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Abstract
We analyze the conditions for observation of zero sound in layered perovskites with transition metal ion on chalcoge-
nide oxidizer. We conclude that propagation of zero sound is possible only for a ferromagnetic sign of the s-d interac-
tion. If the s-d exchange integral J

sd
 has antiferromagnetic sign, as it is perhaps in the case for layered cuprates, zero 

sound is a thermally activated dissipation mode, which generates only “hot spots” in the Angle Resolved Photoemission 
Spectroscopy (ARPES) data along the Fermi contour. We predict that zero sound will be observable for transition metal 
perovskites with 4s and 3d levels close to the p-level of the chalcogenide. The simultaneous lack of superconductivity, 
the appearance of hot spots in ARPES data, and the proximity of the three named levels, represents the significant hint 
for the choice of material to be investigated.
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•	 Propagation of zero sound in layered transition metal 
perovskites is predicted in framework of s-d exchange 
interaction with ferromagnetic sign.

•	 It is revealed that strong exchange interaction is cre-
ated by strong s-p-d hybridization between the transi-
tion ion and oxidant.

•	 The propagation of zero sound is possible only close 
to cold spots directions of the normal charge carriers 
along the Fermi contour.

Keywords  Zero sound · s-d Exchange interaction · Hot spots · Cold spots · High-Tc superconductivity · Transverse sound 
modes

1  Introduction

The theoretical prediction of zero sound by Landau [1, 
2] and subsequent experimental observations [3, 4] in 
3 He was a powerful evidence of the applicability of Lan-
dau picture of Fermi quasi-particles excitations and their 
self-consistent motion to (strongly correlated) Fermi 

liquids. The zero Fermi sound in metals, more precisely 
zero spin sound, was observed in Cr metal [5, 6]. These 
experiments stimulated studies in the framework of the 
Hubbard model. Fuseya et al. [7] reached the important, 
to our further analysis, conclusion that Landau param-
eter, i.e. the averaged on the Fermi surface Fermi liq-
uid interaction kernel f (�,�) , can change its sign close 
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to half filling of the conduction band. Later on Tsuruta 
[8] used two dimensional t-t′ Hubbard model to study 
zero spin sound in antiferromagnetic metals. Here, we 
consider that this approach can be useful to study zero 
sound propagation and its importance from a materials 
science perspective. The purpose of the present paper is 
to explore the possibility of zero sound propagation in a 
layered perovskite with the structure of high-Tc having a 
CuO2 conduction plane.

Postulating the interaction kernel f (�,�) [9, Eq. (2.1)] 
between electrons with different momenta � and � , we can 
explain different electronic phenomena in superconduc-
tivity and magnetism. The Fermi liquid approach provides 
results for the magnetic susceptibility, heat capacity, and 
effective masses. For illustration, in many cases the interac-
tion is modeled by a separable kernel f (�,�) ∝ �(�)�(�) 
and for our Hamiltonian separability holds.

The s-d exchange lies in the origin of the magnetic 
properties of transition metal compounds. Its most usual 
version was proposed by Schubin and Wonsovsky [10], 
Zener [11–13] and Kondo [14]. The purpose of the present 
study is to analyze whether the s-d exchange can lead to 
propagation of zero sound in transition metal compounds.

We anticipate here, that an anti-ferromagnetic sign of 
the s-d coupling Jsd leads to a singlet superconductivity 
while a ferromagnetic sign of Jsd is able to explain the 
repulsion necessary for the propagation of zero sound. 
We wish to emphasize that zero sound has not yet been 
observed in normal metals [15]. This may be traced back 
to the fact that the s-d exchange interaction was not 
used as a guide for the choice of appropriate materials.

In the next section we introduce the notions and 
notations developed to explain the electronic properties 
of the CuO2 plane and its superconductivity, and analyze 
how a similar Hamiltonian would be used to predict zero 
sound in layered cuprates. Finally, we conclude that lay-
ered transition metal compounds may serve as the best 
candidates to search for zero sound in normal metals.

