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Abstract 
This paper proposes a probabilistic small-signal stability analysis method based on the polynomial approximation 
approach. Since the correct determination of unknown coefficients has a direct effect on the accuracy of the polyno-
mial approximation method, this paper presents a method for determining these coefficients, with high coverage on 
the probabilistic input domain of the problem. In this method, by increasing the number of random input variables, the 
proposed method can continue to maintain its efficiency. After determining the unknown coefficients, the load flow 
results and the system state matrix are determined for random changes of all loads based on the Hermite polynomial 
approximation. Then, the small-signal stability of the system is probabilistically evaluated based on stochastic analysis 
of the system eigenvalues. The consistency and validity of the proposed method are demonstrated based on the simula-
tion studies in the MATLAB® software environment. In the simulation studies, the performance of the proposed method 
is examined by comparison with Point Estimation, Cumulant, Monte Carlo, and Chebyshev polynomial-based methods, 
for IEEE 14-bus and IEEE 39-bus test systems.
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1  Introduction

The increasing expansion of the power systems has caused 
it to be affected by more random factors. The more com-
plex the system, the increase in load changes, the increas-
ing penetration of renewable resources, the development 
of electric vehicles, the increase in nonlinear loads, etc. 

are among the mentioned influencing factors. Stochastic 
changes in power load can be a factor threatening the sta-
bility of the power system. These changes are continuous 
and their impact on sustainability is of great importance 
in the control, operation, and planning of power systems. 
small-signal stability analysis is a fast and efficient method 
for evaluating the condition of power systems based on 
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the position analysis of eigenvalues. Since the power sys-
tem is a multivariable nonlinear system, to perform small-
signal stability analysis, the system state equations are lin-
earized around the operating point and based on this, the 
system state matrix is formed and its eigenvalues are cal-
culated and taken to analysis. However, because the power 
consumption often has uncertainty and random changes, 
the operating point of the system also shifts randomly due 
to load changes. Therefore, the use of conventional meth-
ods in which system eigenvalues are determined and ana-
lyzed based on a specific operating point, cannot lead to a 
comprehensive and reliable assessment.

In contrast, if the behavior of the system is predicted 
and analyzed probabilistically with respect to the effects of 
random changes of uncertain parameters, it can provide a 
more accurate assessment of the state of the power system 
and prevent technical and economic decisions from being 
too cautious and non-optimal [1]. So far, various methods 
have been used to study random phenomena such as 
robust optimization method, interval-based method, feasi-
bility study method, and probabilistic method for modeling 
random changes, the most effective of which are probabil-
istic methods [2, 3]. In a probabilistic method, the random 
changes of the input variables are modeled as the probabil-
ity distribution function and based on that, the cumulative 
distribution function (CDF) or the probability density func-
tion (PDF) of the random output variables are calculated [3].

The probabilistic methods presented so far can be clas-
sified into two main categories of numerical and analytical 
methods. One of the common numerical methods for prob-
abilistic analysis of stochastic processes is the Monte Carlo 
simulation (MCS) method. In this method, a large number of 
points of random inputs are selected and for each of them, 
the stability problem is definitively investigated. Then, 
based on the results, PDF functions, CDF functions, or other 
measurement criteria such as average or standard devia-
tion of random output variables are calculated [4]. Due to 
the very high computational burden and time-consuming 
feature of the Monte Carlo method, this method is currently 
used as a criterion for checking the accuracy and precision 
of other probabilistic analysis methods. Recently, improved 
numerical methods such as sequential and quasi-sequential 
Monte Carlo methods have been introduced, which have 
slightly reduced the computational burden, but their use is 
still very time consuming [5].

One of the analytical methods to study the small-signal 
stability of power systems is the Point Estimation method 
(PEM) [6, 7]. In PEM, load flow calculations are performed 
for a certain number of operating points, and based on 
that, the average, standard deviation, and probabilistic 
moments of the output variables are calculated. Although 
the PEM can maintain the nonlinearity of system equa-
tions, its accuracy in estimating high-order moments of 

the probability distribution function of output variables is 
not very high, especially for systems that are complex and 
have large input random variables [7].

