest, grassland, and wetland was detected during the 
period from 1995–2000 and 2015–2019, this is due to cli-
mate change impact happened in Taltele rangeland [21]. A 
similar study found that forest cover has shown variability 
from 1986 to 2018 in the Kafa zone using NDVI indices [43]. 
Also, [46] observed that vegetation activities decreased as 
drought appeared over Southeastern Europe using SPEI.

To conserve natural resources, knowing the relation-
ship between drought indices plays a great role [47]. In the 
semi-arid region, precipitation is the most important one 
of the climate elements to recognize the biophysical envi-
ronmental function. As a result, several studies examine the 
relationship between precipitation and NDVI to recognize 
how vegetation is stressed as a result of precipitation defi-
cit [4, 11, 48]. Commonly, they found that positive relation-
ship between precipitation and NDVI. Similarly, this study 
confirmed that precipitation variability is extra-ordinarily 
responsible for vegetation change in the Yabello forest, 
due to the dominant role that precipitation plays in water 
availability which has been considered as the principal fac-
tor controlling ecosystem structure and driving biological 
processes in vegetation. Thus, when precipitation is a deficit 
for the plant, the plant closes its stomata to conserve water. 
Hence, photosynthesis is no longer functions and plant mor-
tality can be occurring (Fig. 6).

5 � Conclusion

Climate extreme like drought is challenging the globe 
in multi-direction. Its negative impact adversely affects 
ecosystem function. Particularly its impact on forest 
resources is attracting the attention of many scholars, 
and decision-makers also required information regard-
ing drought characteristics. This study proposed spatial 
and temporal analysis of drought evolution in the Yabello 
forest area in the lowland region of Ethiopia from 2014 
to 2022. The results showed the usefulness of incorporat-
ing forest cover change in assessing the Spatio-temporal 
variability of drought severity in the dry-lands. Remote 
Sensing-based vegetation time series indices were used, as 
complementary to in-situ data indices. NDVI-based forest 
cover change and VCI Indicators were used for monitor-
ing changes in vegetation conditions and drought sever-
ity during the growing seasons (September to November) 
from 2014–2022.

Results showed high temporal and spatial variability 
in vegetation cover between drought and non-drought 
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conditions in this study. The associated negative impact 
of droughts on the vegetation resulting in limited forest 
cover was further confirmed by results from this study. 
Severe drought occurred in 2015, 2017, 2019, and 2022 
and forest cover was highly affected during these years. 
The wettest years were 2014, 2016, 2018, 2020, and 2021.

Simple linear regression analysis that considered pre-
cipitation as the independent variable and forest green-
ness as the dependent variable confirmed that half of the 
forest degraded was because of precipitation deficit. Due 
to a lack of precipitation, forest has been degraded every 
two years in this Yabello forest. This study highlighted 
drought impact as the most climate phenomenon that 
causes forest degradation in the semi-arid region of Ethio-
pia which requires policy actions toward climate change 
adaptation options. Moreover, future research should be 
integrating remote sensing metrics with other factors like 
socio-economic and biophysical data to assess drought 
magnitude and intensity in the study area.
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