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Abstract 
The superfluid density n

s
(T ) of a superconductor is calculated based on the generalized Bose–Einstein condensation 

(GBEC) theory that addresses a fully-interacting ternary boson-fermion gas mixture of free electrons as fermions, plus two-
electron Cooper pairs (2eCPs) and also, explicitly, two-hole Cooper pairs (2hCPs), both as bosons. Here we consider two 
special cases (i) 100%–0% (i.e., with no condensed 2hCPs) and (ii) 0%–100% (i.e., with no condensed 2eCPs). Subsumed 
in GBEC are the Bardeen–Cooper–Schrieffer (BCS) and Bose–Einstein condensation (BEC) theories along with the BCS-
BEC crossover theory extended with 2hCPs. We find that in the weak-coupling regime n

s
(0) agrees with data from the 

Uemura et al. (2004) graph for several elemental SCs by taking in 3D with a quadratic energy-dispersion relation while 
in 2D with a linear relation are much too far below the data. In the strong-coupling regime the linear behavior of critical 
temperature T

c
 vs n

s
(0) obtained here is just as Božović et al. (2016) found. However, in 2D with a linear relation account-

ing for 0%–100%, n
s
(T )∕n

s
(0) compares well with some high-T

c
-cuprate SC data between the two coupling regimes.

Article Highlights  Superfluid density of a superconductor (SC) is calculated with the BCS-Bose crossover extended with 
two-hole of Cooper pairs. In the weak-coupling extreme in 3D we found good agreement with conventional SCs with 
quadratic dispersion relation. For high-T

c
 SCs (cuprates) in the intermediate coupling in 2D with a linear relation; results 

compare well with the data.

Keywords  Boson-fermion gas mixture · Two-electron/two-hole Cooper pairs · BCS-Bose crossover theory · Superfluid 
density

1  Introduction

Superfluidity in liquid 4 He was reported in 1938 by 
Kapitza [1] and independently by Allen and Misener 
[2] who for the first time found that the viscosity of 4 He 
drops below T� = 2.17 K. Almost 20 years before the Bar-
deen–Cooper–Schrieffer (BCS) [3] theory, Kapitza also 
found that this phenomenon is analogous to that of a 
superconductor (SC). In turn, London [4] proposed that 

4 He is in a phase II, i.e., below T� , and has a Bose–Einstein 
condensation (BEC) behavior. The calculated BEC critical 
temperature of He II is T

BEC
= 3.1 K and so is thus slightly 

higher than T� . Landau [5–7] introduced the concept of 
two fluids for 4 He but with no connection with a BEC. 
Bogoliubov [8] had already shown that in a degenerate 
Bose gas with weak interactions there is really a BEC. Also, 
the existence of superfluidity turns out to be linked with 
BEC [9] —and indeed with Bose statistics.
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In the early 1970s Leggett [10, 11], based on experi-
ments by Osheroff et al. [12], noted that 3 He atoms could 
in fact form BCS-like pairs. He concluded that the liquid 
3 He phase must show [13] all phenomena associated with 
a BCS-like phase; he later derived [14] two basic crossover 
equations at T = 0 for any many-fermion system. In 1964 
Schrieffer [15] was apparently the first to state that one 
must solve two equations, a gap-like and a number equa-
tion. This was perhaps the first BCS-Bose crossover theory. 
It was further developed by Keldysh [16] (1965), Popov [17] 
(1966), Labbé et al. [18] (1967), Eagles [19] (1969), Miyake 
[20] (1983), Nozières [21] (1985), Ranninger et  al. [22] 
(1988), Randeria et al. [23, 24] (1989), Van der Marel [25] 
(1990), Bar-Yam [26, 27] (1991), Drechsler and Zwerger [28] 
(1992), Haussmann [29] (1993), Pistolesi and Strinati [30] 
(1996) among others.

The London penetration depth �
L
= (m

e
∕�0nse

2)1∕2 is 
the distance below a SC surface where an external mag-
netic field B vanishes like B = B0 exp(−x∕�L) where x is the 
depth inside the SC. Here m

e
 is the electron mass, e the 

elementary electron charge, �0 the magnetic susceptibility 
and n

s
 the superconducting electron-number density. The 

latter is linked with the “superelectrons”[31] of the Landau 
theory. In 1989 Uemura et al. [32] found a linear relation-
ship between the critical temperature T

c
 of a SC and its 

superfluid number density n
s
 . It was concluded [33] that, in 

general, the magnitude of T
c
 depends on n

s
(T ) rather than 

on the interelectronic coupling strength as long claimed to 
be true. Later, in 2016 Božović et al. [34] came to agree with 
these conclusions. The well-known Uemura graph [32, 33] 
relates the T

c
 of a SC with its superfluid number-density as 

n
2∕3
s ∕(m∗∕m

e
) where m∗ is the effective electron mass and 

m
e
 its bare mass. Uemura et al. [32] [33] then suggested a 

crossover theory to correctly describe SCs. We refer to the 
crossover “BCS-Bose” [35, 36] instead of the more common 
“BCS-BEC” since a BEC cannot occur in either two dimen-
sions (2D) nor in one dimension (1D) while bosons can 
form in both instances.

