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Abstract
The influence of ultra-thin SiOx plasma deposited films on the corrosion resistance of adhesive films on a laser surface 
melted 7075 aluminium alloy was investigated by means of complementary techniques in comparison to the just laser 
surface melted state. Laser surface melting (LSM) was performed using a continuous wave mode at a wavelength of 
1064 nm. Ultra-thin plasma polymer films were deposited from a mixture of hexamethyldisilane (HMDSO), oxygen, and 
argon by means of an audio-frequency glow discharge. The surface morphology and surface chemistry compositions 
were investigated by employing field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy 
(EDX), diffuse reflection infrared Fourier transform spectroscopy, and X-ray photoelectron spectroscopy. The corrosion 
resistance of plasma polymer coated LSM Al-7075 alloy was studied using linear sweep voltammetry and electrochemical 
impedance spectroscopy in a chloride-containing electrolyte. The electrochemical studies showed an improved corro-
sion resistance for plasma film-coated alloys compared to the just laser surface melted state. To study the correspond-
ing surface adhesive properties, the samples were coated with an epoxy amine adhesive. 90°-peel test under humid 
conditions confirmed the improvement of interfacial wet-adhesion corrosion tests showed a strong improvement of the 
delamination resistance of adhesives caused by the ultra-thin interfacial SiOx-films.

Highlights

•	 The combination of LSM and PECVD deposited SiOx layers was used in order to enhance corrosion and adhesion 
properties

•	 Enhanced delamination resistance was observed through a radial corrosion process
•	 Surface analytical and electrochemical methods were used to examine the role of ultra-thin interfacial SiOx films
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1  Introduction

H i g h - s t re n g t h  Al u m i n u m  7 x x x  s e r i e s  a l l oys 
(Al–Zn–Mg–Cu) are especially applied in aerospace and 
automotive constructions [1, 2]. Despite its extensive 
application, the Al-7075 alloy is susceptible to chloride-
containing electrolytes [3]. The native oxide surface film 
is prone to a chloride attack both under atmospheric 
conditions and corrosion in bulk electrolytes [4]. The 
EN-AW 7075 alloy is susceptible to several forms of corro-
sion, e.g. pitting corrosion, intergranular corrosion (IGC), 
and stress corrosion cracking (SCC) [5, 6]. The corrosion 
of this alloy is influenced by constituent particles of the 
alloy, interrupting the native oxide layer and serving as 
a defect for corrosion initiation [7–9]. While Cu and Fe 
lead to the formation of cathodic phases, Zn and Mg-
containing phases act as local anodes [7–11]. Such con-
stituent particles promote micro galvanic coupling and 
thereby pitting corrosion at the interface between the 
particles and the adjacent matrix.

Corrosive delamination was reported to lower macro-
scopic fracture toughness and thus weaken the adhesive 
joint at the polymer/aluminium alloy interface [12–14]. 
Additionally, the kinetics of electrolyte transport for 
interface corrosion processes for adhesive-coated met-
als have been studied by Posner et al. and others [12, 
15–17]. They reported that the delamination rate of the 
adhesive is determined by the electrolyte transport at 
the interface polymer/aluminium alloy. In the case of 
polymer-coated Al 7075 alloys, corrosive delamination 
was reported to lower macroscopic fracture toughness 
and thus weaken the adhesive joint at the polymer/alu-
minium alloy interface [12–14].

Several surface modification processes for aluminium 
alloys are established, which improve the delamination 
resistance of aluminium alloys [18, 19].

Anodization and plasma electrolytic oxidation lead to 
thickened, however, porous thickened oxide films [20, 
21]. In case of the anodization, such oxides form highly 
protective nanostructured surface layers, which are well 
described in several review articles [21, 22]. Chemical 
conversion layers substitute the oxide film with more 
stable oxides and phosphates e.g. titanium and zirco-
nium [23, 24]. In addition, ultra-thin films of organosi-
lanes and organophosphonic acids showed a strong 
improvement in the delamination resistance based on 
the combination of adhesion promotion and interfacial 
corrosion protection [25].

The approaches described above are based on wet-
chemical processes and can typically not be applied 
locally. However, dry surface technologies which can be 
applied to locally modify an alloy e.g. in the bonding 

area are highly attractive from an economic and ecologic 
point of view.

