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Abstract
By using a Ginzburg–Landau functional in the Gaussian approximation, we calculate the energy of superconducting 
fluctuations above the transition, at zero external magnetic field, of a system composed by a small number N of parallel 
two-dimensional superconducting planes, each of them Josephson coupled to its first neighbour, with special focus in 
the N = 2 and 3 cases. This allows us to obtain expressions for the critical contributions to various observables (fluctuation 
specific heat and magnetic susceptibility and Aslamazov–Larkin paraconductivity). Our results suggest that these systems 
may display deviations from pure 2D behaviour and interesting crossover effects, with both similitudes and differences 
to those known to occur in infinite-layers superconductors. Some challenges for future related research are also outlined.
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Article Highlights

•	 We study superconductors composed of a few paral-
lel layers, in the Gaussian-Ginzburg-Landau approach 
above their critical temperature.

•	 We calculate the heat capacity, susceptibility and 
conductivity induced by critical thermal fluctuations, 
mainly for bi- and tri-layers.

•	 We obtain dimensional crossovers in the critical behav-
iors and compare them with the ones in infinite-layers 
superconductors.

Keywords  Superconductivity in nanosystems · Critical phenomena in superconductors · Twodimensional materials · 
Lawrence–Doniach models

1  Introduction

The different interplays between reduced dimensional-
ity and superconducting properties is a research sub-
ject of increasing activity, fostered by the novel posi-
bilities for fabricating nanosized and/or nanostructured 

superconductors [1–4]. Also by the fact that both Cu- and 
Fe-based high-temperature superconductors are layered 
materials that may be modelled as stacks of parallel 2D 
layers [5, 6]. One of the notable effects of low dimen-
sionality is the enhancement of the critical fluctuations 
near the superconducting transition temperature Tc 
[6, 7]. For instance, it is well known that in 2D films the 
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superconducting fluctuation-induced contributions to 
various experimental observables above but near Tc are 
well larger than in 3D bulks. Not only the amplitude, but 
also the critical exponent is affected [6, 7]. For instance, in 
low-Tc superconductors the fluctuation contribution above 
Tc to the heat capacity, c f l , has in 3D bulks critical exponent 
x = 1∕2 [i.e., c f l ∝ �−1∕2 with � = ln(T∕Tc) ] and in most 
cases unobservable amplitude [6, 7], while in 2D films the 
amplitude is well measurable and the critical exponent is 
x = 1 [6, 7]. (For T < Tc , fluctuations are also observable 
in 2D but display the more complex vortex-antivortex 
phenomenology famously predicted by Kosterlitz and 
Thouless [8, 9]). Reduced dimensionality also changes 
the fluctuation contributions to other observables such 
as magnetic susceptibility, electrical conductivity, etc. [6].

Some of the richer phenomenologies for the interrela-
tions between low dimensionality and critical fluctuations 
are provided by layered superconductors. These may be 
modelled using the Lawrence–Doniach (LD) functional 
[10], i.e., the Ginzburg–Landau (GL) free energy for a super-
conductor composed of an infinite (macroscopic) number 
of parallel planes, each of them Josephson-coupled with 
its adjacent neighbour. Panel (a) of Fig. 1 schematizes such 
superconductors. By introducing small (Gaussian) excita-
tions, it is possible to calculate expressions for the critical 
fluctuations above Tc [10] that are in good agreement with 
measurements in various macroscopic layered materials, 
including for instance the Cu-and Fe-based high-Tc super-
conductors [11–13]. The basic prediction of this LD mod-
elization for the fluctuation-induced heat capacity above 

Tc under zero external magnetic field c f l may be written 
as [6, 10, 14, 15]:

where ATF = kB∕[4��
2
ab
(0)s] is the Thouless-Ferrell ampli-

tude [16, 17], BLD = [2�c(0)∕s]
2 is the LD parameter [6, 10, 

14, 15], s is the inter-layer distance and �ab(0) and �c(0) are 
the GL amplitudes of the coherence length in the in-plane 
and out-of-plane directions. The latter is given in terms 

(1)c f l =
ATF

�

(
1 +

BLD

�

)−1∕2

,

(a) (b)

(c)

Fig. 1   Panel  a Schematic representation of a Lawrence–Doniach 
(LD) or infinite-layer ( N → ∞ ) superconductor, with single inter-
layer distances and Josephson couplings between adjacent layers. 
Panel  b Schematic representation of a two-layer superconductor 
( N = 2 , see Sects. 2.2 and 4). Panel c Schematic representation of a 
three-layer superconductor ( N = 3 ; see Sect. 2.3, and also Sect. 5 for 
the �

1
= �

2
 case or Sect. 6 for 𝛾

1
> 𝛾

2
 ). In (b, c), each layer j may have 

a different Tcj or a common one; our discussions in Sect.s 4–6 focus 
in the latter case