2 � The s‑d LCAO Hamiltonian for the CuO
2
 

plane in momentum �‑representation

The Hamiltonian in the �-representation is given in Ref. 
[16, Eq. (1.2)], here we start with the Hamiltonian in the 
�-representation

where

and the summation is actually an integration in the 
momentum space and N ≫ 1 is the total number of ele-
mentary cells for which we assume periodic boundary 
conditions

where the momentum variables are dimensionless phases 
px , py , qx , qy ∈ (0, 2�) ; the dimensional momentum is 
� = (ℏ∕a0)�. In this LCAO Hamiltonian �s , �d and �p are the 
single site energies of an electron in Cu4s, Cu3dx2−y2 and 
O2p states, tsp , tpd and tpd are hopping amplitudes between 
neighboring orbitals. The s-d interaction is parameter-
ized by the exchange integral Jsd which we consider as a 
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Fig. 1   Single electron processes in the conducting CuO2 plane 
of layered cuprates after Ref. [16, Fig. 1.1]. LCAO is the basis of the 
chemical intuition. We have Hilbert space spanned over Cu4s, 
Cu3dx2−y2 , O 2px , and O 2py states. The LCAO Hamiltonian is param-
eterized by transfer integrals tpd , tsp , and tpp and single site energies 
�d , �s , �p
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perturbation. Schematically, the atomic wave functions are 
depicted in Fig. 1. The chemical potential is denoted by � 
and for the operator of the number of electrons we have 
the standard expression

which we treat self-consistently.

2.1 � Conduction band reduction

In order to derive the effective Hamiltonian describing the 
zero sound, we perform successive conduction band reduc-
tions. The first one is the number of particles. For notions and 
notations we follow the description of the electronic proper-
ties of the CuO2 plane. In the hole doped phase of the CuO2 
plane we have 2 completely filled oxygen bands O2p and 
one partially filled Cu3dx2−y2band, f is the relative number of 
holes in the Brillouin zone, i.e., the hole filling factor defined 
as the ratio of the area of the hole pocket around the (�, �) 
point and the area of the Brillouin zone is (2�)2 . For the aver-
aged number of electrons we have

For f = 1

2
 we have a pattern insulator, while for optimal 

doping we have

The single electron component of the Hamiltonian is diag-
onalized in the �-representation and we have to perform 
the summation over all four bands b = 1, 2, 3, 4

The spectrum � in the LCAO approximation is determined 
by the secular equation

where the variables

are functions only of the momentum � , and

N̂ = −𝜕𝜇Ĥ
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∑
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Ĥ�(0) =
∑
b,�,𝛼

(𝜖b,� − 𝜇)ĉ†
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,

are polynomials of the energy � . This analytical representa-
tion of the energy dispersion �� allows to express explicitly 
its derivatives

where � is dimensional momentum and V� is the velocity 
in the usual units length per time.

In order to study the low frequency electronic pro-
cesses, we restrict the Hamiltonian summation only 
to the conduction band b = 3 and the index will be 
dropped; b = 1 and b = 2 denote completely filled oxy-
gen bands, while b = 4 is the index for the completely 
empty Cu4s band. Performing this first reduction, the 
interaction s-d-exchange Hamiltonian reads

where the real amplitudes

describe the amplitude of a band electron to be projected 
on Cu4s, Cu3dx2−y2 , O2px and O2py . For brevity we intro-
duce the notations �s = � − �s , �d = � − �d , �p = � − �p . The 
amplitudes have to be normalized to

and finally S� = CΨS̃� , D� = CΨD̃� . For convenience we 
introduce the notation describing the s-d hybridization 
amplitude �� ≡ S�D� of the band electron. In the next 
subsection we juxtapose different further reductions of 
the exchange Hamiltonian treated in a self-consistent way.

2.2 � BCS versus Fermi liquid reduction

Our first step is to perform BCS reduction of the 
exchange Hamiltonian Eq. (6). In the sum we have to take 
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into account only the annihilation and creation opera-
tors with opposite momenta and spins

In averaging of this BCS reduced Hamiltonian we apply the 
self-consistent approximation

where

Colors (on-line) describe factorization of means in the 
effective Hamiltonian. The self-consistent approximation 
is reduced to substitution of averaged product of four 
operators to the product of averaged two operators. In 
order to emphasize the basis of the BCS approximation we 
use different colors. Those colors can be traced back to the 
conduction band reduced exchange Hamiltonian Eq. (6). 
We use standard notations for Bogolyubov u-v rotation 
and the new B̂ operators with average expressed in terms 
of new Fermion number operators n̂�,𝛼 = b̂†�𝛼b̂�𝛼 . In this 
way the average exchange Hamiltonian is incorporated in 
the standard BCS scheme

where the kernel

is separable due to the fact that the exchange interaction 
is localized on a single ion in the elementary cell of the 
crystal.