Here we corroborate the Kapitza concept that super-
fluidity is analogous with superconductivity, by calculat-
ing the SC superfluid density n

s
(T ) for T ≤ T

c
 based on the 

generalized Bose–Einstein condensation (GBEC) theory 
[37–41] that includes as a special case the BCS-Bose cross-
over theory and also an extended version with two-hole 
Cooper pairs (2hCPs) [42] along with the more common 
two-electron Cooper pairs (2eCPs) ones.

In Sect. 2 the GBEC theory is recalled as it leads to the 
BCS-Bose extended crossover equations as a special case; 
in Sect. 3 the superfluid density n

s
(T ) is introduced for 

two kinds of superfluids, one for 2eCPs and another for 
2hCPs, the latter with an opposite charge carrier sign with 
respect to 2eCPs. Here we report calculated n

s
(T ) results 

in 3D with a boson quadratic-dispersion relation and in 2D 

with a linear-dispersion one. Comparisons are made with 
experimental data in 3D and 2D for some elemental and 
cuprate SCs. In Sect. 4 some discussion and our conclu-
sions with future work are mentioned.

2 � Generalized Bose–Einstein condensation 
theory

The GBEC theory starts from an ideal, noninteracting 
boson-fermion (BF) ternary gas mixture of free/unbound 
fermions (here electrons) plus 2eCPs and 2hCPs as bosons. 
To this one adds specific BF vertex interactions [37, 38] 
leading to a fully-interacting gas defined by the hamilto-
nian H = H0 + H

int
 where H0 stands for the ideal ternary gas 

and H
int

 for the BF interactions.
The ideal ternary gas hamiltonian is

here � ≡ �1 + �2 is the center-of-mass momentum 
(c.m.m.) wavevector of two fermions, where K ≡ |�| , and 
� ≡

1

2
(�1 − �2) as their relative wavevector while 

�
k1
≡ ℏ2k

2
1
∕2m is the energy of a single fermion and 

E±(K ) = E±(0) + ℏ2K2∕4m the bosonic 2e/2hCPs phenom-
enological energies with E±(0) the bosonic energies for 
K = 0 . Here a†

�1,s1
(a

�1,s1
) are the creation (annihilation) fer-

mion operators, and b†
�

(b
�

 ) and c†
�

(c
�

 ) the boson operators 
for 2e/2hCPs. CPs are treated here as actual bosons in con-
trast with the BCS [3] “correlated” pairs which depend on 
their relative wavevector � and also on their total � 
wavevector whereas the original CPs [43] depend only on 
� [40, 41]. The former do not satisfy Bose commutation 
relations [3] but the latter are consistent with Bose statis-
tics [40, 41]. The interaction hamiltonian H

int
 has four BF 

interaction vertices, one with two-fermion/one boson 
creation-annihilation operators representing how the 
unbound electrons (subindex + ) or holes (subindex −) 
combine to form 2e/2hCPs in any d-dimensional system of 
size L. Thus

where f±(k) are the BF interaction functions defined in 
Refs. [37, 38] for electrons/holes. Note that H

int
 is reminis-

cent of the Fröhlich interaction hamiltonian (or Dirac in 
QED [44] p. 36) involving two-fermion operators with a 
one-boson operator, but with two kinds of CPs instead of 
phonons/photons. Contrasting with Fröhlich and Dirac, 

(1)

H0 =
∑

�1,s1

�
�1
a
†

�1,s1
a
�1,s1

+
∑

�

E+(K )b
†

�
b
�
−
∑

�

E−(K )c
†

�
c
�

(2)

H
int

= L
−d∕2

∑

�,�

f+(k){a
†

�+
1

2
�,↑

a
†

−�+
1

2
�,↓

b
�
+ a

−�+
1

2
�,↓

a
�+

1

2
�,↑

b
†

�
}

+ L
−d∕2

∑

�,�

f−(k){a
†

�+
1

2
�,↑

a
†

−�+
1

2
�,↓

c
†

�
+ a

−�+
1

2
�,↓

a
�+

1

2
�,↑

c
�
}.
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there is no conservation law for the number of unbound 
electrons, i.e., [H

int
,
∑

�1,s1
�
�1
a
†

�1,s1
a
�1,s1

] ≠ 0.
One can consider a simpler reduced H

red
 that may be 

written by neglecting nonzero K values and ignoring 
those bosons with K ≠ 0 in H

int
—but  not also in H0 as 

assumed in BCS theory. Applying the Bogoliubov recipe 
of replacing the zero-K creation operators b†

�
 and c†

�
 for the 

2e/2hCP bosons by c-numbers 
√

N0 and 
√

M0 with N0 and 
M0 the numbers of 2e/2hCP K = 0 bosons. Then, using 
the Bogoliubov-Valatin transformation [45, 46] allows 
exactly diagonalizing [39] the reduced dynamical operator 
Ĥ
red

− 𝜇N̂ with N̂ the total-electron-number operator and � 
a Lagrange multiplier. Bringing the neglected c.m.m. K ≠ 0 
terms back into the picture was recently implemented 
with two-time-Green-function techniques [47–50].