Cumulant method (CM) is another common method 
of probabilistic analysis in power systems in which a lin-
ear model between output and input random variables is 
determined by linearizing the system equations around 
the nominal operating point [8, 9]. Then, using the cumu-
lants of input random variables, and the linear model of 
the system, the cumulants of random output variables are 
calculated. The most important advantage of the cumu-
lant method is that it has a very small calculation burden 
and therefore has a high execution speed. However, due 
to the linearization of the equations governing the system 
around the nominal operating point, when the input ran-
dom variables have significant changes to their nominal 
value, the accuracy of this method is affected [10].

In addition, since it is not possible to directly calculate 
the probability distribution functions of the output ran-
dom variables in PEM and CM, to approximate the PDF 
and CDF functions of the variables, series such as Gram-
Charlier, Cornish-Fisher, or Edgeworth series should be 
used [6, 9]. However, studies show that the probability 
distribution functions obtained from these methods are 
not accurate and even in some cases, the resulting CDF 
function produces negative values [11].

In [12], since the analytical determination of the small-
signal stability region is very difficult, a hyper-plane-based 
approximation method is presented to depict the robust 
small-signal stability boundary of a power system. In [13], 
machine learning-based algorithms are used for the prob-
abilistic assessment of dynamic security in a power system. 
In [14], to probabilistic analysis of small-signal stability in a 
power system, a framework is presented based on Gauss-
ian learning.

The polynomial approximation is a method that has 
recently been proposed to overcome the shortcomings of 
numerical and analytical methods in the study of random 
phenomena in the power systems and has yielded accept-
able results. In [15] and [16], the probabilistic load flow 
calculations of a distribution network under conditions of 
random load changes have been performed based on pol-
ynomial approximation, and the efficiency of this method 
has been investigated by comparison with the Monte 
Carlo method. The polynomial approximation method has 
also been used in the planning [17] and dynamic analysis 
[18] of power systems, which has acceptable results and 
good computational speed.

In the polynomial approximation method, the nonlinear 
equations governing the power system are approximated 
using a chaotic polynomial. The input variables of the 
mentioned polynomial are input random variables of the 
power system, and its output variables depending on the 
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type of problem, are random variables, which their proba-
bilistic properties such as average, standard deviation, or 
probability distribution functions are among the objec-
tives of the problem in the power system study. The most 
important advantage of this method is that without using 
numerical series, the probability distribution functions of 
random output variables can be directly obtained, which 
in addition to high speed have good accuracy. However, 
the proper performance of the polynomial approximation 
method depends on several key factors, the most impor-
tant of which is the selection of the type and order of the 
polynomial, as well as the proper determination of its 
unknown coefficients [19]. There are several polynomials 
that can model the governing equations of probabilistic 
systems. However, among them, the Hermite polynomial 
is more in line with the conditions of power systems, and 
the range of its random variables changes [19].

In [20], to investigate the effect of random power 
changes of a solar power plant on the power system’s 
small-signal stability, the polynomial approximation 
method has been used. However, since the polynomial 
proposed in [20] is a first-order Hermite polynomial, the 
results are not very accurate. Studies in [21–24] have 
shown that increasing the order of the polynomial, in 
addition to accuracy, also greatly increases the burden of 
calculations. For a reasonable burden of calculations, the 
use of second-order Hermite polynomials shows accept-
able efficiency and accuracy [21–24].