Fig. 2   Fluctuation specific heat c f l from the well-known GGL-LD 
predictions for superconductors composed of an infinite number of 
parallel 2D planes, as a function of the reduced temperature � and 
for different values of the Josephson-coupling constant � between 
adjacent layers. (As a reference, for optimally-doped cuprates of the 
YBaCuO family values � ≃ 0.001 ∼ 0.1 are usually proposed [11–
13]). The c f l is given in arbitrary units, and is proportional to the 
also observables −� f l∕T  and � f lAL (see main text for details). The 
figure illustrates that when 𝜀 ≪ 𝛾 the c f l behaves as in a 3D system 
(somewhat decreased amplitude and log-log slope − 1∕2 ) while if 
𝜀 ≫ 𝛾 it displays a 2D behaviour (log-log slope − 1 ). See also Fig. 3

Fig. 3   Critical exponent x of c f l (and of −� f l∕T  and � f lAL ) resulting 
from the GGL-LD calculations for infinite-layers superconductors, as 
a function of the reduced temperature � for different values of the 
Josephson coupling � . The figure illustrates the crossover from the 
3D value ( x = 1∕2 ) to the 2D one ( x = 1 ) as � evolves from 𝜀 ≪ 𝛾 
to 𝜀 ≫ 𝛾 , ant that the dimensional corossover occurrs around 
�crossover ≃ 4�
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of the Josephson coupling constant between adjacent 
planes, � , as �c(0) = s

√
�  [6, 10]. A representation of the 

resulting c f l is given in Fig. 2. We also plot, in Fig. 3, the 
corresponding critical exponent (calculated from the log-
log slope of the c f l-vs-� curve) showing that it crosses over 
the 2D ( x = 1 ) and 3D ( x = 1∕2 ) values as � decreases and 
Tc is approached [and as the inter-plane correlation grows 
by �c(�) = �c(0)�

−1∕2 ; note that the crossover is located at 
around �crossover ≃ BLD = 4�.]

The LD calculations have been generalized by vari-
ous authors to a number of different cases, including for 
instance non-Gaussian fluctuations [18, 19], inclusion of 
high-temperature effects [19–22], or also considering an 
infinite amount of layers but with two alternating inter-
layer Josephson couplings �1 and �2 [6, 23, 24].

However, to our knowledge the critical fluctuations 
in superconductors composed of only a few layers [see 
Fig. 1b, c] have not been calculated yet, even in the rela-
tively simple Gaussian–Ginzburg–Landau (GGL) approxi-
mation above Tc . This will be the main purpose of the 
present work, with a focus on identifying possible dimen-
sional crossover effects due to the Josephson couplings.

Let us note that a topic with some mathematical resem-
blance may be multi-band superconductors (with each 
band corresponding to the gap in different sheets of the 
Fermi surface) when Josephson-like expresions are chosen 
for the interband coupling. This case was considered in 
terms of fluctuations, e.g., in  [25]. However, this is a differ-
ent physical problem in various respects, the main ones 
being that such couplings do not introduce dimensional 
crossovers [25] (consequently with the fact that they do 
not correspond to spatial variations of the gaps) and that 
the interband interactions change Tc differently to the few-
layer case [26–28].

In the present Topical Collection Article, we consider a 
GL functional of such a few-layer system and calculate the 
effects of critical fluctuations near but above the critical 
temperature, in the GGL approximation, for some of the 
main observables in the zero-external magnetic field limit 
(fluctuation heat capacity, magnetic suscetibility and elec-
trical conductivity). We find explicit expression for various 
cases, and physically discuss the dimensional crossover 
effects induced by the inter-layer Josephson couplings 
in such geometries, focusing mainly in the two-layer and 
three-layer cases. Our results suggest that the finite-layer 
superconductors have the capability to display dimen-
sional crossover effects quite comparable, in the variety 
of its phenomenology, to those in the LD model for infi-
nite-layers superconductors. This includes, for instance, 
deviations from the 2D values of the critical exponents or 
crossovers of the amplitudes of the fluctuations when � , 
and hence T∕Tc , varies.

We organize this Topical Collection Article as follows: 
In Sect. 2 we write our basic equations and calculate the 
GGL fluctuation spectra. In Sect. 3 we write the resulting 
fluctuation contributions to three observables (the fluc-
tuation specific heat, c f l , the fluctuation-induced magnetic 
susceptibility, � f l , and the Aslamazov–Larkin electrical par-
aconductivity � f lAL ); we also write expressions for their 
corresponding critical exponents, x, and amplitudes, the 
latter through a so-called effective number of independ-
ent fluctuating planes Ne that will be helpful for the inter-
pretation of the results. In Sect. 4 we discuss these results 
for two-layer superconductors in terms of their x and Ne 
crossovers as � varies, for different Josephson couplings. In 
Sects. 5 and 6 we discuss the three-layer superconductors, 
for different values of the Josephson couplings and their 
ratio. In Sect. 7 we summarize our conclusions and briefly 
comment on some of the difficulties and challenges for 
further reseach in this topic.

