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Abstract
The present study proposes a new technique for diagnosing the Inter-Turn Stator-Winding fault in Permanent Magnet 
Synchronous Motors. Under faulty operating conditions, the system’s model is built while considering specific parameters 
linked to fault location and sharpness. The proposed fault-detection method is principally based on the Power Spectral 
Density estimator’s association with the Support Vector Machine. This classifier is used to separate different regions of 
system performance. It has been trained to associate the Power Spectral Density current’s magnitude and the stator’s 
current negative sequence with the fault severity. This method has shown exceptional performance as long as it achieves 
a fault detection rate of 98.5% for different fault severities. Two Power Spectral Density estimators were compared in 
terms of their ability to extract fault characteristics, namely Burg’s method and Welch’s method. It was concluded from 
this study that Welch’s has a higher frequency resolution than Burg’s method.

Article highlights
The main novel contributions of this study are outlined as follow:

•	 Fault feature extraction using stator current power spectral density estimator.
•	 A comparative study between two Power Spectral Density estimators.
•	 The development of fault diagnosis method that separates and classifiesdifferent regions of system performance 

according to fault severity rate.

Keywords  Inter-Turn Stator-winding fault · Fault detection · Welch · Support Vector Machine · Burg

1  Introduction

Reliability, safety, and service continuity are prerequisites 
in current electrical systems. Occasionally, these devices 
may come to a complete or partial shutdown due to 
the actuating or conversion devices’failure, thereby 

jeopardizing the system’s operation continuity. In such 
systems, a diagnostic tool capable of detecting and 
identifying the fault in question is indispensable to ensure 
the system properly functioning.

Permanent Magnet Synchronous Motors (PMSM) 
find their place in various applications because of their 
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increased reliability and efficiency [1]. They are often 
deployed in critical systems such as automotive and 
aerospace.

Due to the permanent excitation of the magnets in the 
rotor, a short-circuit fault in the stator of the machine is 
maintained as long as the machine is rotating. Reliable 
detection with an acceptable confidence margin is there-
fore required to prevent the rapid fault’s propagation out-
side the system.

To design powerful diagnostic tools in advance while 
avoiding machine damage, precise modeling of the 
machine, taking into account the severity of the fault and 
its nature, is compulsory. In this context, two approaches 
are often considered to model the Inter-Turn Stator Wind-
ing Fault (ITSWF). The first way concerns the connection 
between the electrical circuit and the equivalent mag-
netic circuit. This model considers the slots’ real current 
distribution and even the magnetic circuits’ saturation [2]. 
However, its implementation is relatively complicated and 
time-consuming in defining the variables, which invali-
dates the faulty motor’s simulation with the diagnostic 
unit in question.

Differently, the circuit design can be built in different 
reference frames, such as the static reference frame (��0) 
or the rotating reference frame (dq0) [3, 4]. This mode also 
allows easy access to the motor parameters that determine 
the faulty winding’s severity and location. As the stator-
winding fault causes a change in machine output sizes, 
such as stator current and torque signal, they were usually 
employed to extract the fault imprint. In reference [5], the 

current negative sequence component is taken as the fault 
signature signal to distinguish the sound state from the 
machine’s faulty state. However, it does not indicate the 
winding under consideration.

On the other hand, current frequency analysis, such as 
the Fast Fourier Transform, has been widely deployed to 
identify the fault’s characteristics and even locate the fault 
from the three-current phase. However, the FFT is signifi-
cantly destabilized by the load variation and the winding 
motor’s asymmetry. Besides, it exhibits low-frequency res-
olution and poor performance for non-stationary signals 
[6]. Some of these weaknesses can be solved using Time-
Frequency (TF) analysis algorithms such as the empirical 
mode decomposition or the Wigner Ville distribution [7, 8].

The first one allows reaching a balance between the 
suppression of cross-terms and TF resolution loss. In com-
parison, the second method does not require an adaptive 
filter to track motor frequencies, thereby making it insen-
sitive to load variations. Both approaches impose lengthy 
calculations and are subject to complex interpretation.

Another way to detect the fault understudy is via the 
machine-learning algorithm. The latter has come up to 
overcome the shortcomings as mentioned earlier related 
to fault diagnosis methods. Against this background, a 
variety of learning methods can be found in the literature 
and include the following features: the dispersed auto-
encoder [9], the deep belief network (DBN) [10], and dis-
persed filtering [11].