The thermodynamic (or Landau) potential of 
the grand-canonical statistical ensemble is now 
Ω(T , Ld ,𝜇,N0,M0) = −k

B
T ln

[

Tr(exp{−𝛽(Ĥ
red

− 𝜇N̂)})
]

 
where Tr means “trace,” Ld is the system volume with d = 
3, 2, 1 and � ≡ 1∕k

B
T  with k

B
 the Boltzmann constant and 

� the electronic chemical potential. Thus Ω can now be 
evaluated explicitly. The Helmholtz free energy is then 
F(T , Ld ,�,N0,M0) ≡ Ω(T , Ld ,�,N0,M0) + �N  . Taking the 
negative partial derivative of Ω with respect to � , and also 
minimizing the Helmholtz free energy wrt N0 and M0 , gives

The first equation is familiar from quantum-statistical 
mechanics and ensures net-charge conservation, i.e., 
gauge invariance [51], not guaranteed in BCS theory. The 
last two equations of (3) are needed to have a stable ther-
modynamic state.

From (3) the GBEC theory [37] gives three coupled, 
transcendental equations for three unknown T-depend-
ent functions, the �(T ) and the 2eCP and 2hCP Bose–Ein-
stein (BE) condensate (i.e., with K = 0 ) number densities 
N0(T )∕L

3 ≡ n0(T ) and M0(T )∕L
3 ≡ m0(T )  for 3D. The first 

equation of (3) leads to a  number equation for the ternary-
gas mixture in terms of the total electron-number density 
N∕L3 ≡ n and is

where n
B+(T ) and m

B+(T ) refer to the number densities 
of excited 2eCP and 2hCP bosons with K > 0 . The free/
unbound electron-number density n

f
(T ) turns out to be

(3)−
�Ω

��
= N,

�F

�N0

= 0,
�F

�M0

= 0.

(4)n = 2
[

n0(T ) + n
B+(T ) −m0(T ) −m

B+(T )
]

+ n
f
(T )

(5)
n
f
(T ) ≡

�

∞

0

d�N(�)

[

1 −
� − �

E(�)
tanh{

1

2
�E(�)}

]

�����������������→
T→0

(

2mE
f

)3∕2
∕3�2ℏ3

≡ n
f
.

Here, E
f
 is viewed as a “pseudo-Fermi” energy as it refers 

only to free electrons at T = 0 and E(�) ≡
√

(� − �)2 + Δ2(T ) 
is the gapped Bogoliubov fermion-dispersion relation con-
taining the electronic energy gap

where f±(�) are BF vertex-interaction constants. For con-
densed 2eCPs

and for condensed 2hCPs

as originally defined in Refs. [37, 38]. Here f was taken as 
f ≡ f+ = f− . Here E

f
 and �� are phenomenological energies 

associated with the free/unbound electrons in the BF 
gas mixture. E

f
 is related with the number density of the 

unbound fermions of the system n
f
(T = 0) ≡ n

f
 just as in 

(5). This number of unbound fermions is necessary in the 
calculation of the energy gap as well as in the chemical 
potential to obtain the superfluid density. While �� is the 
energy range where the BF interactions occur and can be 
identified with the Debye energy of the lattice. Note that 
E
f
 coincides exactly with the Fermi energy E

F
 of an ideal 

fermion gas when n0(T ) = m0(T ) and n
B+(T ) = m

B+(T ) , 
i.e., for a 50%–50% gas mixture of 2eCPs/2hCPs. For 
unbound electrons in 3D the density of states (DOS) is 
N(�) =

(

m3∕2∕21∕2�2ℏ3
)

�1∕2 and for 2D it is the constant 
N(�) = m∕2�ℏ2.

References [52, 53] introduce a generalized energy disper-
sion relation for the bosonic CPs. In the weak-coupling limit 
the dispersion relation can be expanded for small K in a 
series around K. In 2D one has �

K
⟶

K→0
�0 +

2

�
ℏv

F
K + O(K2) 

where v
F
 is the Fermi velocity. If 𝛿𝜖 ≪ E

F
 is the energy range 

over which the BF interaction acts in 3D and gives 
�
K
⟶

K→0
�0 +

1

2
ℏv

F
K + O(K2).

For an ideal Bose gas (IBG) consisting of pairs of fermions 
T
c
 is nonzero if d > s [54] where d is the gas dimensionality 

and s the exponent of the bosonic CP dispersion-relation 
energy. As in Ref. [54] in 3D one has s = 2 and in 2D s = 1 . 
With this one recovers the results of an IBG of two bound 
electrons as CPs if all  electrons are assumed paired [55], i.e., 
with no unbound fermions left in the gas.