2 � Basic expressions for the Gaussian–
Ginzburg–Landau fluctuations 
above Tc in two‑layer and three‑layer 
superconductors

2.1 � GL functional

As starting point, let us model a superconductor com-
posed by a (small) number N of parallel superconducting 
planes, each of them Josephson-coupled to its adjacent 
neighbour, by writing its Ginzburg–Landau (GL) functional 
as composed of the sum of free energies intrinsic to each 
j = 1,…N plane, plus interactions between each j and 
j + 1 planes:

with

where �j are the GL wavefunctions of each plane, r = (x, y) 
are the in-plane coordinates, and a0 , b and �ab(0) are the GL 
constants and the in-plane coherence length amplitude. 
Also, �j is the reduced temperature of each plane:

where Tcj is its intrinsic critical temperature. In these initial 
equations we consider the general case in which Tcj and 
�j may be different in each plane, but let us note already 

(2)ΔF =

N∑
j=1

ΔF intr
j

+

N−1∑
j=1

ΔF inter
j,j+1

,

(3)

ΔF intr
j

= a0 ∫ d
2
r

{
�j|�j|2 + b

2a0
|�j|4 + �

2
ab
(0)|∇xy�j|2

}
,

(4)�j = ln
(
T∕Tcj

)
≃ (T − Tcj)∕Tcj ,
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here that many of our discussions in the present Topical 
Collection Article will focus, for concreteness, in the case 
in which all critical temperatures coincide ( Tcj = Tc , and 
hence also �j = � , for all j). We also emphasize that we used 
the same �ab(0) for all the planes, which is probably a fair 
approximation if all of them are of the same material. Let 
us note that for most superconductors eventual variations 
of �ab(0) are linked to variations of Tc of greater extent, so 
that we expect that any eventual effects due to �ab(0) vari-
ations between layers are expected to be smaller than the 
corresponding effects due to different Tcj .

For the inter-plane interaction term between planes j 
and j + 1 we employ (as is also done by the usual LD func-
tional for infinite-layers superconductors):

where �j is a Josephson coupling constant between the 
planes j and j + 1 . Note that in the limit N → ∞ our func-
tional given by Eqs. 2 to 5 simply recovers the usual LD 
functional for infinite-layers superconductors [10, 29]. 
Note also that we assumed, in Eqs. 3 and 5, zero exter-
nal magnetic field and negligible effects of the potential 
vector gauge field (the latter would be important for the 
Kosterlitz-Thouless fluctuations below Tc ). This is because 
we focus in this paper on H = 0 and for temperatures suf-
ficiently above Tc as to be in the Gaussian–Ginzburg–Lan-
dau (GGL) region of the fluctuations. In that region, the 
|�|4 term in Eq. 3 may be neglected and independent 
fluctuation modes, and their corresponding free energy, 
are searched. In the rest of this Topical Collection Article 
we proceed with that program for N = 2 and 3, and discuss 
the results.

2.2 � GGL fluctuation modes for N = 2

In the N = 2 case, we have two (potentially different) intrin-
sic Tc’s, and hence two reduced temperatures �1 and �2 , and 
only one interlayer Josephson coupling constant �1 = � . 
When considering this N = 2 case, the Eqs. 2 to 5 in the 
GGL approximation above Tc may be rewritten in explicit 
matrix form as:

where Ω is an interlayer contribution so that the total GL 
functional is:

(5)ΔF inter
j,j+1

= a0 ∫ d
2
r
{
�j |�j − �j+1|2

}
,

(6)Ω(�1,�2) =
(
�∗
1
�∗
2

)( �1 + � − �

−� �2 + �

)(
�1

�2

)
,

(7)

ΔF = a0
∑

�=Re,Im
∫ d

2
r

{
�
2
ab
(0)

∑
j=1,2

|∇xy�
�

j
|2 + Ω(��

1
,��

2
)

}
.

In this expression it has been convenient to separate the 
wavefunctions into their real and imaginary parts, labeled 
by the index � . Note that Eq. 7 can be also written in kxy
-Fourier space as:

We now diagonalize the 2 × 2 matrix in Eq. 6. This leads to

with

The f1,2 themselves are linear combinations of �1,2 that in 
this small-N case may be expressed in a relatively compact 
form:

Note that in the limit of zero Josephson interplane cou-
pling these quotients become simpler: In particular, for 
� → 0 it is f1 → �1 and f2 → �2 when 𝜀2 > 𝜀1 , or f1 → �2 
and f2 → −�1 when 𝜀1 > 𝜀2 (see next paragraph for the 
case �1 = �2 ; we used l’Hôpital’s rule for the simultane-
ous zeroes in the numerator and denominator of Eqs. 12 
and 13).