In this paper, a conventional machine-learning method, 
namely the Support Vector Machine (SVM), was used. 

Fig. 1   The output Motor size under regular and faulty operating conditions a stator currents at heathy mode, b stator currents under 
rf = 10Ω , � = 50% conditions, c the electromagnetic torque with rf = 1Ω and � = 30%
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Extracting the signal characteristics was carried out using 
an advanced Power Spectral Density (PSD) calculation 
technique. Two distinct defect characteristic estimators 
have been studied: the Welch method, which belongs to 
non-parametric analyses. This method determines the 
spectrum of the signal without being dependent on the 
system model. Besides, it allows the reduction of spectral 
losses, and it is known to have a high-frequency resolution. 
On the other hand, the parametric method, such as Burg’s 
method, focuses on auto regression, which also takes 
some parameters of the model into account for spectrum 
estimation [12].

To facilitate the maintenance of the machine after fault 
occurrence and then choose the appropriate fault-toler-
ant control strategy, it is necessary to determine the fault 
severity. For this purpose, the current negative sequence 
is used as the third predictor of the SVM classifier.

The paper has the following structure: in Sect. 2, we will 
briefly describe the dynamic model of the system under 
Inter Turn Stator Winding Fault. Section 3 exposes the pro-
posed method and highlights the Current pre-processing 
and the SVM method. This part includes a comparative 
study between Welch and Burg’s method in performing 
fault feature extraction. The simulation results of the pro-
posed fault diagnosis method are discussed in Sect. 4. we 
consider in Sect. 5 a general conclusions.

2 � PMSM’s dynamic model in (˛ˇ) reference 
frame with ITSF

Typically, the Inter-Turn Stator Winding Fault is caused by 
an insulation problem between adjacent windings in the 
same phase. The winding in question is divided into two 
parts, one sound, and the other defective. As depicted the 
Fig. 2, this anomaly involves a parallel resistance between 
the winding extremes (a2) through which the current if  
flows. The ratio between the short-circuited turns Nf  and 
the total number of turns Ns was designed by �.

The following formula can define the equation of the 
PMSM stator voltage in terms of fault severity and the 
resistance associated with the defective winding in the 
(ABC) stationary reference frame:

With:
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The following parameters ( Ma1a2 and Ma2b) are respec-
tively the mutual inductances between the windings (as2, 
as1) and the windings (as2, bs) resulting from the new sta-
tionary magnetic field, which can be identified based on 
the Finite Element Method (FEM) [13].

For a machine having one notch per pole and per 
phase, the axes of the sub-coils as1 and as2 are aligned 
and are not shifted concerning the coil axis. In this case, 
one can presume that:

Thus, it is necessary to include the electromagnetic 
torque-mechanical in the system’s state-space model to 
complete the machine model. The following formula can 
express this:

Due to the conceptual clarity obtained with a single set of 
two windings on the stator, it was necessary to apply the 
Clarke transformation to the electrical Eq. (1). The matrix 
model of the PMSM in case of malfunction is shown below:

Where:
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This model is implemented within the Matlab Simulink 
environment to analyze the machine’s behavior in its 
fault’s presence. The values of mutual inductances are 
shown in Table 4. Therefore, the simulation is carried out 
under normal and faulty operating conditions. Figure 1a 
represents the three current phases when the machine 
is run at healthy mode, while Fig. 1b showed the stator 
currents when the fault occurs in phase A.

Because of winding asymmetry, an unbalance appears 
in the three currents phase, leading to harmonics, which 
heightens with fault severity and for small fault resistance 
value. These harmonics intensify specifically in the current 
phase, as depicted in Fig. 1b.

From these results, it is notable for fragmenting fault 
sharpness in four regions. In the first one, the system stay 
works around nominal condition with small torque oscil-
lation; however, in the rest regions, the fault current ifarise 
inducing a braking torque that hinders the electromag-
netic torque as depicted in Fig. 1c. In this circumstance, the 
use of a fault detector becomes irreplaceable.

3 � Fault diagnosis method

The fault diagnosis approach is presented with the entire 
system through Fig.  2. This method’s main advantage 
resides in the fact that it references different areas of 
system performance. The boundary between distinct 
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�
+ −if ef
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operating regions is thus established while calculating the 
current negative sequence, which is expressed as follows:

With: a = ej2�∕3.