In this regard, laser processes and atmospheric plasma 
jets are of high interest [26, 27]. Laser surface melting is a 
well-established process in which a laser is used to heat 
a material to its melting point, after which it solidifies 
quickly [23, 24, 28, 29]. Past studies showed that various 
lasers like KrF excimer (λ = 248 nm, τ = 25 ns), continuous 
1 kW CO2, Yb3+: glass fibre laser (λ = 1062 nm, Pmax = 20 W, 
τ = 230 ns) have been used and can contribute to the corro-
sion resistance improvement of aluminium alloys [30–34]. 
The increased corrosion resistance is caused by the homo-
geneous surface layer compared to an unaffected alloy. 
Furthermore, second phase particles are dissolved and 
are distributed into the matrix covering the alloy from gal-
vanic coupling and thus pitting corrosion [35]. The main 
parameter influencing microstructural and chemical modi-
fications was reported to be the pulse length [36].

Laser surface treatment also can be used to improve the 
adhesive bonding of aluminium alloys for various reasons 
like uniform load distribution, increased joint stiffness, and 
absorption of energy [37]. Elisabeth et al. demonstrated 
that a good bonding surface and ageing-resistant alu-
minium bonded joints could be obtained via laser surface 
melting [38].

After laser pretreatment, Rico Rechner et al. demon-
strated enhanced strength and durability in adhesive-
bonded aluminium by cleaning and modifying the oxide 
layer [39]. The investigation by Marco Alfano et.al also 
demonstrated that the improvement of the aluminium-
epoxy joints was due to modification of the surface chem-
istry of the adhesive-substrate interface using a laser abla-
tion process [40].

Low-temperature plasma polymer deposition of thin 
films was shown to be a suitable process for the corrosion 
protection of metal alloys such as steel [41, 42], copper 
[43], and aluminium alloys [44]. Films deposited from the 
organosilane precursors by PE-CVD have been used for 
enhancing corrosion resistance [45]. The characteristics of 
films can also be tailored by the plasma deposition condi-
tions [46].

In this work, the focus is on the corrosion protection 
performance of ultra-thin SiOx films deposited by PE-CVD 
on laser surface melted Al-7075 alloys. The samples were 
analyzed by scanning electron microscopy (FE-SEM), Fou-
rier transform infrared spectroscopy (FTIR), X-ray photo-
electron spectroscopy (XPS); corrosion properties were 
estimated by linear sweep voltammetry (LSV), electro-
chemical impedance spectroscopy (EIS) and adhesion 
and delamination studies. A significant improvement in 
the resistance to corrosive delamination was observed 
which could be correlated to the barrier properties of the 
ultra-thin SiOx films.
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2 � Experimental

2.1 � Materials and chemicals

The material used in this study was Al-7075 alloy sup-
plied by Rasch-Metalle GmbH & Co., Bielefeld, Germany 
having dimensions of 20 mm × 20 mm × 3 mm. Prior to 
all the experiments, the samples were mechanically wet 
grounded using 600, 1000, 2500, and 4000 grit silicon car-
bide (SiC) papers (Schmitz-Metallographie-GmbH, Ger-
many). The samples were then rinsed with deionized water 
(HiPerSolv CHROMANORM Water for HPLC, VWR Chemi-
cals, Darmstadt, Germany) and abs. ethanol (ethanol, abso-
lute, 99.8% VWR Chemicals, Darmstadt Germany) before 
being dried with ultra-clean air. The abraded samples were 
polished with 0.3 μm Al2O3 powder (Schmitz GmbH & Co, 
Bunde, Germany) in aqueous suspension (20 g/100 ml 
H2O) until a mirror-like finish was achieved. Afterwards, 
the samples were washed with deionized water (HiPerSolv 
CHROMANORM Water for HPLC, VWR Chemicals, Darm-
stadt, Germany) and followed by an ultrasonic bath with 
ethanol (ethanol, absolute, 99.8% VWR Chemicals, Darm-
stadt Germany) for about 30 min. Finally, samples were 
again dried using ultra-clean air prior to the laser surface 
melting (LSM) treatment.

2.2 � Laser surface melting

The samples were surface melted using the Keyence MD-
X1520C 3-Axis hybrid scanning laser. The marking laser is 
equipped with a YVO4 laser (class 4 laser) with an output 
power of 25 W, and a wavelength of 1064 nm. The laser 
uses a continuous wave mode (CW) with a frequency 
range of 1–400 kHz. The temperature inside the cham-
ber was kept under control using air-driven cooling. For 
this investigation, 50% of the total laser power, or 12.5 W, 
was chosen. The frequency of the laser and the scanning 
speed was 50 kHz and 700 mm/s, respectively. The melting 
process was done in an ambient atmosphere. The hatch-
ing distance (separation between two consecutive laser 
beams) was 0.06 mm, with a 0.04 mm laser track width.