The excited (or noncondensed) boson number densities 
then become

(6)Δ(T ) ≡ f+(�)
√

n0(T ) + f−(�)
√

m0(T )

(7)f+(𝜖) =

{

f if Ef < 𝜖 < Ef + 𝛿𝜖

0 otherwise

(8)f_(�) =

{

f if Ef − �� < � < Ef
0 otherwise

(9)n
B+(T ) ≡

�

∞

0+

d�M(�)
[

exp �[E+(�)] − 1
]−1
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w h e r e  M(�)  i s  t h e  b o s o n i c  D O S  a n d 
E±(�) = ±2E

f
+ �� ∓ 2� + � the energy of excited 

2e/2hCPs. For the 3D IBG with s = 2 one has

and in 2D with s = 1 [54]

We introduce G̃ a BF dimensionless strength interaction in 
2D which in turn is related with the BF vertex-interaction 
constants f as

where the second equation is in 3D, last defined in 
Refs. [37, 38]. The Bose distributions in (9) and (10) are 
clear indications of the bosonic nature of both kinds 
of CPs. In 3D the BF strength interaction can be related 
with the BCS dimensionless coupling paremeter �

BCS
 as 

G3D = �
BCS

��3D∕2 and in 2D as G2D = �
BCS

��2D∕4.
The second equation in (3) gives a gap-like equation for 

2eCPs

and the third equation in (3) the same, but for 2hCPs

We then have three special cases, namely 

	 (i)	 50%–50% proportions between 2eCPs and 2hCPs, 
i.e., n0(T ) = m0(T ) and n

B+(T ) = m
B+(T ) solving 

simultaneously (14) plus (15) with (4),
	 (ii)	 100%–0%, i.e., m0(T ) = 0 solving simultaneously 

(14) with (4) and
	 (iii)	 0%–100%, i.e., n0(T ) = 0 solving simultaneously 

(15) with (4).

The set of equations (14), (15) and (4) are called as the 
extended BCS-Bose crossover equations with explicit inclu-
sion of 2hCPs [42] and contains a dimensionless coupling 
parameter n∕n

f
 with n the total number density and n

f
 that 

for unbound electrons at zero absolute temperature. We 
found two distinct coupling regimes, namely i) weak cou-
pling for n∕n

f
= 1 when all electrons are unbound, albeit 

like “correlated ”pairs as in BCS theory, with �(T = 0) = E
F
 ; 

ii) strong coupling when n∕n
f
→ ∞ as when, e.g., n

f
→ 0 , 

(10)m
B+(T ) ≡

�

∞

0+

d�M(�)
[

exp �[E−(�)] − 1
]−1

(11)M(�) = (2m3∕2∕�2ℏ3)
√

�

(12)M(𝜀) = 2𝜋
(

𝛿𝜖∕2G̃2D�vF
)2
𝜀 +O(𝜀2).

(13)
G̃2D ≡ f

2
m

e
∕8𝜋�2

E
F

G̃3D ≡ f
2
m

3∕2
e ∕25∕2𝜋2�3

E
1∕2

F

(14)

2
√

n0(T )[2Ef + �� − 2�(T )] =
∫

∞

0

d�N(�)
Δ(�)f+(�)

E(�)
tanh

�

1

2
�E(�)

�

(15)2
√

m0(T )[2�(T ) − 2E
f
+ ��] =

∫

∞

0

d�N(�)
Δ(�)f−(�)

E(�)
tanh

�

1

2
�E(�)

�

.

meaning that all electrons are paired into CPs implying an 
IBG consisting of 2eCPs when �(T )∕E

F
→ 0 . Here n∕n

f
= 106 

is virtually the strong-coupling extreme; and iii) an interme-
diate regime between weak- and strong-coupling when 
1 < n∕n

f
< ∞ . Varying this parameter from n∕n

f
= 1  one can 

describe elemental superconductors. Changing n∕n
f
 slightly 

from unity one can address SCs like Pb and Hg which are 
known as “bad actors” [56] in BCS theory.

In the extended BCS-Bose crossover one calculates [57] 
the ratio T

c
∕T

F
≡ k

B
T
c
∕E

F
 for several elemental superconduc-

tors including the BCS theory “bad actors”  Hg and Pb. This 
was reported in Ref. [57] for the energy gap in the 50%–50% 
case and found to agree to with the data, whereas the 
100%–0% case [i.e., when m0(T ) = 0 ] lies too far below data 
trends and likewise for the 50%–50% case. This already sug-
gests that condensed 2hCPs might be necessary to correctly 
describe any SC. Recall that from Ref. [37] 2hCPs are indis-
pensable in a BCS condensate which must be a 50%–50% 
mixture to give the BCS gap equation exactly for all cou-
plings and all Ts as well as the full condensation energy for 
T = 0.

3 � Superconductor superfluid density

In the extended-crossover theory the T-dependent super-
fluid number density n

s
(T ) involves only those CPs either 

in the ground/excited state for T ≤ T
c
 . One can then define 

n
s
(T ) as

where n is the total number density (4) and n
f
(T ) that of 

unbound electrons (5). Here, the superfluid density (SFD) 
(16) resembles the SFD of the Landau two-fluid model 
[5–7] where the total mass density is � = �

s
+ �

n
 with �

s
 

the superfluid mass density and �
n
 SFD with Bose statistics 

since in (16) there are only CPs as bosons.
There are two special cases: i) m0(T ) = 0, i.e., there are no 

condensed 2hCPs, so one has the 100%–0% case and the 
SFD is

and ii) n0(T ) = 0 , i.e., there are no condensed 2eCPs, one 
has in the 0%–100% case

The more general case (16) includes both kind of CPs, 
while 100%–0% and 0%–100% cases one have ignored 
one kind of condensed CPs. To find the superfluid density 
in this extended crossover one must solve the set equa-
tions (14), (15) and (4) to have the energy gap as well as the 

(16)
n
s
(T ) ≡ n − n

f
(T )

= 2
[

n0(T ) + n
B+(T ) −m0(T ) −m

B+(T )
]

(17)n
s,2e(T ) = 2

[

n0(T ) + n
B+(T ) −m

B+(T )
]

(18)n
s,2h(T ) = 2

[

−m0(T ) + n
B+(T ) −m

B+(T )
]

.
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chemical potential, both dependent of temperature. These 
values must be substituted in (16), (17) and (18).