Another important issue in the polynomial approxima-
tion method that has a significant effect on its efficiency 
is the determination of its unknown coefficients. In [21], 
a second-order Hermite polynomial is used to investi-
gate the voltage stability of a power system. In order to 
determine the unknown coefficients of polynomials in 
[21], the Galerkin method has been used. In the Galerkin 
method, the nonlinear equations governing the system 
and the polynomials that approximate the equations are 
combined to form a set of polynomial equations. By solv-
ing this system of equations, the desired unknown coef-
ficients are determined. However, determining unknown 
coefficients using the Galerkin method has two major 
drawbacks. First, the use of this method causes a change 
in the equations of the problem and therefore it is not a 
comprehensive solution and for each problem, equations 
of the system must be formed and solved separately. The 
second drawback is that, as the dimensions of the problem 
increase and the number of random input and output vari-
ables increases, the complexity of the equations increases 
exponentially, increasing the volume of calculations and 
the time required to solve the problem.

In [22], a polynomial approximation method is pre-
sented for probabilistic small-signal analysis in power 
systems. However, while there is no mention of how to 

determine the unknown coefficients of the polynomial, 
the computational accuracy and efficiency of this method 
are only demonstrated for two uncertain input variable.

In [23], the probabilistic load flow problem of power 
systems is approximated using second-order Hermite 
polynomials and its unknown coefficients are determined 
using the Collocation method. In the Collocation method, 
using the roots of Hermite polynomial with a higher order, 
certain points of the input random variables are deter-
mined, and based on them, the equations of the problem 
are deterministically solved. In other words, using this 
method, the inputs and outputs of Hermite polynomials 
are determined for several specific points that can be used 
to calculate unknown coefficients.

In [24], the probabilistic analysis of the small-signal sta-
bility is performed based on the polynomial approxima-
tion method. The Hermite polynomial coefficients used 
in [24] are also determined based on the same method 
and similar to the process used in [23]. This method, unlike 
the Galerkin method, does not change the equations of 
the system and is, therefore, a comprehensive method. 
However, the problem with the Collocation method 
process in [23] and [24] is that it only works for a limited 
number of random input variables, and as the number of 
variables increases, the time and burden of calculations 
increase exponentially, and in some cases even it leads to 
divergence.

In this paper, the probabilistic small-signal stability 
of a power system is analyzed based on the polynomial 
approximation method. In the proposed method, the 
governing equations of power systems are approximated 
based on second-order Hermite polynomials, and the sys-
tem eigenvalues are calculated using the approximated 
load flow results as well as the system state equations. 
The main contribution of this paper is to present a novel 
approach based on the Collocation method for determin-
ing the unknown coefficients of the Hermite polynomials. 
The proposed approach in this paper can determine poly-
nomial coefficients without divergence for any number of 
random input variables. In this method, with the burden 
and time of calculations much less than previous methods 
and without using approximations by series, the probabil-
ity distribution functions of system eigenvalues have been 
determined for random changes of power consumption 
in all loads and resulting operating point displacements. 
The consistent and effectiveness of the proposed method 
is evaluated in contrast with a numerical (i.e. Monte Carlo) 
method, two analytical (i.e. CM and PEM) methods, a Che-
byshev polynomial-based approximation method, and the 
methods presented in [23, 24].

The outline of the paper is as follows. Section 2 pre-
sents the modeling of synchronous generators, polyno-
mials approximating of governing system equations, and 
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probabilistic small-signal stability analyzing are presented. 
Based on the proposed method, the probabilistic small-
signal stability of IEEE 14-bus system, as well as IEEE 39-bus 
system are analyzed and discussed in Sect. 3. Finally, the 
concluding remarks are presented in Sect. 4.

2 � Materials and methods

2.1 � Reduced‑order model of synchronous generator

When the power system is in steady-state conditions, its 
state equations can be linearized around the operating 
point and the system eigenvalues can be determined 
based on the obtained equations. In this paper, the small-
signal stability of the power system is analyzed based on 
the reduced order 3 model of the synchronous generator, 
together with the excitation system model, for two rea-
sons: 1) the critical eigenvalues obtained from the 3rd-
order model of the synchronous generator are not much 
different from the values obtained from the 8th-order 
model [25], 2) what is approximated by the polynomial 
method is the probabilistic load flow calculations neces-
sary to determine the operating point of the system, as 
well as the state matrix, therefore, the order of synchro-
nous generator model has no noticeable effects on the 
accuracy of the proposed method. The mentioned model 
is expressed by equations (1)-(4) [25].