2.3 � PECVD of SiOx‑ films

For plasma polymerization, a custom-made bell jar reac-
tor with parallel electrodes was used. The deposition was 
performed with a 3.5 kHz audio frequency (af ) discharge. 
The monomer used for the polymerization purpose was 
hexamethyldisiloxane (HMDSO) with a purity of 98.5% 
(Sigma-Aldrich). The plasma reactor was equipped with 
a quartz crystal microbalance (QCM) with a resonance 

frequency of 5 MHz. A Cr/Au-coated AT-cut QCM crystal 
was used (Fil-Tech Inc., USA). QCM is an extremely sensi-
tive mass device. The QCM provides information about 
the mass change (Δm) on the substrate as a function of 
frequency variation (Δf ) [47].

Prior to the deposition, the chamber was evacuated 
to 10–5 mbar. During the deposition, the specimen was 
exposed to a gas mixture of HMDSO, oxygen, and argon. 
High partial pressures of oxygen lead to the deposition 
of SiOx films while lower oxygen partial pressures lead 
to carbon and hydrogen-rich SiOCH-like films. The use 
of argon as a carrier gas aids in the increased fragmen-
tation of plasma polymerization [48]. Initially, Ar was fed 
into the reactor at a flow rate of 0.5 ml/min and a pres-
sure of 0.1 mbar was maintained. The partial pressure of 
oxygen in the vacuum chamber was then increased until 
it reached 0.4 mbar. Finally, the monomer partial pressure 
was increased to 0.45 mbar by raising the overall pressure. 
The plasma was ignited with a current of 1.5 mA when the 
chamber had reached stable pressure conditions. In this 
investigation, deposition times of 10 s and 20 s were used.

The mass of the deposited films as a function of fre-
quency change before and after thin film deposition was 
determined using the following equation. The frequency 
shift, Δf = f2–f1, is caused by the mass change during the 
deposition. f1 and f2 are the initial and final frequencies 
during the deposition. If uniform mass coverage across 
the surface can be assumed, the film thickness (d) can be 
calculated by dividing the change in mass per unit area 
estimated by Sauerbrey’s equation by the density of film 
[49, 50]:

where C is the mass sensitivity constant related to proper-
ties of quartz and n is the number of harmonic (odd num-
bers). At room temperature for a 5 MHz quartz crystal, C 
is approximately equal to 17.7 ng cm−2 Hz−1 [51, 52]. The 
reported density value for the plasma polymerized films 
deposited using pure HMDSO and with oxygen, admix-
ture ranges from 0.98 to 2 g/cm3 [48, 52, 53]. The thickness 
computed for 10 s and 20 s with a density value of 1.3 g/
cm3 using the equations is 2.8 and 5.7 nm, respectively. 
where C is the mass sensitivity constantly related to prop-
erties of quartz and n is the number of the harmonic. At 
room temperature for a 5 MHz quartz crystal, C is approxi-
mately equal to 17.7 ng cm−2 Hz−1.

2.4 � Chemical and morphological analysis

Field emission scanning electron microscopy (FE-SEM) 
imaging and EDX mapping of the samples were performed 
to characterize the topography and composition of the 

Δm = −C ⋅

Δf

n
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surface and the passive layers, respectively. The imag-
ing was performed using a NEON 40 FE-SEM microscope 
(Carl Zeiss SMT AG, Oberkochen, Germany), which was 
equipped with an InLens and an SE2 detector. The imag-
ing was done using a 2 kV acceleration voltage. Focused 
ion beam (FIB) was also performed to measure the thick-
ness of the oxide layer. FIB cuts were made using Ga liquid 
metal ion source (LMIS) and with a beam voltage of 30 kV.

The chemical composition of the samples was exam-
ined by Fourier transform infrared spectroscopy (FTIR). Dif-
fuse reflection infrared spectroscopy (DRIFTS) was used for 
thin film characterization. A Vertex70 (Bruker) equipped 
with a liquid deuterated L-alanine doped triglycene sulfate 
(DLaTGS) detector was used to acquire the spectra. The 
measurements were done inside the sample compartment 
using a Praying Mantis™ diffuse reflectance accessory from 
Harrick. The spectra were averaged over 512 scans and 
were recorded with a spectral resolution of 4 cm−1. The 
analysis of the spectra was done using Opus 7.0 spectros-
copy software. All sample spectra were referenced to the 
LSM Al-7075 sample.