The current negative sequence and the stator current 
pre-processing data are inputs to the SVM, which essen-
tially aims to classify the fault in the function of its severity. 
More explicitly, the SVM builds a model that assigns new 
samples to either class.

Typically, the classification is not efficient without pre-
processing the input signal. This step makes the classifier 
easier to learn by converging to the most appropriate data 
for accurate and consistent classification results [14]. There 
are many recommended means for signal pre-processing, 
among which the PSD estimation method has been cho-
sen. The input data size is then considerably reduced by a 
so-called Findpeak function, which returns a vector with 
the current PSD signal’s peaks. Another standard solution 
for data reduction includes Principal Component Analysis 
(PCA) [15].

After performing all of the above processes, the 
classifier provides a binary vector in its output with the 
form [x y]. The [00] corresponds to the normal state, the 
[01], [10], and [11] are respectively referred to as zone 1, 
zone two, and zone three.
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Fig. 2   Inter-Turn Stator Winding Fault diagnosis methodology
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3.1 � Current pre‑processing

To extract the ITSWF characteristics, we calculated the 
current PSD of the three-stator currents. Two separate 
PSD estimators have been employed, namely the Welch 
and the autoregressive method. In this context, the Burg 
technique was applied to estimate the autoregressive 
parameters. For more details on the theory behind the 
Welch method and the Burg autoregressive method, it is 
recommended to refer to [16].

In this section, these techniques are compared in terms 
of their frequency resolution and ability to track the defect 
frequency using the simulation tool. The current was 
sampled at the 4 kHz frequency, and for each condition, 
we recorded 131,072 current samples. The result reported 
here refers to 0% and 50% of fault severity and 0, 1, and 
10 Ω . For the Welch method, the current segments can be 
distributed in different window types, such as the Bartlett 
method. Nevertheless, the latter has shown a poor result 
in magnitude detection, which corresponds to the fault 
frequency. For this reason, the Hanning window was 
chosen to ensure the windowing of the segments.

The Welch method has shown that the most critical 
fault components have been recognizable from the 
result obtained. Therefore, even for a low fault severity, 
an acceptable amplitude that identifies the defect has 
appeared. Because of the winding’s asymmetry, the PSD 

displays a displacement of the fault frequencies, which 
arise significantly with fault severity.

For the same condition as Welch, the current’s PSD was 
plotted based on the Burg method. Using the Akaike Cri-
terion, the model order is set up to 200 so that the entire 
fault features could correctly be estimated.

It has been proven that it is nearly unattainable to prop-
erly quantify fault frequencies when the model order is 
less than or greatly exceeding 200. In the first case, only 
the fundamental component is recognized, whereas if the 
model order is higher than 200, there are some other com-
ponents in the frequency spectrum that are not forcefully 
included.

By analyzing both Figs. 3 and 4, it can be deduced that 
these methods can separate the three areas of system 
performance previously mentioned. Each region has its 
proper feature signature. Furthermore, it is quite under-
standable that nearly all the fault frequency components 
are more evident using the Welch except the second one. 
The peak at this frequency is precisely identified using 
Burg when the machine runs under the following condi-
tion �= 0.5 ,andrf= 10Ω.

3.2 � Fault classification detection based Support 
Vector Machine

Once the fault feature is extracted from the current signal, 
the classifier is then used to distinguish different system 
performance regions. This section will closely explain the 
selected classifier, the Support Vector (SVM) Machine 
algorithm.

The SVM is a linear non-probabilistic classification 
method. It was first initially introduced to deal with binary 
classes and then extended to multi-class problems. With 
SVM, one class’s data points are separated from those of 
the other class by finding the optimized hyperplane. Rea-
sonable choice means the best fitting hyperplane, i.e., the 
one with the most significant margin between the two 
classes. The hyperplane can be expressed as follows:

Where: w is the vector of weights, x is an input vector, and 
b represents bias.

When the training data is linearly divisible, two paral-
lel hyperplanes that assign the two data categories are 
determined so that the distance between them is the most 
comprehensive attainable size. The following equations 
can express these hyperplanes:

(5)d(x,w, b) = w
T
x + b =

l∑
i=0

wixi + b

Fig. 3   The current’s PSD estimation based on WELCH at different 
operating conditions

Fig. 4   The current’s PSD estimation based Burg at different 
operating conditions
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Geometrically, the distance between these two hyper-
planes is 2

‖ �⃗w‖ , in order to maximize the distance between 

the planes, it is necessary to minimize‖‖��⃗w‖‖ , besides, it is 
recommended to check data points from falling into the 
margin, which can be translated as it follows:

With: yi = ±1.