Figure 1a shows a phase diagram of the dimensionless 
superfluid density n

s
(0)∕n vs. the dimensionless number 

density n∕n
f
 for the 100%–0% case using (17) and for the 

0%–100% case using (18) in 3D with a quadratic energy-
dispersion relation as well as in 2D with linear relation. If 
one takes the 50%–50% proportions in (16) one sees that 
n
s
(T ) = 0 implying that both kinds of CPs cannot contrib-

ute to SFD in any coupling regime while the 100%–0% 
and 0%–100% cases can do. Taking the weak-coupling 
extreme, i.e., when n∕n

f
= 1 the 100%–0% and 0%–100% 

cases cannot contribute to SFD, one must take n∕n
f
≠ 1 . 

Taking n∕n
f
≃ 103 one sees that the 100%–0% case in 3D 

as well as in 2D all electrons are paired, i.e., one has an 
ideal Bose gas composed of 2eCPs. The 0%–100% case 
with n∕n

f
= 0.5 all holes paired into 2hCPs. Thus n∕n

f
 

becomes our interest here since taking n∕n
f
= 1 all parti-

cles are unbound, implying that n∕n
f
> 1 electrons paired 

into CPs and taking n∕n
f
< 1 , holes paired into 2hCP. How-

ever, the proper interpretation of n < n
f
 is that the number 

density of unbound fermions are greater than the total 
number density, but this leads to a disagreement, instead 
one might suppose that occurs an insertion of particles to 
the system, in this case a finite number of 2hCPs, this sug-
gests that the system can be doped with holes.

In Fig. 1b the critical temperature T
c
 is plotted for the 

100%–0% and 0%–100% cases vs n
s
(0)∕n in both 2D and 

3D. Shows the 100%–0% case with a special case where 
m

B+(T ) = 0 , i.e., the excited 2hCPs bosons has been 
ignored, with a linear energy-dispersion relation in 2D 
and with a quadratic relation in 3D. The 0%–100% case 
enhances the critical temperature at relatively low SFD. 
Note that n

s
(0)∕n has a linear behavior in the strong-cou-

pling regime as reported in Ref. [34, Fig. 2d] for T
c
 vs �

s0 
SFD of data where �

s0 ≡ �
s
(T → 0) from this reference. The 

mere presence of excited 2hCPs enhances the value of T
c
 

[40, 41]. This is exactly analogous to the increase, at higher 
and higher temperatures, of antibosons (here 2hCPs) in 
the relativistic IBG [58].

As mentioned above, the weak-coupling (BCS) regime 
is when one considers the 50%–50% proportions. Thus 
in (4) at T = 0 one has n∕n

f
= 1 meaning that the rest of 

fermions remain unbound. This limit resembles a fermion 
system interacting via an attractive potential [21] when 
N = N

f
 , i.e., sufficiently high fermion densities [59]. The 

BEC regime is achieved when all fermions are bound as 
pairs, i.e., the fermion density decrease while boson den-
sity increase, namely, the number density ratio changes 
as 1 ≤ n∕n

f
< ∞ . These properties are described in the 

phase diagram T
c
∕T

F
 vs n∕n

f
 in but is here extended 

with the dimensionless SFD n
s
(0)∕n , which is illustrated 

in Fig.  2 in 3D. The phase diagram of Fig.  2 describes 

the behavior of the dimensionless SFD at T = 0 when 
the dimensionless number density varies as function of 
T
c
∕T

F
 . For 100%–0% case in the strong-coupling regime 

when n∕n
f
> 102 almost all fermions as pairs are in the 

superfluid state, while for 0%–100% case this occur when 

(a)

T c
 (K

)

0

50

100

150

200

ns(0)/n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

3D 100-0 (mB+(T) = 0)
2D 100-0 (mB+(T) ≠ 0)
3D 100-0 (mB+(T) = 0)

3D 100-0 (mB+(T) ≠ 0)
3D 0-100 (nB+(T) ≠ 0)
2D 0-100 (nB+(T) ≠ 0)

(b)

Fig. 1   (Color online) a Dimensionless superfluid density n
s
(0)∕n vs. 