Additionally, X-ray photoelectron spectroscopy (XPS) 
was performed to study the chemical composition of as-
received, polished, laser structured and SiOx film coated 
samples. XPS was performed using Omicron ESCA + UHV 
System (Scienta Omicron NanoTechnology GmbH, Ger-
many). The spectra were recorded with a base pressure 
of below 2 × 10–9 mbar, with a step size of 0.1 eV and a 
constant pass energy of 100 eV, with a take-off angle of 
30° relative to the surface plane. The C1s signal of adventi-
tious carbon at 284.9 eV was used as the reference bind-
ing energy scale and the spectra were fitted with the 
CASA XPS software (CASA Software Ltd.). For peak fitting, 
a Shirley background was chosen, and it was performed 
using a peak shape consisting of a convolution of a Gauss 
(30%) and Lorentzian (70%) shape. The atomic sensitivity 
factors supplied from Omicron were implemented in the 
CASA XPS database for quantification.

2.5 � Electrochemical characterization

Two different types of corrosion tests had been employed 
in this study. Linear sweep voltammetry (LSV) and elec-
trochemical impedance spectroscopy (EIS) tests were 
employed, and results of polished, laser and SiOx depos-
ited samples were compared. The electrochemical meas-
urements were performed in a designed cell with a three-
electrode set-up using Ag/AgCl as reference electrode 
(Radiometer Analytical, Hach Co. Loveland, CO, USA) and 
gold wire as the counter electrode. Working electrodes 
were Al-7075 substrates that had been prepared. A Viton 
O-ring was used to limit the working electrode area to 
0.196 cm2. Corrosion testing was carried out in an aerated 

borate buffer solution (0.2 mol/l H3BO3, 0.05 mol/l Na2SO4, 
0.05 mol/l Na2B4O7 10 H2O, and 0.5 mol/l NaCl with a pH 
of 8.6. Electrochemical measurements were performed 
using a Reference 3000 Potentiostat (Gamry Instruments, 
Warminster, USA). Fresh solutions and clean electrodes 
and cell assembly were used in all electrochemical tests. 
The experimental result was fitted using origin software 
[54].

The potentiodynamic polarization measurements of 
the polished, laser surface melted and PECVD deposited 
specimens were performed at room temperature (25 °C). 
Before the measurements, the open circuit potential (OCP) 
was measured and then the polarization curves were 
recorded using linear sweep voltammetry. LSV was per-
formed from − 0.1 to 0.3 V vs OCP at a scan rate of 1 mV/s 
and with a step size of 1 mV. The electrochemical imped-
ance spectroscopy measurement was performed at the 
open circuit potential in the frequency range of 100 kHz 
to − 0.01 Hz with a voltage perturbation of an amplitude 
of 10 mV. Bode plots were obtained after the specimens 
were immersed in the test solution for a duration of 20 h. 
All EIS measurements were carried out at room tempera-
ture (25 °C).

The equivalent circuits (EC) presented in Figure S10 
were used for fitting procedure of the obtained impedance 
data. The EC presented in (a) is simulating the impedance 
of an oxide covered Al-alloy according to [55]. Relec repre-
sents the resistance of the electrolyte, Rpo the resistance 
of the oxide layer, Rb the resistance of the barrier layer, 
CPEpo and CPEb (Constant Phase Element), with the fitting 
parameter n, ranging from 0 to 1 with 1 as an ideal capaci-
tor was used in order to obtain more precise results. [55] 
The EC presented in (b) was used for the fitting procedure 
of the SiOx covered samples, whereas Relec represents the 
resistance of the electrolyte, Rb the resistance of the bar-
rier layer and CPEb as Constant Phase Element in order to 
obtain more precious results.

2.6 � Peel test studies

For the adhesive and delamination studies, a two-compo-
nent hot-cured amine-epoxy resin adhesive was employed 
as the model polymer film. The adhesive mixture consists 
of epoxy resin D.E.R. 331 (Dow Chemicals) and amine hard-
ener Jeffamin D400 (Sigma-Aldrich). These were mixed 
well until it became clear. It’s then stirred for 10 min in a 
vacuum at 130 rpm with a magnetic stir bar. The mixture 
was then degassed in a vacuum for 1 h without mixing, 
followed by 15 min of ultrasonication at ambient tempera-
ture. Finally, the adhesive mixture was again degassed in 
a vacuum for 1 h.