2.2.1 � The case N = 2 with T
c1
= T

c2
(= T

c
)

Let us here consider N = 2 but with all the planes having 
the same critical temperature, and hence also �1 = �2 = � . 
In that case, the inter-layer GGL energy eigenvalues �1 and 
�2 become:

and the f1 , f2 eigenwavefunctions are:

(8)ΔF ∝
∑

�=Re,Im
∫ d kx d ky

{
�
2

ab
(0)k2xy

∑
j=1,2

||||�
�

jkxy

||||
2

+ Ω(��

1kxy
,��

2kxy
)

}
.

(9)Ω(�1,�2) =
(
f ∗
1
f ∗
2

)(�1 0

0 �2

)(
f1
f2

)
,

(10)�1 =
1

2

[
�1 + �2 + 2� −

√
(�1 − �2)

2 + 4�2

]
,

(11)�2 =
1

2

[
�1 + �2 + 2� +

√
(�1 − �2)

2 + 4�2

]
.

(12)f1 =

(
�2 − �1 − �

)
�1 + ��2√(

�2 − �1 − �
)2

+ �2

,

(13)f2 =

(
�1 − �1 − �

)
�1 + ��2√(

�1 − �1 − �
)2

+ �2

,

(14)�1 = �,

(15)�2 = � + 2� ,
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2.3 � GGL fluctuation modes for N = 3

For N = 3 , the matrix form of Ω becomes:

Diagonalizing this matrix is possible with the use of Carda-
no’s formulas for the roots of third order polynomials. The 
expression of the corresponding eigenvalues �1 to �3 are 
considerably long and therefore we devote Appendix 1 
to write them. In the next subsection, we consider a more 
manegeable case.

2.3.1 � The case N = 3 with T
c1
= T

c2
= T

c3
(= T

c
)

Fortunately, the cumbersome general N = 3 expressions 
for �1,2,3 dramatically collapse in size when considering the 
case in which all the planes share the same critical temper-
ature. In this case, the inter-layer GGL energy eigenvalues 
simply become:

where again � = �1 = �2 = �3.

2.4 � The quantity 
∑N

j=1
!

−1
j

From such � eigenvalues of the GGL functional, in princi-
ple most fluctuation-induced observables quantities may 
be obtained. In this regard, of particular significance will 
be the quantity 

∑
�−1
j

 because it will be proportional, in 
the GGL approach above Tc , to the fluctuation-induced 
heat capacity c f l (see next Section; it will be also propor-
tional to −� f l∕T  and � f lAL ) [6, 23].

In the N = 2 case with a single Tc , this quantity becomes:

In the N = 3 case with a single Tc , it becomes:

(16)f1 = (�1 + �2)∕
√
2,

(17)f2 = (�2 − �1)∕
√
2.

(18)

Ω(�1,�2,�3) =
�
�∗
1

�∗
2

�∗
3

�⎛⎜⎜⎜⎝

�1 + �1 − �1 0

−�1 �2 + �1 + �2 − �2

0 − �2 �3 + �2

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

�1

�2

�3

⎞⎟⎟⎟⎠
.

(19)�1 = �,

(20)�2 = � + �1 + �2 −

√
�2
1
− �1�2 + �2

2
,

(21)�3 = � + �1 + �2 +

√
�2
1
− �1�2 + �2

2
,

(22)
2∑
j=1

�
−1
j

=
1

�

2� + 2�

� + 2�
.

3 � Fluctuation‑induced heat capacity, 
magnetic susceptibility and AL 
paraconductivity

3.1 � Expressions for c f l , � f l and � f lAL

From the GGL free energy written in terms of independent 
modes, it is possible to calculate its thermal statistical aver-
ages and then the fluctuation-induced contributions to 
various observables. In particular, for the basic averages of 
the independent  modes,  as  expec ted i t  i s 
⟨�f �

jkxy
�2⟩ ∝ kBT∕[�

2
ab
(0)k2

xy
+ �j] , where not only the inter-

plane contribution appears but also the in-plane kinetic 
energy term.1 This is very similar to the case in the LD 
model, except for the substitution of the LD spectrum 
�LD
kz

= 2�(1 − cos kzs) by our �j . Therefore it is easy to 
adapt to our case well-known LD calculations for the 
superconducting fluctuation contributions to various 
observables. In particular, for the following ones (always 
considered above Tc and in the limit of zero external mag-
netic field):

For the fluctuation-induced specific heat, c f l (see, e.g., 
[6, 23] for a parallel calculation in the LD case):

where Lz is the thickness of the N-layer system.
For the fluctuation-induced magnetic susceptibility, � f l , 

with the magnetic field perpendicular to the layers and 
always in the weak magnetic field limit (see, e.g., [6] for a 
similar calculations in the LD case):

For the in-plane electrical conductivity, we also calculated 
(adapting the procedures of [6, 7, 23]) the direct fluctua-
tion contribution (also known as Aslamazov–Larkin para-
conductivity � f lAL ), that is the dominant contribution to 
the experimental �f l at least in high-temperature cuprates 
[11–13]:2

(23)
3∑
j=1

�
−1
j

=
1

�

3�2 + 3�1�2 + 4�(�1 + �2)

�2 + 3�1�2 + 2�(�1 + �2)
.