n∕n
f
 for 100%–0% (black full) curve, 0%–100% (gray-dashed) curve 

using (17) and (18), respectively, for 3D and 100%–0% (red dashed) 
curve, 0%–100% (gray dashed) curve using the same equations for 
2D. When n∕n

f
≃ 103 one have n

s,2e
(0)∕n ≃ 1 and when n∕n

f
≃ 0.5 

one has n
s,2h

(0)∕n ≃ −1 . One has the negative sign in the superfluid 
density of 0%–100% case, this is consistent with 2hCPs charge car-
riers sign in (4). Inset shows the behavior of superluid density near 
n∕n

f
= 1 (weak coupling) extreme. Also there is a sign symmetry 

with respect this point between 100%–0% and 0%–100% cases. b 
Critical temperature T

c
 vs n

s
(0)∕n from the extended crossover the-

ory for the 100%–0% and 0%–100% cases in 3D and 2D, m
B+(T ) = 0 

indicate that excited 2hCPs have been ignored and n
B+(T ) = 0 that 

excited 2eCPs have also been ignored. Note that the mere pres-
ence of 2hCPs enhance critical temperatures. One can see a linear 
behavior still holds at relatively high superfluid densities, this lin-
ear behavior holds in the strong-coupling regime as Božović et al. 
[34] found in their Fig. 2d. Here G̃ = 10−4 and 𝛿𝜖 = 10−3 were used; 
“tilde” meaning made dimensionless with the Fermi energy E

F
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n∕n
f
→ 1∕2 , but the 50%–50% case the dimensionless 

SFD is zero as shown before. Also, note that T
c
∕T

F
 increases 

linearly as the dimensionless SFD increases in the strong-
coupling regime as Uemura et al. [32, 33] and indepen-
dently Božović et al. [34] found. The region of arbitrary 
proportions between 2eCPs and 2hCPs may lie between 
the white-orange (100-0) surface and light-blue (0-100) 
surface.

Table 1 lists superfluid density n
s
(T = 0) experimental 

values and also calculated with the extended-crossover 
set of equations (17) and (18) for 100%–0% and 0%–100% 

cases, respectively, taking specifically n∕n
f
= 1.00001 for 

100%–0%, meaning that the number density of unbound 
electrons is 0.001% smaller than the total number density. 
For 0%–100% n∕n

f
= 0.99999 was used meaning that the 

number density of unbound holes is 0.001% greater than 
of that total number density, i.e., it has been inserted as 
finite number of 2hCP. These values of the dimensionless 
number density are near the weak coupling extreme (BCS 
theory) for elemental superconductors. They are compared 
with data from Ref. [33] in 2D. In 3D as n2∕3

s,3D
(T = 0) with a 

quadratic energy-dispersion relation and in 2D simply as 
n
s,2D(T = 0) and with a linear relation. Note that the 3D 

results agree with data trends, while in 2D results have 
some orders of magnitude below even from the 3D case.

Also shown is the penetration depth 𝜆2 ∝ m⋆∕n
s
 results 

in 3D. Results of the 100%–0% case for Zn are near the data 
while the 0%–100% case is so for Al, Sn and Nb, while the 
2D cases are not reported since the SFD are too far below 
of data. But it needs the Pippard coherence length of the 
2e/2hCPs to have a complete picture of the penetration 
depth. Here we used the effective electron mass in 3D for 
the calculations in 3D and 2D. Also listed are the BF param-
eters as 𝛿𝜖 and G̃ for each SC. Future work will be to use the 
effective mass tensor.

For an ultracold bosonic atomic gas one must solve 
the 100%–0% case, i.e., with m0(T ) = m

B+(T ) = 0 . This 
is analogous to an IBG gas when n∕n

f
→ ∞ , e.g., when 

n
f
= 0 . Here 2hCPs contributions can be neglected as 

their numbers are likely negligible at the very low densi-
ties associated with a shallow Fermi sea is expected [60] 
to accommodate only a tiny number of holes. Ignoring 
them, one recovers the limits of T

c
∕T

F
 when n∕n

f
→ ∞ . 

For the extended crossover in 3D giving T
c
∕T

F
→ 0.204 

and in 2D T
c
∕T

F
→ 0.034 so that n

s
(0)∕n → 1 as expected 

[55]. Results in Table 1 suggest again the connection 
between superfluid density and Bose statistics. The 4

2
 He 

Fig. 2   Phase diagram n∕n
f
 vs T

c
∕T

F
 vs n

s
(0)∕n for the 100%–0% 

(white-red surface) and 0%–100% (light-blue surface) cases in 3D 
of the extended BCS-Bose crossover. The weak-coupling regime is 
when n∕n

f
= 1 there is a high unbound fermion density, while the 

strong-coupling regime occurs when n∕n
f
> 102 for the 100%–0% 

case and n∕n
f
→ 1∕2 for the 0%–100% case with high boson den-

sity. Note that T
c
∕T

F
 increases linearly as the dimensionless SFD 

increases just as Uemura et al. [32, 33] and, independently, Božović 
et al. [34] found

Table 1   Values of n
s3D

(T = 0)2∕3∕(m∗∕m
e
) with a  quadratic energy 

dispersion relation and n
s2D

(T = 0)∕(m∗∕m
e
) with a linear relation, 

calculated with the extended BCS-Bose crossover theory using 

(17) for the 100%–0% case with n∕n
f
= 1.00001 and (18) for the 

0%–100% case with n∕n
f
= 0.99999 in 2D and 3D

These are compared with empirical data of Uemura et al. [33] for four typical elemental SCs near the weak-coupling regime. Note that 3D 
cases reproduce the data trends while the 2D cases do not. For the ultracold atomic gas of 4