Adhesive tapes were used as spacers in the samples to 
obtain a homogenous adhesive layer thickness. For this 
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purpose, the samples were taped with ‘Magic tape’ (3 M, 
Germany GmbH) as the first layer and 5 layers with TESA 
films (TESA), as shown in Figure S1. The amine-epoxy 
resin adhesive was carefully poured onto the sample 
surfaces under a dry atmosphere (< 8% RH) and placed 
on polytetrafluorethylene (PTFE) blocks covered with Al 
foil to form a sandwich geometry. The joint was fastened 
with clips and cured for 75 min at 120 °C. When the sam-
ples were cooled down to room temperature, the clamps 
were removed. After hardening, the aluminium foil was 
pulled off without disturbing the adhesive, leaving a 
pore-free free-standing adhesive film. The adhesive-
applied samples were kept in a closed chamber with a 
water-filled beaker at 40 °C. This procedure leads to the 
saturation of epoxy-amine films with water.

For the peel test experiment, an MV-220 (Imada, 
Japan) motorized test setup was used. The test was 
conducted in a humid atmosphere (> 95% r.h.) at a con-
stant angle perpendicular to the substrate surface. The 
peel force was measured by a ZP-5 force gauge (Imada, 
Japan). The speed of the gauge was set at 1 mm/s. The 
program (ZP recorder) records 1000 measured points/s. 
The plateau area of the force–displacement curves was 
only considered while evaluating or averaging the force.

2.7 � Corrosion tests

For measuring the radial corrosion propagation at the 
interface, an artificial defect was applied using a milling 
machine at the centre of the samples with a diameter of 
1 mm. These samples were immersed in a 3.5% NaCl solu-
tion for 9 days in a humidified environment (> 95% r.h.) 
maintained at 40 °C. Each day, the radial corrosion pro-
gress starting from the defect was imaged with help of an 
optical microscope (Olympus SZX16).

3 � Results and discussions

3.1 � Surface chemical and morphological analysis

The FE-SEM images of the laser-melted Al-7075 are 
depicted in Fig. 1. The laser tracks and protrusions on the 
surface are visible. The laser-melted surfaces exhibit a 
wavy morphology in the form of ripples. These ripples are 
attributed to the surface tension of the melt pool and the 
shear stress produced from the surface tension gradients 
[56]. Under this condition, a radial temperature gradient is 

Fig. 1   SEM images for laser surface melted Al-7075 samples. a 
Shows the top-view of the LSM sample and b shows the cross-sec-
tional view of the FIB cut after LSM, c and d show FIB cuts of plasma 

films coated samples (deposition times: c 10 s and d 20 s). The red 
arrows in (a) point to the presence of micropores on the surface 
after LSM
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generated, which pulls back the melted liquid away from 
the centre to the adjacent areas by the surface tension 
gradient, thereby reducing the surface of liquid under the 
beam and heightening the surrounding area (Marangoni 
flow) [57]. Due to the large temperature gradient and rapid 
solidification, the pulled liquid solidifies at the edges creat-
ing a wavy-like morphology.

Once the temperature of the surface reaches vaporiza-
tion temperature, large thermal stresses can be induced. 
This may introduce defects such as micro-pores by evap-
oration of elements like magnesium and zinc that have 
a boiling temperature lower than the temperature that 
results from the laser. Red arrows in Fig. 1a indicate the 
presence of pores on the surface. The presence of such 
pores can reduce the corrosion resistance of the treated 
sample. The cross-sectional view of the LSM Al-7075 sam-
ple Fig. 1b shows an average surface oxide layer thickness 
of about 57.5 ± 3.1 nm.

Figure 1c, d shows the FE-SEM images with FIB cut after 
plasma deposition for a duration of 10 s and 20 s, respec-
tively. The average total oxide thickness after deposition 
was higher than for the LSM sample. Figure S1 shows FE-
SEM images of (a) 3 nm SiOx and (b) 6 nm SiOx Scale bar 
10 µm.