(24)c f l =
kB

4��2
ab
(0)Lz

N∑
j=1

�
−1
j
,

(25)
−� f l

T
=

�0�kB�
2
ab
(0)

3�2
0
Lz

N∑
j=1

�
−1
j
.

1  In our expressions kB,�0
,�

0
, e and ℏ are the usual universal physi-

cal constants.
2  For � f lAL , we are assuming a sample with enough distance 
between electrical contacts for the inter-plane resistance to be well 
smaller than the in-plane one, so that all layers must be averaged in 
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When combined with our explicit formulae for the quan-
tity 

∑
�−1
j

 for N = 2 and N = 3 (Eqs. 22 and 23), the above 
expressions for c f l , � f l and � f lAL become also explicit.

3.2 � Critical exponents

In order to physically discuss the above results for c f l , � f l 
and � f lAL , a first quantity of interest will be the critical 
exponent, defined from the log-log slope of the plot of 
the fluctuation heat capacity versus reduced-temperature:

Note that the same critical exponent is going to be shared 
with −� f l∕T  and � f lAL . Note also that in the 2D limit it 
is c f l ∝ �−1 and therefore x = 1 (while for 3D bulks it is 
x = 1∕2).

When applied to the Eqs. 22 to  24 obtained in the pre-
vious sections, Eq. 27 leads to the following result for the 
N = 2 case:

and for the N = 3 case:

Both of these expressions saturate to the pure 2D value 
x = 1 in the limit of zero Josephson coupling between 
planes ( �j → 0 ), as it could be expected.

3.3 � Effective number of independently fluctuating 
planes

We also introduce now a second relevant quantity, inform-
ing about the amplitude of the fluctuactions. We shall call 
this the “effective number of independently fluctuating 
superconducting planes”, Ne , and we define it as

In other words, this quantity is the increment of the fluctu-
actions with respect to the value expected for a N = 1 2D 

(26)� f lAL =
e2

16ℏLz

N∑
j=1

�
−1
j
.

(27)x = −
� ln c f l

� ln �
.

(28)x =
�2 + 2�� + 2�2

(� + �) (� + 2�)
,

(29)x =
3�4 + 8(�1 + �2)�

3 + 8(�1 + �2)
2�2 + 12�1�2(�1 + �2)� + 9�2

1
�2
2[

�2 + 3�1�2 + 2�(�1 + �2)
] [

3�2 + 3�1�2 + 4�(�1 + �2)
] .

(30)Ne =
c f l

c f l
N=1

=
�f l

�N=1
f l

=
�f lAL

�N=1
f lAL

.

layer (with the same Lz ). A value Ne = 1 would indicate all 
of the N planes are fluctuating together as a single plane, 
and is expected to correspond at least to the limit � → ∞ 
(strong inter-plane correlation). In contrast, a value Ne = N 
is expected to be recovered at least in the limit � → 0 (no 
inter-plane correlations, each plane fluctuates indepen-
dently of the other).

4 � Discussion of the results for two‑layer 
superconductors

Let us now present a more physical discussion of the con-
sequences of the expressions obtained up to now, starting 
here with the simpler N = 2 case (we defer N = 3 to the 
Sects. 5 and 6).

We first note that in this N = 2 case the interlayer fluc-
tuation energy is split into two contributions, the ones of 
Eqs. 14 and 15, what may be understood as one half of the 
fluctuation modes having the same energy as in a regular 
2D layer, and the other half having the fluctuation energy 
of a 2D layer but with an “effective” reduced temperature 
� + 2� [or with effective critical temperature Tc∕ exp (2�) ]. 
Logically, the total fluctuation superfluid density accumu-
lates both contributions, and so does c f lN=2 (via the quan-
tity 

∑
�−1
j

).
In the case � = 0 (no interlayer interactions) both inde-

pendent modes behave with the same effective critical 
temperature. In that case, as it could be expected the criti-
cal exponent is the 2D value, x = 1 , and the effective num-
ber of independently fluctuating planes becomes Ne = 2:

In the case with � → ∞ we expect however the two planes 
acting as a single one, and in fact in that limit we get:

Note that the limit � → ∞ has the physical meaning that 
any variation of the superconducting wave function 
between adjacent layers would be energetically prohibi-
tive, so that the only physically relevant situation in the 
statistical averages would be having the two layers act-
ing as a single one - what directly should imply x = 1 and 
Ne = 1 , as the above equations confirm. (These equations 
can be also understood by considering that if � → ∞ the f2 
fluctuating mode becomes too difficult to excite and does 
not contribute to c f l).