Mutually, these constraints are established to get the 
optimization problem:

 Min ‖w‖2 andyi
(
wTxi + b

)
≥ One for all 1 ≤ i ≤ l

Classically, the current quadratic optimization problem 
with inequality constraints can be solved by the saddle 
point of the Lagrange functional [17]:

Where the size ( �i ) are Lagrange multipliers. The solutions 
�i of the dual optimization problem determine the param-
eters w

0
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0
 of the optimal hyperplane as it follows:
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Nsv∶Denotes the number of support vectors.
Once the parameters ( w

0
 andb

0
 ) are determined, the 

final decision hyperplane and the indicator function iF are 
then obtained as given below:

Separating more than two classes involves reducing the 
single problem of multi-class to a binary classification 
problem. The one-versus-rest and the one-versus-one are 
two ways to make this reduction [17].

4 � Results discussion

To verify the proposed fault diagnosis method’s efficiency 
and, therefore, choose the most appropriate PSD tech-
nique for the feature extraction process, the classifica-
tion model is built with SVM aid. The one-vs-one method 
relying on SVM multi-class with a linear kernel function 
is employed in the current work. The classifier input data 
set has been prepared first by estimating the current PSD 
based on both methods: the Welch and Burg estimator. 
Simultaneously, the current’s negative sequence is calcu-
lated under various scenarios; at normal and faulty oper-
ating conditions. Four labels have been assigned to each 
operating state, as shown in Table 1.

Before the learning phase, the stator current signals 
are analyzed under the following conditions: the meas-
urement time is 0.6 s; the sampling frequency f is 10 kHz. 
As a result, the number of samples is set at 6000. For 
model training, 182 KB is needed, which is equivalent to 
a preset research work that trait mechanical defects of 
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(10)iF = sgn(d(x))

Table 1   The label 
corresponding to each faulty 
operating condition

State Label

�=0% , rf=0 00
�=20% , rf=10 01
�=50% , rf=10 10
�=50% , rf=1 11

Fig. 5   The parallel coordinate 
plot of the standard deviation 
between different predictors
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the induction machine. A low-pass filter is used to cut off 
the fundamental frequency at 50Hz because some fault 
characteristics will have a small amplitude and could be 
neglected in the presence of the current’s fundamental 
component.

To keep a limited number of SVM training data and thus 
identify the amplitude and location of spectral peaks, the 
function Findpeaks located in the signal-processing tool 
have been deployed.

Using this function and setting the minimum distance 
between each peak at 100 Hz, the data is reduced from 
4100 samples to 250 main elements.

Nearly 250 data are collected from different operating 
conditions (healthy and defective) under various fault 
severity and resistance value. One hundred fifty data are 
used for training and the rest for testing.

Two analyses are performed in this study. The first aims 
to evaluate the accuracy of the ITSWF diagnostic method, 
including all the data. While the second is done to com-
pare the PSD method’s impact on classification results. 

1.	 Analyze 1

According to the parallel coordinate plot, it is evident 
that the negative sequence predictor separates the pref-
erence classes from each other as shown in Fig. 5. These 
results have been achieved under static condition; which 
mains that the speed and the load torque are considered 
constant.

It is also visibly illustrated that in the interval 
corresponding to the peak frequency [1 kHz, 1.5 KHz] 
and [2.6 kHz, 3.6 KHz], the data can be entirely separated 
using the SVM with a linear kernel. It is then conceivable 
to eliminate the negative sequence to predict the severity 
of the fault in this interval. However, it is still necessary to 
rely on the peaks in low frequency to avoid the noise effect 
caused by external conditions.

In order to assess the learner’s effectiveness, we are 
calculated the accuracy of the classification based on the 
ratio between the number of correctly classified samples 
and the total number of classified samples under dynamic 
condition. According to the confusion matrix, the 5-fold 
classification error is 1.5 %, which means that all the 
remains records were classified correctly. 