where, � is the rotor angle, � is the rotor speed, E′q is the 
transient voltage along the quadrature axis, Efd is the exci-
tation voltage, Vt is the magnitude of the terminal voltage, 
Vref  is the reference value of the terminal voltage, and Iq 
and Id are the generator current along with the quadra-
ture and direct axes. T ′

d0
 is also the time constant of the 

direct axis of the synchronous generator in the transient 
state, and TA and KA are also the time constants and the 
gain of the excitation system, respectively. By rewriting 
equations (1)-(4) and organizing them into a matrix form, 
we will have [25]:

(1)Ė�
q
= −
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In these equations, the coefficients K1 to K6 and also Δ are:

Now, the eigenvalues of each of the generators can be cal-
culated using the state matrix A and the same matrix I and 
based on the relation det(� − IA) = 0 , where, � = � ± j� are 
system eigenvalues.

2.2 � Approximation of system equations based 
on Hermite polynomials

In this paper, the power consumption of all loads of the 
system is considered uncertain and, as usual, is modeled 
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with the normal probability distribution function [26]. In 
this modeling, the mean value of the ith load (�i) is consid-
ered equal to its nominal value and the standard deviation 
of the ith load (�i) is considered equal to 10% of its mean 
value [10]. To use the polynomial approximation method, 
the non-deterministic inputs of the problem need to be 
converted to standard normal random variables [19]. 
Therefore, in order to convert the load changes from the 
normal distribution to the standard normal distribution 
and vice versa, equations (16) and (17) have been used:

where, xi is the ith random input variable of the problem, 
( ith load) and �i is a standard normal random variable. If Y 
is the vector of the load flow results, the load flow equa-
tions can be approximated using the Hermite polynomial, 
as follows [21, 24]:

where, m is the number of random input variables and kj 
is the unknown polynomial coefficients. These coefficients 
must be determined in such a way that the above equa-
tion can determine the load flow results for the values of 
the input random variables (load changes). In (18), Γn is a 
Hermite polynomial of order n, the general equation of 
which is determined by (19) [21, 24].

For example, Hermite polynomials from orders n = 0 to 
n = 3 can be expressed by the following equations:

Comparing the accuracy of different orders of Hermite 
polynomials has shown that the response obtained from 
second-order polynomials is slightly different from the 
response obtained from Hermite polynomials with the 
order of 3 and above [21, 24]. Therefore, in this paper, sec-
ond-order Hermite polynomials have been used to model 
the load flow calculations. If Yl is the lth output variable 
of the load flow problem, it can be expressed in terms of 
input variables as:
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(19)Γn(�j1 , �j2 , ..., �jn ) = (−1)ne0.5�
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��j1��j2 ... ��jn

e−0.5�
T �

(20)
Γ0(�) = 1; Γ1(�) = �; Γ2(�) = �2 − 1; Γ3(�) = �3 − 3�.

2.3 � Determining the unknown coefficients 
of Hermite polynomials

To calculate the unknown coefficients k 0 , kj , kjj , and kij in 
(21), it is first necessary to determine some sample points, 
with certain values of � . In an n-order Hermite polynomial, 
sample values should be randomly selected from a per-
mutation of zero and roots of (n+1)-order Hermite poly-
nomial. The number of sample points also depends on the 
order of the polynomial and the number of random vari-
ables of the system and is determined by (22) [27].

where, r, n, and m are the number of sample points, the 
order of Hermite polynomials, and the number of random 
variables, respectively. By rewriting Equation (21), a matrix 
equation can be formed as follows:

where, [K] is the vector of unknown coefficients and [Y] is 
the vector of load flow results. The lth row of (23) can be 
expressed for m input random variables as follows:

As can be seen in (24), the matrix [M] is an (r × r) square 
matrix whose lth line is the combination of the number of 
one and values [�l] = [�1l �2l … �ml] is formed. The vector 
[�l] , which is one of the operating points of the system, is 
called the Collocation point [27]. It should be noted that 
to determine the unknown coefficients [K], it is necessary 
to select the r Collocation point in such a way that after 
forming the matrix [M] and replacing it in (23), create a 
set of independent linear equations, so that the problem 
has only one unique answer. In other words, the Colloca-
tion points must be selected so that the rank of the matrix 
[M] is complete and equal to r. Since the accuracy of load 
flow calculations using polynomial approximation is highly 
dependent on the correct determination of unknown coef-
ficients, it is necessary to select the Collocation points in 
such a way that in addition to the completeness of the 
matrix rank of [M] , have maximum coverage on the 
m-dimensional probabilistic input space of the problem.

The method presented in [23, 24] is that first a large 
group of Collocation points is formed and then by 
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selecting r point from it, the matrix [M] is formed and its 
rank will be calculated. If the obtained rank is less than r, 
the non-independent rows of the matrix [M] are deleted. 
Then, at the same number, a new Collocation point group 
is selected and the rows of the matrix [M] are replaced, and 
its rank is calculated again. This process is repeated until 
a matrix [M] with the complete rank of r is formed. The 
method presented in [23, 24] has been studied only for 
three random input variables and has acceptable results. 
However, this method only operates when the number 
of input variables in the problem is small and r is not a 
large number. Because when r increases, the dimensions 
of the matrix [M] increase by the same amount. Since its 
rank must be calculated in each iteration of the matrix 
formation process, it will be very time-consuming to use 
the method presented in [23, 24]. In addition, if the itera-
tive process is complete and a full rank matrix is not yet 
formed, the method presented in [23, 24] will practically 
diverge.

In this paper, a new method is proposed for forming 
the matrix [M] and calculating the unknown coefficients 
of Hermite polynomials. In the proposed method, first, a 
group of Collocation points is formed with a random com-
bination of zero numbers and roots of third-order Hermite 
polynomial. A row of [M] matrices is then formed for each 
member of the group. Since it contains R ≫ r , by juxtapos-
ing these rows, the matrix [Mg] with dimensions of (R × r) 
is obtained. Then the rank of the matrix [Mg] is calculated 
and if its rank is r, by deleting its non-independent rows, 
the matrix [M] with the full rank is formed and the process 
ends. To ensure convergence, if the rank of the matrix [Mg] 
is less than r, a new group of Collocation points is formed 
and this process is repeated. Although determining the 
rank of the matrix [Mg] has more calculations than deter-
mining the rank of the matrix [M], it should be noted 
that the rank determination calculations in the proposed 
method only once done. The method proposed in this 
paper, while simple and feasible, has a high computational 
speed, its efficiency does not decrease due to increasing 
the number of random input variables, and in addition, it 
is practically impossible to diverge.

The elements of the vector [Y] in the system of (23) are 
obtained by performing load flow calculations based on 
deterministic methods. In the above calculations, the Col-
location points that form the matrix [M] are first converted 
into real variables (load power) using (16), and then, based 
on that, the load flow results are obtained. The flow chat 
of this procedure is shown in Fig. 1. It should be noted 
that only for the r number of the sample operating points, 
the deterministic load flow calculation is done. Then, the 
unknown coefficients are calculated based on the follow-
ing equation.

2.4 � Probabilistic small‑signal stability analysis

Once the unknown coefficients [K] are determined in (23), 
the equation can be used to repeatedly calculate the prob-
abilistic small-signal stability results for random changes 
of loads instead of the usual long calculations. For this pur-
pose, first, the random values of the load are converted 
to standard normal random variables using (17) and then 
the load flow results are determined based on (24). Now 
if the system state matrix is calculated using the load flow 
results, the system eigenvalues can be determined based 
on det(�I − A) = 0 . In the following, it will be shown that 
the use of the proposed method causes the probabilistic 
analysis of the small-signal stability of power systems to be 
performed with appropriate accuracy and very high speed.