(31)Ne(� = 0) = 2,

(32)x(� = 0) = 1.

(33)Ne(� → ∞) = 1,

(34)x(� → ∞) = 1.

Footnote 2 (continued)

the conduction. This is generally the case expected in experiments 
with real few-layer films.
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Between these two pure 2D limits ( x = 1 with either 
Ne = 1 or 2) intermediate cases must appear, in which 
the inter-plane correlations will result in deviations of 
the critical exponent from the 2D value, x ≠ 1 . Also, Ne 
must undergo a crossover between Ne = 2 and Ne = 1 as � 
evolves from 0 to ∞ . This is represented in Figs. 4, 5 and 6. 
In particular, Fig. 6 plots NN=2

e
 versus � for different values of 

the inter-layer coupling � . For � → ∞ and � = 0 , the limit-
ing values 1 and 2 are obtained, as commented before. For 
intermediate � values, also Ne → 1 if � → 0 . This agrees with 
the fact that when � → 0 both planes are expected to be 
strongly correlated due to the growth (and divergence at 
T = Tc ) of the coherence length between them (that may 
be estimated as �c(�) = �c(0)∕

√
� with �c(0) = Lz∕

√
�  , in 

analogy to the usual LD model for infinite-layers supercon-
ductors). In contrast, as � → ∞ and �c(�) → 0 both planes 
will become progressively independent and Ne = N ( = 2 
in this case), as confirmed by Fig. 6. A rough estimate of 
the midpoint of this Ne crossover may be obtained from 
�c(�) ∼ Lz , again in analogy to what occurs in the LD 
model. This leads to �crossover ∼ � , in good agreement with 
Fig. 5.

In Fig. 5, it may be observed a phenomenology for the 
critical exponent x that is consequent with the above con-
siderations. In particular, for both � = 0 and � → ∞ a pure 
2D value x = 1 is obtained (irrespectively of Ne = 1 or 2 the 
system behaves as a planar one). This pure 2D exponent 
is also obtained for intermediate values of � when either 
� → 0 or � → ∞ , corresponding to the fact that also Ne → 1 
or 2. But when both � and � have intermediate values, a 
deviation from the pure 2D behaviour appears, indicat-
ing precursor correlations in the third dimension. Then, 
x becomes intermediate between the 2D and 3D values 
( x = 1 and 1/2). In fact, the minimum of x(�) , calculable by 
�x∕�� = 0 , just happens at �crossover =

√
2 � , correspond-

ing to x ≈ 0.83 , which is similar to what was estimated 
above for the Ne crossover. Therefore, we conclude that 
this N = 2 finite layer case has a capability of displaying 
intermediate-dimensionality crossover not very far from 
what happens in the infinite-layers case, although without 
the capability of reaching the 3D limit.

5 � Discussion of the results for three‑layer 
superconductors with 


1
= 


2
(= 
)

We now explore the physical consequences of the expres-
sions obtained for the N = 3 case. For concreteness, we 
first consider the case in which �1 and �2 take a common 
value � (in the Sect. 6 we shall consider the �1 ≠ �2 case). 
As in the N = 2 case, the relevant quantities will be c f l , Ne 
and x.

Fig. 4   Fluctuation specific heat c f l from our expressions for two-
layer superconductors, as a function of the reduced temperature 
� and for different values of the Josephson coupling � . The c f l is 
given in arbitrary units (and is proportional to the also observables 
−� f l∕T  and � f lAL ). See also Figs. 5 and 6 for an interpretation of the 
results

Fig. 5   Critical exponent x of c f l (and of −� f l∕T  and � f lAL ) for two-
layer superconductors, as a function of � and for different � . The 
figure illustrates deviations from the 2D value ( x = 1 ) when � and 
� take comparable values, which may be further understood when 
contrasted with the Ne evolution in Fig. 6

Fig. 6   Effective number of independent fluctuating planes, Ne , for 
two-layer superconductors, as a function of � and for different � . 
The figure illustrates crossovers between the Ne = 1 and 2 values 
as � and � vary, and with them the corresponding inter-plane cor-
relations. These crossovers may be correlated with the evolutions of 
the critical exponent x in Fig. 5
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First of all, note that when � = 0 we obtain the expected 
2D result ( x = 1 ), with Ne = 3 as also expected (each plane 
behaves independently and acts twodimensionally):

The equations also reproduce the expected result for the 
opposite limit � → ∞ , in which the three planes should act 
as a single one. In that case, the equations produce x = 1 
and Ne = 1 as it corresponds to that physical situation:

(35)Ne(�1 = �2 = 0) = 3,

(36)x(�1 = �2 = 0) = 1.

(37)Ne(�1 = �2 → ∞) = 1,

(38)x(�1 = �2 → ∞) = 1.