The determined overall oxide thickness as measured by 
FIB-SEM was 60.5 ± 1.4 nm for 10 s and 64.1 ± 1.6 nm for the 
20 s treated samples. Considering the laser-formed oxide 
layer thickness of 57.5 ± 3.1 nm, the deposited SiOx-film 
thickness was about 3 nm for the 10 s deposition time and 
6.6 nm for the 20 s deposition time.

When comparing the oxide thickness on the LSM sam-
ple and after SiOx film deposition, the results are in very 
good agreement with the QCM thickness measurements. 
The variation of change in mass calculated using the Sau-
erbrey equation at different deposition times is also shown 
as a graphical representation in Fig. 2. The thickness calcu-
lation was based on an assumed SiOx density of 1.3 g/cm3. 
The given data shown in Fig. 2 predict a linear increasing 
thickness dependent on the deposition time.

3.2 � DRIFTS analysis

The analysis of the PECVD SiOx film as deposited on the 
laser-melted aluminium surface was performed using 
FTIR DRIFTS spectroscopy. Figure 3 shows the DRIFTS 
data of the deposited SiOx films on LSM Al-7075 sam-
ples for a thickness of 3 nm and 6 nm. From the spectra 
of the deposited samples, the characteristic features 
for the Si–O stretching vibration of the Si–O–Si bond 
were identified around 1060 cm−1 [58, 59]. The similar 

peak shape for both thickness values indicates that the 
crosslinking did not vary with the growth of the SiOx 
film.

From the spectra of the deposited samples, the char-
acteristic features for Si–O stretching vibration of the 
Si–O–Si bond were identified around 1060  cm−1 [58, 
59] In comparison to a recent publication of de los 
Arcos et al. discussing the FTIR analysis of porous and 
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dense Si–O–Si, both films are rather defect-rich [60]. 
We assume that this is due to the very rough substrate 
surface.

3.3 � XPS analysis of the surface composition

The chemical composition of the surface of SiOx with a film 
thickness of 3 and 6 nm deposited samples were studied 
by XPS in comparison to the just laser surface melted sub-
strate. Table 1 shows the total chemical composition as 
determined via survey quantification.

The LSM-Al 7075 sample showed a thickened oxide 
layer due to high-temperature oxidation during the LSM 
process showing the oxidic component at 74.2 eV of the 
Al 2p peak while the metallic contribution is completely 
diminished. The deposition of the SiOx films is revealed 
by the concentration of Si 2p and the SiOx component 
of the O 1 s peak at 532.2 eV and 532.5 eV. The SiOx con-
centration is strongly increased for the 6 nm deposition 
whereas the oxidic and hydroxylic components of the 
oxyhydroxide layer decreased. The overall increased 
Si content for the 6 nm sample confirms the SiOx film 
deposition.

The survey spectrum of the two deposited samples with 
SiOx films is presented in the supplementary information 
(Figure S2). Core level spectra for Si 2p, O 1 s, C 1 s, and 
Al 2p are shown in Fig. 4. The derived atomic composi-
tions and peak positions based on the peak fittings are 
listed in Table 2. The O 1 s signal of the two samples with 
deposited SiOx films consists of three components. The 
peak observed at 532.5 eV was assigned to SiOx (O–Si) [61], 
while the peaks around 532 eV [62] and around 530 eV 
were attributed to oxyhydroxides (AlOOH) and oxides 
(Al2O3), respectively [63].

For the fitting of Si 2p peaks, the two components (Si 
2p3/2 and Si 2p1/2) of the spin–orbit doublet were con-
sidered according to the literature [64–66]. The distance 
between the two components was fixed at 0.6 eV, with 
a ratio (2p1/2:2p3/2) of 1:2. The slight shift of Si 2p peak 

positions is attributed to an enhanced concentration 
of Si IV states in the film [64]. Figure 4c, f shows the Al 
2p high-resolution spectra of the deposited samples. It 
was assigned as one component with a binding energy 
between 74.3 and 74.5 eV, correlating with aluminium 
oxide. Although a few nanometers of SiOx are deposited 
onto the laser surface melted aluminium alloy, there is 
still a significant Al concentration visible. A defect-rich 
oxide layer in the LSM state is assumed, whereas the SiOx 
is deposited in the pores and acts as an effective barrier 
film.