2
 He atoms n∕nf ≃ 106 (strong-coupling regime) 

was used. Values for m∗∕m
e
 for each SC are from Ref. [61] and for 4

2
 He from [62]. Also listed is the penetration depth �2

L
∝ m∗∕n

s
 in 3D. The 

last two columns list the BF parameters for each superconductor

T
c
∕T

F
 ( ×10−5) n

2∕3

s3D
(0)∕m∗ (cm−2) n

s2D
(0)/m∗ (cm−2) �

L,3D
(0) (nm) BF parameters

Exptl Extended Exptl 100%–0% 0%–100% 100%–0% 0%–100% Exptl 100%–
0%

0%–
100%

𝛿𝜖 × 103 G̃ × 104

Zn 0.80 0.79 2.31×1015 3.32×1015 6.10×1014 1.71×1013 1.12×1013 18.4 17.3 40 2.1 1.8

Al 0.87 0.86 4.90×1015 1.05×1015 1.88×1015 7.74×1011 7.74×1012 16.9 30.8 30.8 3.0 2.5

Sn 3.15 3.13 3.00×1015 8.27×1015 2.61×1015 9.63×1013 7.18×1012 20.9 10.9 26.2 1.6 2.0

Nb 14.96 14.90 4.00×1014 1.61×1015 1.15×1014 3.91×1013 4.10×1011 173 24.8 321.8 4.4 6.2
4

2
He 0.19 0.20 3.25×1011 2.05×1011 – 1.93×1011 – – – – 10 10
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case is worth mentioning too because all fermions are 
supposed to be paired for extremely strong coupling, 
viz., n∕n

f
→ ∞ , leaving essentially an IBG so that the 

calculated superfluid density agrees with the data. This 
suggests that this BF mixture with the 100%–0% case can 
describe successfully ultracold fermionic atomic clouds.

Figure  3a shows calculated 2D superfluid density 
n
s
(T )∕n

s
(0) vs T∕T

c
 curves with a linear dispersion relation 

using (17) and (18) compared with HTSC data [63–65]. 
Also plotted is the 100%–0% case near weak coupling 
with n∕n

f
= 1.00005 and the intermediate coupling 

with n∕n
f
= 100 . The former approximates better the 

data trends but the latter is too far below the data. Also 
plotted is the 0%–100% case near weak coupling with 
n∕n

f
= 0.99999 and n∕n

f
= 0.997 . The former appears to 

mean that 0.001% of unbound holes have been inserted 
while the latter with 0.3%. If one varies n∕n1 ≠ 1 with 
2hCPs one can adjust to data trends. This suggests that 
this HTSC cannot be correctly described by a 50%–50% 
mix of 2eCPs/2hCPs in the weak-coupling regime.

Figure 3b shows the 3D superfluid density n
s
(T )∕n

s
(0) 

vs T/Tc with a quadratic relation compared with the same 
HTSCs data [63–65] previously shown. Shows the weak-
coupling regime solving (17) and (18), these two cases 
are so far from data but they are near of the SFD curve 
of BCS theory, this suggesting that this HTSC cannot be 
explained by weak-coupling BCS theory, as long sus-
pected. But if one changes n∕n

f
≠ 1 both curves come 

together with the general behavior but not adjust to 
data. This suggests that the 3D case cannot describe at 
all the HTSC data.

In 3D, the 100–0% as well as the 0%–100% cases 
near weak-coupling regime, i.e., with n∕n

f
= 1   is too far 

from the data and also from the BCS curve. Thus, these 
cuprates cannot be correctly described with weak-cou-
pling assumptions. However, for these SC cuprates occurs 
in cuasi-2D as in La2−xSr

x
CuO4 with x = 0.21 [64]. In 2D, the 

100%–0% as well as 0%–100% curves with n∕n
f
≃ 1 does 

describe the general behavior, although the 0%–100% 
case changing as 0.997 ≤ n∕n

f
≤ 0.99999 can adjust the 

data, suggesting that charge carriers are 2hCPs. This sug-
gests that this SC might lie between a BF mixture with 
n∕n

f
= 1 and n∕n

f
= 102 , i.e., in the intermediate-coupling 

regime.

4 � Discussion

From Kaptiza’s arguments on the superfluid density 
and from definitions of (17) and (18), the 2eCPs and the 
2hCPs contribute to the superfluid density. The extended 
crossover leads to the important concept of “three com-
ponents” since one here deals with a ternary gas. Taking 

ns
(T

)/n
s(0

)
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Fig. 3   (Color online) a 2D superfluid density n
s
(T )∕n

s
(0) vs T∕T

c
 

from the extended crossover for 100%–0% case using (17) black-
full curve with n∕n