Between these two pure 2D limits, intermediate-dimen-
sionality cases must appear for intermediate values of � . 
This is represented in Figs. 7, 8 and 9. In Fig. 9, Ne is plot-
ted versus � for different values of � . As expected, there 
is a crossover as � increases from Ne = 1 up to Ne = 3 . The 
crossover temperature increases as � decreases (and for 
� = 0 or � → ∞ the crossover is outside of the experimen-
tal window). In Fig. 8 the critical exponent x is plotted 
versus reduced temperature. Again, the x(�) behaviour 
is correlated with the evolution of Ne : When Ne = 1 or 3, 
x takes the 2D value x = 1 , and when Ne is crossing over 
those values the system develops a non-2D critical expo-
nent (becoming closer to the 3D value the further away Ne 
is from its limiting values 1 or 3).

6 � Discussion of the results for three‑layer 
superconductors with 


1
> 


2

We now explore the case N = 3 with significantly different 
interlayer Josephson couplings �1 and �2 . For concreteness, 
we take 𝛾1∕𝛾2 > 1 (but note that the equations are sym-
metrical to interchanges of �1 and �2).

Figures 10, 11 and 12 [panels (a) for �1∕�2 = 100 and 
panels (b) for �1∕�2 = 1000 ] display the c f l , x and Ne ver-
sus reduced temperature obtained for N = 3 and different 
values of �2.

As it happened in the previous Section, for �2 = 0 and 
�2 → ∞ two different 2D limit cases are obtained, with 
x = 1 and Ne = N = 3 for �2 = 0 , and with x = 1 and Ne = 1 
for �1 → ∞.

Intermediate dimensionality behaviour appears for 
intermediate values of �2 (and hence �1 ), in which x may 
develop deviations from the 2D value simultaneously 

Fig. 7   Fluctuation specific heat c f l from our expressions for 
three-layer superconductors with a single Josephson coupling, 
� = �

1
= �

2
 , as a function of the reduced temperature � and for dif-

ferent � . The c f l is given in arbitrary units (and is proportional to the 
also observables −� f l∕T  and � f lAL ). See also Figs.  8 and 9 for an 
interpretation of the results

Fig. 8   Critical exponent x of c f l (and of −� f l∕T  and � f lAL ) for 
three-layer superconductors with a single Josephson coupling, 
� = �

1
= �

2
 , as a function of � and for different � . The figure illus-

trates deviations from the 2D value ( x = 1 ) when � and � take com-
parable values, which may be further understood when contrasted 
with the Ne evolution in Fig. 9

Fig. 9   Effective number of independent fluctuating planes, Ne , for 
three-layer superconductors with a single Josephson coupling, 
� = �

1
= �

2
 , as a function of � and for different � . The figure illus-

trates crossovers between the Ne = 1 and 3 values (with no plateau 
at Ne ≃ 2 ) as � and � vary (and with them the corresponding inter-
plane correlations) correlated with the evolutions of the critical 
exponent x in Fig. 8
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to deviations of Ne from its saturation values 1 or 3. But 
an interesting additional feature may appear at certain 
reduced temperatures, in which Ne plateaus at Ne = 2 . This 
must correspond to the case in which two of the layers 
have already saturated their mutual correlation, while the 
third still develops fluctuations not locked to the ones of 

the other layers. This feature may be seen in our Figs. 10, 11 
and 12, mainly in those corresponding to �1∕�2 = 1000 [i.e., 
panels (b)], while for the lower �1∕�2 = 100 the Ne plateau 
is well smaller. The resulting evolution of x(�) becomes 
then of non-trivial aspect (also for �1∕�2 = 100 ), though it 
may be understood as a double valey of deepness tracking 

Fig. 10   Panel a Fluctuation 
specific heat c f l from our 
expressions for three-layer 
superconductors with dif-
ferent Josephson couplings 
�
1
∕�

2
= 100 , as a function of 

the reduced temperature � 
and for different values of �

2
 . 

Panel b Same for an increased 
�
1
∕�

2
= 1000 . See also Figs. 11 

and 12 for an interpretation of 
the results

Fig. 11   Panel a Critical exponent x of c f l for three-layer supercon-
ductors with �

1
∕�

2
= 100 , as a function of � and for different �

2
 . 

The figure hints at double-featured deviations from the 2D value 
( x = 1 ) which may be correlated with the Ne changes (and pla-

teaus) in Fig. 12 (see also main text). Panel b Same for an increased 
�
1
∕�

2
= 1000 , illustrating a softening (rather than a displacement) 

of the x ≠ 1 features

Fig. 12   Panel a Effective number of independent fluctuating 
planes, Ne , for three-layer superconductors with �

1
∕�

2
= 100 , as 

a function of � and for different �
2
 . The figure illustrates not only a 

crossover between Ne = 1 and 3, but also a small plateau around 

Ne ≃ 2 . Panel b Same for �
1
∕�

2
= 1000 , demonstrating an enlarge-

ment of the plateau around Ne ≃ 2 (correlated to the softening of 
the x ≠ 1 features in Fig. 11)
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the slope of Ne(�) . We conclude therefore that this N = 3 
case not only is able to display intermediate dimensional-
ity behaviour in comparable significance to the infinite-
layers case, but also that this case is to some extent able 
to display richer phenomenology (multiple crossovers) in 
spite of never reaching true 3D ( x = 1∕2 ) behaviour.