Now we address the Fermi liquid reduction of the 
same exchange Hamiltonian Eq. (6) which we rewrite

In order to point out the difference between BCS and 
Fermi liquid reduction now the colors mark the opera-
tors which will be grouped in the next self-consistent 
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approximation. In the Fermi-liquid (FL) reduced Hamil-
tonian we have to take into account only the terms with

In FL reduction we have again to apply the self-consistent 
approximation for the relevant terms

Analogously to the BCS reduction, now for the FL reduc-
tion we obtain the averaged Hamiltonian

which is expressed by the same kernel

applied between the average numbers of the Fermi 
particles

This coincidence of the kernels of BCS and FL approach is 
one of the central results of the present study. This coinci-
dence can be explored for application in the study of other 
layered transition metal perovskites as well.

We wish to emphasize that for the interaction kernel we 
have analytical results at hand and for the s-d hybridization 
function, we have [16]
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This hybridization function in the quasi-momentum rep-
resentation is depicted in Fig. 2.

One can see that at fixed electron energy this saddle 
can be approximated by single sinusoidal approximation 
� ∝ cos(2�) where � = arctan(py , px) . Close to the (�, �)-
point the single particle spectrum �� has a parabolic form 
𝜖� ≈ 𝜖𝜋,𝜋 − p2∕2m̃eff and qualitatively this approximation 

can be extended to the Fermi contour of the optimally 
doped cuprates.

The band velocity � = ���� calculated from the real 
LCAO Hamiltonian is drawn in Fig. 3.

Here we can see that the circular Fermi contour is only 
a rough initial approximation.

The averaged BCS Hamiltonian has to be minimized 
with respect to u� and then the BCS spectrum

In the next Section we analyze the possible propagation 
of zero sound in layered perovskites using the single par-
ticle spectrum obtained from the FL reduced Hamiltonian 
Eq. (10).

3 � Zero sound dispersion

For a concise introduction to the Fermi liquid approach we 
recommend the well-known monographs by Nozieres [17], 
Abrikosov [15], Abrikosov, Gor’kov and Dzyaloshinski [18], 
Lifshitz and Pitaevskii [9] and [19, Sec. 76].

Introducing for brevity n�,𝛼 ≡ ⟨n̂�,𝛼⟩ , the averaged FL 
Hamiltonian Eq. (10) reads

Notice that the spin indices may be omitted if we consider 
spin non-polarized phenomena, such that n�,+ = n�,− . 
Introducing n� ≡ n�,+ + n�,− = 2n�,+ = 2n�,− for the FL 
energy spectrum we get

where the space variable � ≡ a0� can be introduced only in 
the quasi-classical WKB approximation. The s-d hybridiza-
tion function Eq. (11) determines both the gap anisotropy 
Δ�(T ) = Ξ(T )�� and the FL interaction. A detailed analysis 
of the gap anisotropy and the hot/cold spot anisotropy 
of ARPES data described by the hybridization function �� 
in Eq. (11) is presented in Ref. [20]. Now we consider the 
momentum distribution n�(�, t) of the charge carriers as 

(12)E� =
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∑
�
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Fig. 2   The hybridization function �� = SpDp representing the 
amplitude electron from conduction Cu3dx2−y2 band being simulta-
neously a Cu4s electron. This is the main ingredient of the matrix 
elements of the s-d exchange interaction