3.4 � Electrochemical analysis

Figure 5 shows the Tafel plots of the different samples as 
measured by linear sweep voltammetry (LSV). The black 
curve corresponds to the polished sample and the red 
curve to the LSM sample surface. The blue and green 
curves show the data for the SiOx films as deposited on 
the laser surface melted samples. The corrosion poten-
tial (Ecorr) and the associated corrosion current density 
(icorr) were determined by the tangent method for each 
curve. The polished Al-7075 sample surface exhibits a 
corrosion potential of − 0.24 VSHE and a corrosion cur-
rent density of 7.85 × 10–4 mA/cm2 and was chosen as 
reference.

The laser surface melted sample shows a cathodic shift 
of − 0.2 V in comparison to the polished state which can 
be explained by strong inhibition of the cathodic current 
density.

The SiOx film-covered surfaces show an additional low-
ering of the cathodic current densities and in addition inhi-
bition of the anodic dissolution rate. As expected, the 6 nm 
film shows an improved barrier property in comparison 
to the just 3 nm thin film leading to the most significant 
lowering of the anodic corrosion rate. As it is shown else-
where, the LSM procedure leads to a nonoporous oxide 
layer [55]. As described above, the deposition of the SiOx 
films result in an anodic shift of the corrosion potential 
and a reduction of the corrosion current density based on 
the inhibition of the anodic dissolution rate. The SiOx films 
are acting as a barrier film and are closing defects in the 
nanoporous oxide film.

Electrochemical Impedance spectroscopy (EIS) was 
used to further characterize the corrosion properties of 
bare and coated Al-alloy substrates. Figure 6 depicts the 
time-dependent magnitude and phase plots of the sam-
ples measured during the immersion in 0.05 M chloride-
containing borate buffer electrolyte.

The equivalent circuits (EC) used for the fitting pro-
cedure are shown in Figure S9. The measurements 

Table 1   Surface chemical composition determined via XPS survey 
quantification in the laser surface melted state and additionally 
covered with a 3 nm and a 6 nm PECVD SiOx-film

SiOx 3 nm SiOx 6 nm LSM-Al 7075
Element At.% At.% At.%

Al 2p 31.6 24.7 24.1
O 1 s 48.9 51.8 49.7
C 1 s 13.5 9.6 26.2
Si 2p 6 13.9 –
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Fig. 4   XPS high-resolution spectra of C 1 s, O 1 s, Si 2p and Al 2p of the deposited SiOx film on the laser surface melted Al-substrate (a–d 
d = 3 nm and e–h d = 6 nm)
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were performed over an immersion time of 18  h. 
Regarding the quantitative evaluation of the param-
eters, it is important to consider that especially for 
the bare Al-alloy substrates, the chloride induced cor-
rosion leads to non-stationary conditions, which are 
not incorporated in the theoretical approach. Table S1 
summaries the relevant data based on the fitting pro-
cedure of the EIS data. Figure 6c indicates significant 
higher impedance values in the initial phase of immer-
sion after the LSM procedure, which is attributed to 
the formed oxide [55]. Figure 6c, f show the impedance 
values for the 3 nm and 6 nm SiOx thin film covered 
samples. It is observed, that the deposition of such 
SiOx layers lead to a significant increase in corrosion 
resistance. The 6 nm thin film shows an even increased 
corrosion protection compared to the SiOx film with a 
thickness of 3 nm. The analysis of the corresponding Rp 
values (impedance at 0.01 Hz) as shown in Figure 7 as 
function of time illustrated the related transients. The 
highly crosslinked SiOx films act as an effective barrier 

films for chloride ions and thereby enhance the corro-
sion resistance. The relevant Nyquist plots are shown 
in Figure S10.

However, even in the presence of the thin PECVD SiOx 
films the low-frequency region indicates active corro-
sion which leads to the conclusion that pores within 
the PECVD film act as active sites for a corrosive attack. 
However, the low-frequency impedance is increased by 
at least an order of magnitude by the thin SiOx films 
indicating a good coverage of the rough LSM sample 
(Fig. 7).

3.5 � Analysis of adhesion properties and corrosive 
delamination

The interfacial adhesion properties of different modified 
surfaces in combination with a reference epoxy amine 
resin were investigated by means of peel test measure-
ments under humid conditions. The peel forces meas-
ured after four weeks of wet exposure are presented in 
Fig. 8. Measurements on polished and LSM Al-7075 sam-
ples resulted in peel forces of 0.2 ± 0.1 and 2.2 ± 0.6 N/
mm, respectively. The ten-fold increase in peel force 
on the LSM sample indicates the effect of mechani-
cal interlocking on the observed adhesion forces. A 
FE-SEM picture after a FIB-Cut is given in Figure S6 in 
order to present the obtained microstructure after the 
LSM procedure. For the SiOx film-coated Al-7075 sam-
ples, increased peel forces were obtained. For the SiOx 
coated samples, even cohesive fracture of the adhesive 
films was observed (Figure S8).