1.	 Analyze 2

In this analysis, we restricted the frequency interval at 
[2640 Hz, 3650 Hz] using a bandpass filter. As shown in 
Fig. 6, the minimum distance between each peak is set 
up to 50 Hz so that the number of a dataset will be sig-
nificant. Moreover, to compare the AR-based Burg and 
the Welch performance, we eliminate the current nega-
tive sequence and the data corresponding to zone 2 in 
the training phase.

Fig. 6   the classification of 
stator current’s PSD a AR based 
Burg, b Welch

Table 2   Confusion Table for testing dataset based Welch method

00 100% 0% 0%
10 0% 92.9% 0%
11 0% 7.1% 100%
Positive Predictive Value 100% 92.9% 100%
False Discovery 0% 7.1% 0%
00 01 10

Table 3   Confusion Table for testing dataset based Burg estimator

00 100% 0% 0%
10 0% 85.7% 8.3%
11 0% 14.3% 91.7%
Positive Predictive Value 100% 85.7% 91.7%
False Discovery 0% 14.3% 0%
00 01 10
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Using the Welch method, the fivefold classification error 
is 2.5%. One of the defective samples corresponding to 
the “10” class is misclassified as a sample belonging to the 
“11” class. On the other hand, it can be observed that the 
samples corresponding to the normal state are entirely 
separated since that the positive predictive value is equal 
to 100% as shown in Table 2.

By contrast, when using the AR model-based Burg, the 
misclassification rate increases to 7.3%. According to the 
Table 3, 14.3 % from the class ‘10’ was misclassified as ‘11’ 
and, 8.3% from the class ‘11’ was misclassified as ‘10’. We 
concluded from these results that the classifier has ben-
efited from a careful selection of feature extraction meth-
ods from this analysis. The welch analysis demonstrates 
more adequate results in extracting fault features at the 
high frequencies range.

Since the extraction of the fault features is done by 
estimating the power spectral density, the accuracy of the 
classification is directly related to the sampling frequency, 
especially with the Burg estimator. We note that a low sam-
pling frequency makes the identification of fault frequen-
cies impossible. In addition, a relatively high sampling 
frequency may result in components that do not reflect 
the fault feature.

By adding the current negative sequence component as 
an SVM predictor alongside the other predictors, we find 
from the simulation results that the different performance 
areas of the system can be easily identified and classified 
with an accuracy of 98.5%. This conclusion is obtained 
if the machine is submitted to dynamic conditions. The 
result obtained exceeds the classification rates obtained 
with two fault detectors, namely the SVM-PSO, and HCNN-
softmax typical [18], which reach an accuracy rate equal 
to 94.23%, and 96.57%. However, the HCNN-SVM detector 
achieves more accurate results with a classification rate 
of 99.89%.

5 � Conclusions

In this paper, a new method of detecting an Inter-Turn 
Stator Winding fault for Permanent Magnet Synchronous 
Motor is considered. This technique uses the Power Spec-
tral Density estimator to extract the fault characteristic 
from the motor’s three phases’ stator current and then 
explores these characteristics to classify the system’s nor-
mal and faulty states. It has the advantage of separating 
the different performance regions according to the fault 
severity ratio of the fault being studied.

In addition to exposing the fault diagnosis methodol-
ogy, this study highlighted the Autoregressive Model esti-
mators’ difference based on Burg and the Welch method in 
extracting fault characteristics. Simulation results showed 

that the Welch method combined with linear SVM offers 
relatively optimizable performance compared to the Burg 
method for ITSWF detection.

It should be noted that the autoregressive method 
based on the Burg parameter estimator also allows ade-
quate monitoring of the frequencies characterizing the 
fault and therefore it detects the ITSWF; however, it is 
dependent on the model order; thus, the wrong choice 
of the model order would automatically lead to errone-
ous results. By way of perspective, this method could be 
applied to diagnose various PM Synchronous Motor’s pow-
ertrains defects of the electric vehicles in which the engine 
occupies a primordial place.
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Appendix A PMSM parameters

See Table 4. 

Table 4   The machine Parameters at Faulty condition

Parameters Quantities

Winding resistance (Rs) 0.6 Ω
Winding inductance (Ls) 2.1 mH
Moment of inertia (J) 0.0011 g.m2

Number of pole pair (p) 4
DC bus Voltage 330 V
Mutual inductance(Ma1a2) 0.52 mH
Mutual inductance(Ma2b) 0.35 mH
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