Fig. 3   Velocity v� of the conduction band as a function of quasi-
momentum px , py ∈ (0, 2�) with dimension energy given in eV. 
The variable V = (a0∕ℏ)v has dimension m/s. In the special points 
Γ = (0, 0) , M = (�, 0) , X = (�, �) the band velocity � = ���∕�� is 
zero; � = (ℏ∕a0)�
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dynamic variables. Assuming a local deformation of the 
Fermi contour in two dimensions

and using the collisionless Boltzmann equation, we derive 
the integral equation for the deformation of the Fermi con-
tour. In the linearized with respect to small � equation we 
assume plane wave perturbations, i.e.,

with wavevector � = �∕a0 and frequency �.
The WKB energy �(�, �) from Eq.  (14) is actually an 

effective Hamiltonian which gives the force acting on the 
electrons

and together with the substitution Eq. (15) of n�(�, t) gives

The substitution of the small deformation of the Fermi 
contour �n� from Eqs.  (14) and (15) in the collisionless 
Boltzmann equation

after some algebra leads to the dispersion equation

where

To proceed further we introduce the averaging on the 
Fermi contour

where
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F
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1
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is the density of electronic states per elementary cell and 
spin. For the separable kernel of the s-d interaction the 
dispersion equation for the zero sound reads

where the momentum argument of all those average val-
ues is omitted for brevity. In order to analyze qualitatively 
the solutions of this integral equation for �(�) we approxi-
mate the Fermi contour with a circle �� = �2∕2meff and 
assume that the separable kernel behaves as a single sinu-
soidal on the Fermi contour

where

It is worth mentioning that many authors just postu-
late such a separable kernel for the pairing interaction 
� ∝ cos(2�) , while we have derived it from the s-d micro-
scopic Hamiltonian.

If we analyze the propagation of zero sound along 
the nodal lines of the hybridization function � = �∕4 the 
electric current and charge density oscillations are zero. 
In the general case for significant charge density oscilla-
tions the zero sound is actually a plasmon.

ℏ�⟨��⟩ − � ⋅ ⟨���⟩ = (−2Jsd)�F
� ⋅ ⟨��2⟩⟨��⟩,

(20)V�,�� ≈ Isd cos(2�) cos(2��),

Isd ≈ −2Jsd

[
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(𝜖s − 𝜖d)(𝜖d − 𝜖p)

]2
,

px = p cos 𝜃, py = p sin 𝜃,

q�
x
= q� cos 𝜃�, q�

y
= q� sin 𝜃�,

p2

2m̃eff

=
q2

2m̃eff

= 𝜖
F
.

Fig. 4   Deformation of the Fermi contour in two dimensional 
momentum space �∕� for zero sound propagating along “cold 
spots” [21] diagonal � = �∕4 in layered perovskites. For this special 
case of propagation along the nodal lines of the separable kernel 
of interaction, the electric charge, spin and current oscillations are 
zero. Moreover, we have a shear deformation of the Fermi surface 
in momentum space
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The deformation of the Fermi circle in this special case 
� = �∕4 is depicted in Fig. 4.

For propagation of zero sound along other directions 
it is necessary to take into account the Coulomb repul-
sion and zero sound will behave partially as a plasmon 
in a layered structure. For a general review on plasmons 
in cuprate superconductors see Ref. [22].

4 � Conclusion and discussion

We investigated the propagation of the zero sound in a 
class of layered transition metal perovskites involving a 
s-d interaction. We started and focused our attention on 
the CuO2 plane that is a well-studied system. We were 
able to compare BCS and Fermi liquid reductions of the 
Hamiltonian and as a property of CuO2 plane these two 
model Hamiltonian coincided. Moreover, we studied 
the influence of the sign of Jsd coupling. For anti-ferro-
magnetic sign we have tendency to superconductivity, 
while for ferromagnetic sign we expect zero sound to 
be observed.

Unfortunately at the moment, starting with a theoreti-
cal scheme, it is difficult to conclude in which layered 
compounds the zero sound will have the longest lasting 
propagation and what material is technologically suit-
able to produce a clean ac-surface. It is most likely that 
a thin layer geometry would provide a solution.

Owing to the research outlined throughout this paper 
we conclude: First of all, zero sound exists only when Jsd 
is negative and the s-d interaction has a ferromagnetic 
sign. However, the s-d exchange can create supercon-
ductivity only for antiferromagnetic sign (positive Jsd ) 
of the exchange interaction. We arrive to the conclusion 
that in the normal phase of high-Tc cuprates propaga-
tion of zero sound is impossible. Zero sound for high-Tc 
cuprates is a dissipation mode, but thermal excitation of 
all those modes creates intensive scattering and Ohmic 
resistivity due to the exchange interaction and this 
strong angular dependence of the scattering rate is the 
cause of so called “hot spots” phenomenologically pos-
tulated for the interpretation of the experimental data 
[23]. Here we wish to add that thermal fluctuations of 
plasmons could also contribute to the hot spots along 
the Fermi contour [22].