7 � Conclusions and some remaining 
challenges

In conclusion, we have considered a GL functional of a 
few-layer superconductor (mainly two- and tree-layer) 
and calculated the effects of critical fluctuations above the 
critical temperature, in the GGL approximation, for some 
of the main observables in the zero-external magnetic 
field limit (fluctuation heat capacity, magnetic suscetibil-
ity and electrical conductivity). The resulting expressions 
suggest the capability of these systems to display crosso-
ver effects on the critical exponents and amplitudes, with 
similitudes and differences with respect to those predicted 
by the Lawrence–Doniach (LD) model for infinite-layers 
superconductors. For instance, in the bi-layer ( N = 2 ) case 
the critical exponent develops deviations from the pure 
2D value as the temperature approaches Tc (as in the LD 
model) but, instead of crossing over from the 2D to the 3D 
values (see Fig. 3), it undergoes a different evolution (see 
Fig. 5) of critical spatial dimensionality (2D - intermediate 
dimensionality - 2D), including two 2D regimes with differ-
ent effective number of independently fluctuating planes 
(see Fig. 6). Also, for N = 3 the evolution of the critical 
exponent displays a similar frustrated change of dimen-
sionality plus an evolution of the number of independent 
layers from Ne = 1 to Ne = 3.

Let us finally briefly comment on some of the expected 
challenges and difficulties on further studying these 
potentially interesting superconducting fluctuations of 
few-layer systems. First, in spite of sample availability now 
being far easier than in the past [1–4], the specimens are 
bound to be small in volume; this could make measure-
ments of the heat capacity challenging, probably favour-
ing magnetic screening or electrical measurements (and 
hence � and/or � ). Smallness also makes boundary con-
ditions more important, and while for negligible external 
magnetic fields and above the transition (the case studied 
in this Topical Collection Article) a change in the value of 
Tc may be expected to roughly summarize most of these 
boundary effects, for other situations involving well-
developed vortices (sizeable magnetic fields, temperatures 
below the transtion, etc.) the constraints imposed by the 

substrate of the sample will have to be taken into account, 
both experimentally and theoretically. Also, because of 
these substrate effects and other issues, it could be impor-
tant to further extend our calculations to the case with 
different Tc for each plane, only hinted at in the present 
article. Probably more challenging may be to extend them 
to the case with larger number of planes, as the difficulty 
of the matrix diagonalization increases considerably with 
N, what could constraint calculations to be only numerical 
instead of analytical.
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Appendix 1: Full expression for !j 
in the N = 3 case

The following are the complete expressions for the fluc-
tuation energy spectrum for N = 3 and arbitrary �1 , �2 , �3 , 
�1 and �2:
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Appendix 2: Expressions for !j in the N = 4 , 
N = 5 and N = 6 cases, with a single Tc 
and Josephson coupling

In the main text of this Topical Collection Article we have 
focused on the N = 2 and N = 3 cases, because they are 
analytically solvable and relatively maneagable. Here, 
let us brielfy comment on the N > 3 cases. Their main 
difficulty is to solve the eigenvalue problem of the cor-
responding N × N matrix, and associated Nth order poly-
nomical equation. In general this is not feasible for N > 3 . 
However, we found that in the case �1 = �2 = … �N and 
�1 = �2 = … �N−1 (i.e., a single Tc and Josephson coupling) 
it is possible to rewrite the N = 4, 5 and 6 polynomials in 
a solvable form (we were unable to solve the N = 7 case). 
We provide those solutions in this Appendix.

F o r  N = 4  a n d  �1 = �2 = �3 = �4(= �)  a n d 
�1 = �2 = �3 = �4(= �) , we found:

For N = 5 and �1 = �2 = … �5(= �) and �1 = �2 = … �5(= �) , 
we found:

F o r  N = 6  a n d  �1 = �2 = … �6(= �)  a n d 
�1 = �2 = … �6(= �) , we found:

(39)�1 = �

(40)�2 = � + 2�

(41)�3 = � + 2� −
√
2�

(42)�4 = � + 2� +
√
2�

(43)�1 = �

(44)�2 =
1

2
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√
5�)

(45)�3 =
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2
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(46)�4 =
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2
(2� + 3� +
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(47)�5 =
1

2
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√
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(48)�1 = �

(49)�2 = � + �

(50)�3 = � + 2�
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