The comparison of the delamination kinetics of 
different samples immersed in 3.5% NaCl solution is 
shown in Fig. 9. Severe corrosive delamination could 
be observed for the polished alloy while the LSM 
Al-7075 already showed an inhibition of the delami-
nation process.

The additional deposition of the two thin SiOx films led 
to significant inhibition of the corrosive delamination.

Table 2   Atomic concentrations 
of the surfaces in the laser 
surface melted state and 
additionally covered with a 
3 nm and a 6 nm thin PECVD 
SiOx film as derived from high-
resolution element spectra

Element (XPS 
peak)

Chemical structure SiOx (d = 3 nm) SiOx (d = 6 nm) LSM-Al 7075

BE (eV) At.% BE (eV) At.% BE (eV) At.%

O 1 s SiOx 532.3 9.8 532.2 32.2 – –
AlOOH 531.3 33.8 531.5 16.9 531.8 27.7
Al2O3 529.7 5 529.9 3 530.4 22

C 1 s Aliphatic 284.5 10.1 284.5 6.9 284.5 20.2
C–O 287.1 0.3 286.8 0.6 286.9 2.3
CO

−

2
288.9 3 289 2 288.8 3.7

Si 2p SiOx 101.9 6 102.4 14 – –
Al 2p Oxidic 74.3 31.8 74.5 24.4 74.2 24.1
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Fig. 5   Results of linear sweep voltammetry of the studied samples 
in borate buffer with 0.05 M chloride (pH 8.6)
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Fig. 6   Time-dependent plots of electrochemical impedance meas-
urements of the studied samples in borate buffer with 0.05  M 
chloride (pH 8.6). Plots are given for a polished Al 7075 Impedance 
and b Phase plots polished Al 7075, c LSM-7075 Impedance, and 

d Phase plots LSM-7075, e 3  nm SiOx deposited film Impedance, 
and f Phase plots 3 nm SiOx deposited film, g 6 nm deposited film 
Impedance and h Phase plots 6 nm deposited film
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Within the studied time range no difference between 
the two film thickness values was observed. The results 
show that the electrochemical measurements could well 
predict the resulting increased corrosion resistance of 
the polymer/alloy interface.

Figure 10 summarizes the average delamination rates 
for various sets of samples. The delaminated area and 
the average radial progress were evaluated. A linear 
increase of the delamination rate indicates that the reac-
tion kinetics and not transport kinetics determine the 
corrosive delamination [67].

4 � Conclusions

It could be shown that the corrosive delamination 
resistance of laser surface melted Al-7075 alloys can 
be strongly enhanced by the deposition of ultra-
thin SiOx PECVD films. FTIR DRIFTS and XPS analysis 
proved the formation of a SiOx thin film formation 
on the rough surface oxide. As shown by LSV and EIS 
studies, both the cathodic reduction of oxygen and 
anodic dissolution rates could be strongly reduced 
by ultra-thin SiOx films. However, the increase of the 
thickness from 3 to 6 nm led to a further decrease 
of the anodic dissolution rates based on the higher 
surface coverage and reduced defect density. The 
wet-adhesion strength of an epoxy-based adhesive 
as measured by peel-tests under humid conditions 
could be increased mainly by the LSM treatment 
which is assigned to interfacial mechanical inter-
locking. However, a further improvement could be 
achieved by the deposition of ultra-thin SiOx films, 
which might be due to an increase of the hydrolytic 
stability of the oxide phase underneath the adhesive 
film. The strongly inhibited corrosive delamination 
of the applied adhesive film could be explained as 
mainly based on the inhibition of interfacial elec-
trochemical reaction kinetics. The comparison of 
the electrochemical results for the thin film coated 
surfaces and the corrosion studies of epoxy coated 
surfaces illustrated that the residual defects in the 
plasma thin films which lead to a localized corrosive 
attack are of minor importance for the delamination 
process at the adhesive/SiOx/oxide/alloy interface. 
This conclusion is of importance for the application 
of plasma thin film deposition for such systems as a 
defect-free plasma thin film under industrial condi-
tions is hard to achieve.
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