Thermally agitated plasmons are related to electron 
density fluctuations which create electron scattering and 
ohmic resistivity due to exchange interaction. However, 
not for all doping levels the cuprates are superconduct-
ing and we do not exclude Jsd to change its sign for some 
compounds.

Our main motivation to write this paper is to attract 
the attention of experimentalists with appropriate sam-
ples at hand to probe the zero-sound propagation in the 
ab-plane of transition metal layered perovskites. If Angle 
Resolved Photoemission Spectroscopy (ARPES) data are 
available for these materials, hot spots along the Fermi 
contour or even smearing of this contour will be a sig-
nificant hint for intensive s-d exchange which can lead 
to propagation of zero sound. In normal metals, the ani-
sotropy of the electron-electron interaction is not strong 
enough to ensure zero sound propagation, but for lay-
ered perovskites such a phenomenon is most likely to 
occur. Another hint for intensive s-d exchange can come 
from band calculations, the hybridization is strongest if 
all those three levels: for transition ion 4s and 3d and 
p-states for the chalcogen are close to each other and 
we have almost a triple coincidence (full overlapping).

From the practical point of view, a possible route 
towards the excitation of the zero sound could be 
achieved by an intense perturbation from one side of a 
narrow strip, and detection on the opposite side of the 
sample. This, however is still a remote possibility.

Last but not least, already a half century ago different 
kinds of zero sound are extensively studied by theoreti-
cal means. This topic continues to attract a great deal of 
interest within the scientific community. Here we men-
tion but a few papers that are somehow directly linked 
to our study. Recent considerations include the two-
dimensional zero-sound [24] and shear [25] zero sound 
for p-type interaction [26], and we finally conclude that 
except for 3 He thin films and even two dimensional 
structures with large exchange interaction with ferro-
magnetic sign soon will become an interesting object 
for realization of the old idea of Landau [1, 2].

In this paper we have devised the theoretical frame-
work for the possible emergence of zero sound in 
some layered perovskites involving ferromagnetic s-
d exchange interaction. We will continue our effort to 
extend the investigation to other transition-metal com-
pounds along with distinct geometries to put the test 
the plausibility of the present theory. From the experi-
mental side we hope that the current technological pro-
gress would make it possible to synthesize appropriate 
compounds allowing for the propagation of zero sound.

5 � Conclusion

The authors are thankful to Davide~Valentinis for the 
interest to the present study and pointing out for recently 
appeared related works on kinetic theories for the electro-
dynamic response of Fermi liquids and anisotropic metals 
[27–29].



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2022) 4:228  | https://doi.org/10.1007/s42452-022-05107-8

Acknowledgments  The authors AMV, TMM and NIZ are grateful to 
Cost Action CA16218 for the support in presenting the first results 
of the current research at the 7th International Conference on Super-
conducitvity and Magnetism in Bodrum, Turkey in 2021 and present-
ing the final version at the CA16218 meeting in Madrid, Spain in 
2022.

Author Contributions  All authors TMM, NIZ, HC and AMV contributed 
equally to this work.

Funding  This work is supported by Grant No K Π-06-H38/6 of the 
Bulgarian National Science Fund.

Data availability  The data generated within this research is included 
in the paper.

Code availability  Not applicable.

Declarations 

Competing interests  The authors have no relevant financial or non-
financial interests to disclose.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Landau LD (1956) The theory of a fermi liquid. Sov Phys JETP 
3:920–925

	 2.	 Landau LD (1957) Oscillations in a fermi liquid. Sov Phys JETP 
5:101–108

	 3.	 Keen BE, Matthews PW, Wilks J, Bleaney B (1965) The acoustic 
impedance of liquid helium-3. Proc R Soc A 284(1396):125–136. 
https://​doi.​org/​10.​1098/​rspa.​1965.​0055

	 4.	 Abel WR, Anderson AC, Wheatley JC (1966) Propagation of zero 
sound in liquid He 3 at low temperatures. Phys Rev Lett 17:74–78. 
https://​doi.​org/​10.​1103/​PhysR​evLett.​17.​74