f
= 1.00005 near weak coupling and the 

black-dashed curve with n∕n
f
= 100 strong-coupling regime. For 

0%–100% case using (18) gray-full curve with n∕n
f
= 0.99999 and 

gray-dashed curve with n∕n
f
= 0.997 each compared with HTSC 

data of YBa
3
CuO�−7 ab-plane [63] (open circles); La2−xSrxCuO4 

[64] (gray squares) x = 0.15 (blue-online diamonds) x = 0.21 ; YBa2

Cu4O
8
 [65], Ca = 0.06 (open triangles) and La = 0.075 (red online 

circles). There is two important cuprate-SC results shown here 
between the 100%–0% and 0%–100% cases near the weak cou-
pling regime and between the 100%–0% strong-coupling regime 
and 0%–100% gray-dashed case suggesting that these SCs might 
be correctly described by bosonic 2hCPs in 2D. b 3D superfluid 
density n

s
(T )∕n

s
(0) vs. T∕T

c
 from the extended-crossover theory for 

100%–0% case using (17) black-full curve with n∕n
f
= 1.00001 near 

weak coupling and the black-dashed curve with n∕n
f
= 2 interme-

diate coupling. For the 0%–100% case using (18) gray-full curve 
with n∕n

f
= 0.99999 and gray-dashed curve with n∕n

f
= 0.999 

each compared with HTSC data and BCS (dotted-gray) curve is 
included for comparison purposes only. Finally, near weak-coupling 
regime the 3D case is far from data trends
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the 50%–50% mixture of 2eCPs/2hCPs, i.e., n0(T ) = m0(T ) 
and n

B+(T ) = m
B+(T ) implying that n

s
(T ) = 0 ; this result 

drastically contrasts with the results of the energy gap 
or the critical temperature [42]. This result is quite dif-
ferent, even for the BCS-theory superfluid density it 
was assumed to be a symmetrical distribution between 
2eCPs and 2hCPs, this symmetry remains unclear in their 
superfluid density. Furthermore, in the London penetra-
tion depth related with superconductor density there is 
no mention on what kind of charge carriers are involved, 
even as it’s supposed to be negative charge carriers, i.e., 
electrons. We have considered this kind of symmetry and 
obtained good results [57]. Thus, in definitions given in 
(17) and (18) there are two kinds of specific contributions 
of condensed 2eCPs/2hCPs as well as excited 2e/2hCPs. 
The main advantage of the extended crossover theory 
seems to be the explicit inclusion of 2hCPs. This addi-
tion of 2hCPs might be interpreted as doping since the 
number density has been increased.

Two independent groups, Uemura et al. [32, 33] and 
Božović et  al. [34], have found that the critical tem-
perature T

c
 has a linear relationship with the superfluid 

density, rather than with the coupling strength as com-
monly held. This is illustrated in Fig. 1b showing T

c
 vs 

superfluid density of 2eCPs after using (17) for 100%–0% 
cases. It’s worth mentioning here that the 0%–100% case 
enhanced T

c
 s with relatively low SFDs. Also, one sees that 

in the range of intermediate- to strong-coupling regime 
clearly showing that regardless of the pair-coupling 
strength the linear relationship between superfluid den-
sity and T

c
 can, in fact, be explained by an increase of the 

number of 2eCPs as many have long claimed, at least in 
2D, and also with the explicitly inclusion of excited 2hCPs.

5 � Conclusions

The superfluid density n
s
(T ) was calculated with the 

extended-crossover theory from the GBEC theory. In 
the weak-coupling regime, in 3D n

s
(T = 0) agrees with 

the Uemura et al. [32] data for the elemental SCs like 
Zn, Al, Sn and Nb. However, the quadratic energy-dis-
persion relation in 3D gives a better approach to the 
superfluid density reported, at least for the elemental 
SCs since here can be addressed with a BF gas mixture 
in 3D. Regarding all of this, there are at least five ther-
modynamic scenarios, e.g., see Ref. [57], which show 
that a lack of 2hCPs decreases the energy-gap size 
and also that of the gap-to-T

c
 ratio from well-known 

data, leading one to conclude unequivocally that con-
densed 2hCPs are indeed indispensable to correctly 
describe SCs. However, in the strong-coupling regime 

n
s
(T ) for ultracold-bosonic-atomic clouds of, e.g., 4

2
He, 

in the 100%–0% case [i.e., with m0(T ) = m
B+(T ) = 0 and 

n∕n
f
≃ 106 ] agrees remarkably well with the data, indi-

cating that condensed ultracold bosonic gases behave 
like ordinary BE condensates. Also, the superfluid density 
n
s
(0)∕n in strong coupling is seen to have a linear behav-

ior with T
c
 just as Božović et al. [34] found. Hence, HTSC 

data can be described reasonably well with a BF mixture 
using the 100%–0% and the 0%–100% cases between 
weak- and strong-coupling in 2D by changing the num-
ber density of the unbound fermions.

Future work will focus on n
s
(T ) using the 0%–100% case 

for some other HTSCs and for ultracold-fermionic-atomic 
clouds [66, 67] including BF gas mixtures like 4

2
 He / 3

2
 He and 

also with the critical magnetic field H2
c
(T , n)∕8� of the super-

fluid density from the extended-crossover theory. Also, the 
dimensionless number density that we used since a cou-
pling parameter has been changed slightly and is not big 
enough to note any singular phenomena. This will be dealt 
with in another paper. However, it seems to us necessary to 
address the electronic structure in this BF theory; this might 
improve the results shown here. The electronic structure 
study will be discussed elsewhere as part of future work.
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