	 5.	 Fukuda T, Endoh Y, Yamada K, Takeda M, Itoh S, Arai M, Otomo T 
(1996) Dynamical magnetic structure of the spin density wave 
state in Cr. J Phys Soc Jpn 65(5):1418–1426. https://​doi.​org/​10.​
1143/​JPSJ.​65.​1418

	 6.	 Endoh Y, Fukuda T, Nakajima K, Kakurai K (1997) Polarized neu-
tron studies for Cr excitations. J Phys Soc Jpn 66(6):1615–1617. 
https://​doi.​org/​10.​1143/​JPSJ.​66.​1615

	 7.	 Fuseya Y, Maebashi H, Yotsuhashi S, Miyake K (2000) Anomalous 
fermi liquid effects in two-dimensional hubbard model near 
half-filling. J Phys Soc Jpn 69(7):2158–2163. https://​doi.​org/​10.​
1143/​JPSJ.​69.​2158

	 8.	 Tsuruta A, Hattori K, Ohta R, Miyake K (2010) Zero spin sound in 
antiferromagnetic metals: case of two-dimensional t-t’ hubbard 
model. J Phys Soc Jpn 79(8):084710. https://​doi.​org/​10.​1143/​
JPSJ.​79.​084710

	 9.	 Lifshitz EM, Pitaevskii LP (1980) Statistical physics. Part 2. Lan-
dau-Lifshitz course of theoretical physics, vol 9. Pergamon, New 
York

	10.	 Schubin S, Wonsowsky S (1934) On the electron theory of met-
als. Proc R Soc Lond Ser A 145(854):159–180. https://​doi.​org/​10.​
1098/​rspa.​1934.​0089

	11.	 Zener C (1951) Interaction between the d shells in the transition 
metals. Phys Rev 81:440–444. https://​doi.​org/​10.​1103/​PhysR​ev.​
81.​440

	12.	 Zener C (1951) Interaction between the d-shells in the transi-
tion metals. II. Ferromagnetic compounds of manganese with 
perovskite structure. Phys Rev 82:403–405. https://​doi.​org/​10.​
1103/​PhysR​ev.​82.​403

	13.	 Zener C (1951) Interaction between the d-shells in the transition 
metals. III. Calculation of the Weiss Factors in Fe Co, and Ni. Phys 
Rev 83:299–301. https://​doi.​org/​10.​1103/​PhysR​ev.​83.​299

	14.	 Kondo J (1966) Anomalous scattering due to s-d interaction. J 
Appl Phys 37(3):1177–1180. https://​doi.​org/​10.​1063/1.​17083​85

	15.	 Abrikosov AA (1988) Fundamentals of the theory of metals. 
North Holland, Amsterdam

	16.	 Mishonov TM, Penev ES (2010) Theory of high temperature 
superconductivity. A conventional approach. World Scientific, 
New Jersey

	17.	 Nozières P, Pines D (1966) The theory of quantum liquids, 1st 
edn. CRC Press, Boca Raton

	18.	 Abrikosov AA, Gor’kov LP, Dzyaloshinskii IY (1963) Methods of 
quantum field theory in statistical physics. Prentice Hall, Engle-
wood Cliffs

	19.	 Lifshitz EM, Pitaevskii LP (1980) Physical kinetics. Landau-Lifshitz 
course of theoretical physics, vol 10. Pergamon, New York

	20.	 Mishonov TM, Zahariev NI, Chamati H, Varonov AM (2021) Hot 
spots along the Fermi contour of high-Tc cuprates explained by 
s-d exchange interaction. SN Appl Sci. https://​doi.​org/​10.​1007/​
s42452-​022-​05106-9

	21.	 Ioffe LB, Millis AJ (1998) Zone-diagonal-dominated transport in 
high-Tc cuprates. Phys Rev B 58(17):11631–11637. https://​doi.​
org/​10.​1103/​PhysR​evB.​58.​11631

	22.	 Greco A, Yamase H, Bejas M (2019) Origin of high-energy charge 
excitations observed by resonant inelastic x-ray scattering in 
cuprate superconductors. Commun Phys 2:3. https://​doi.​org/​10.​
1038/​s42005-​018-​0099-z

	23.	 Hlubina R, Rice TM (1995) Resistivity as a function of tempera-
ture for models with hot spots on the Fermi surface. Phys Rev B 
51:9253–9260. https://​doi.​org/​10.​1103/​PhysR​evB.​51.​9253

	24.	 Khoo JY, Villadiego IS (2019) Shear sound of two-dimensional 
Fermi liquids. Phys Rev B 99(7):075434. https://​doi.​org/​10.​1103/​
PhysR​evB.​99.​075434

	25.	 Valentinis D, Zaanen J, van der Marel D (2021) Propagation 
of shear stress in strongly interacting metallic Fermi liquids 
enhances transmission of terahertz radiation. Sci Rep 11(1):1–
13. https://​doi.​org/​10.​1038/​s41598-​021-​86356-2

	26.	 Ding S, Zhang S (2019) Fermi-liquid description of a single-
component fermi gas with p-wave interactions. Phys Rev Lett 
123:070404. https://​doi.​org/​10.​1103/​PhysR​evLett.​123.​070404

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1098/rspa.1965.0055
https://doi.org/10.1103/PhysRevLett.17.74
https://doi.org/10.1143/JPSJ.65.1418
https://doi.org/10.1143/JPSJ.65.1418
https://doi.org/10.1143/JPSJ.66.1615
https://doi.org/10.1143/JPSJ.69.2158
https://doi.org/10.1143/JPSJ.69.2158
https://doi.org/10.1143/JPSJ.79.084710
https://doi.org/10.1143/JPSJ.79.084710
https://doi.org/10.1098/rspa.1934.0089
https://doi.org/10.1098/rspa.1934.0089
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.83.299
https://doi.org/10.1063/1.1708385
https://doi.org/10.1007/s42452-022-05106-9
https://doi.org/10.1007/s42452-022-05106-9
https://doi.org/10.1103/PhysRevB.58.11631
https://doi.org/10.1103/PhysRevB.58.11631
https://doi.org/10.1038/s42005-018-0099-z
https://doi.org/10.1038/s42005-018-0099-z
https://doi.org/10.1103/PhysRevB.51.9253
https://doi.org/10.1103/PhysRevB.99.075434
https://doi.org/10.1103/PhysRevB.99.075434
https://doi.org/10.1038/s41598-021-86356-2
https://doi.org/10.1103/PhysRevLett.123.070404


Vol.:(0123456789)

SN Applied Sciences           (2022) 4:228  | https://doi.org/10.1007/s42452-022-05107-8	 Research Article

	27.	 Valentinis D (2021) Optical signatures of shear collective modes 
in strongly interacting Fermi liquids. Phys Rev Res 3(2). https://​
doi.​org/​10.​1103/​PhysR​evRes​earch.3.​023076

	28.	 Valentinis D, Baker G, Bonn DA, Schmalian J (2022) Kinetic theory 
of the non-local electrodynamic response in anisotropic metals: 
skin effect in 2D systems. arXiv. https://​doi.​org/​10.​48550/​ARXIV.​
2204.​13344. https://​arxiv.​org/​abs/​2204.​13344

	29.	 Baker G, Branch TW, Day J, Valentinis D, Oudah M, McGuinness P, 
Khim S, Surówka P, Moessner R, Schmalian J, Mackenzie AP, Bonn 

DA (2022) Non-local microwave electrodynamics in ultra-pure 
PdCoO2. arXiv. https://​doi.​org/​10.​48550/​ARXIV.​2204.​14239. 
https://​arxiv.​org/​abs/​2204.​14239

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1103/PhysRevResearch.3.023076
https://doi.org/10.1103/PhysRevResearch.3.023076
https://doi.org/10.48550/ARXIV.2204.13344
https://doi.org/10.48550/ARXIV.2204.13344
https://arxiv.org/abs/2204.13344
https://doi.org/10.48550/ARXIV.2204.14239
https://arxiv.org/abs/2204.14239

	Possible zero sound in layered perovskites with ferromagnetic s-d exchange interaction
	Abstract
	Article highlights
	1 Introduction
	2 The s-d LCAO Hamiltonian for the CuO plane in momentum -representation
	2.1 Conduction band reduction
	2.2 BCS versus Fermi liquid reduction

	3 Zero sound dispersion
	4 Conclusion and discussion
	5 Conclusion
	Acknowledgments 
	References