(25)[K ] = [M]−1[Y]

Fig. 1   Flow chart of determining the unknown coefficients of poly-
nomials based on the proposed method
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3 � Results and discussion

In this section, the probabilistic small-signal stability of 
IEEE 14-bus system, as well as IEEE 39-bus system are ana-
lyzed using the method proposed in this paper. The analy-
sis is based on coding in the MATLAB software environ-
ment and performed using a PC with Intel® Core™i7 CPU at 
2.5 GHz, 8 GB RAM, and 64-bit Windows 10 OS. The single 
line diagram of the power systems under study is shown 
in Fig. 2. In order to verify the accuracy of the proposed 
method, the probabilistic calculations of the studied sys-
tems have been performed using the Hermite polyno-
mial approximation method, and its results (denoted as 
“HAM”) is compared with the analytical methods of Point 
Estimation (denoted as “PEM”) and Cumulant (denoted as 
“CM”), and the numerical method of Monte Carlo simula-
tion (denoted as “MCS”). In order to further increase the 
accuracy of the MC method, as a criterion method, 10,000 
and 30,000 points have been selected from the probability 
distribution function of buses load powers in the 14-bus 
and 39-bus systems, respectively. In addition, the com-
putational efficiency and convergence of the proposed 
method have been evaluated in comparison with the 
method presented in [23, 24], as well as the Chebyshev 
polynomial approximation method (denoted as “ChAM”).

3.1 � Evaluation of computational accuracy

3.1.1 � IEEE 14‑bus test system

In Table 1, the mean and standard deviation values of the 
voltage magnitude of busbars obtained from the pro-
posed method are compared with the MCS, PEM, CM, and 
ChAM methods. Since bus 1 is of slack type and buses 2, 

3, 6, and 8 are also of PV (voltage-controlled) type, their 
voltage magnitude did not change in the face of random 
changes of load powers, and therefore, their standard 
deviation in all methods is zero. As can be seen, the aver-
age values of the voltage magnitudes obtained from the 
polynomial approximation methods (HAM and ChAM), for 
all PQ buses of the system, have a very small difference (in 
the range of 10−5 pu) with the values obtained from the 
MCS method. In addition, comparing the standard devia-
tion of the HAM and ChAM methods with MCS method 
confirms that the polynomial approximation methods 
have acceptable accuracy.

It can also be seen from Table 1 that the voltage mag-
nitude of bus 14, |V14| , has the highest standard deviation, 
and the voltage magnitude of bus 12, |V12| , has the lowest 
standard deviation among all busbars. This indicates that 
the load uncertainties have had the greatest impact on 
|V14| and the least impact on |V12| . The cumulative probabil-
ity function of the voltage magnitude of busbars 14 and 12 
for random changes of all loads of the system is shown in 
Figs. 3(a) and (b), respectively. As can be seen, the results 
of the approximation methods of HAM and ChAM, unlike 
the analytical methods of PEM and CM, are slightly dif-
ferent from the results of the Monte Carlo method. It is 
noteworthy that the average voltage of the busbars in all 
five methods is almost the same, and what has caused the 
difference between the results is the significant difference 
between the standard deviation of the PEM and CM meth-
ods with the MSC and HAM methods. Although the results 
of the ChAM method are more accurate than the analyti-
cal methods, they have lower accuracy than the MCS and 
HAM methods. Therefore, it can be said that the method 
proposed in this paper, in addition to being faster, has also 
shown good accuracy in calculating the probabilistic load 
flow of the power system.

Fig. 2   Single-line diagram of a IEEE 14-bus , and b IEEE 39-bus test systems
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Table 2 shows the mean and standard deviation of the 
eigenvalues of the system under study. As can be seen, 
the mean values obtained from the proposed method are 
not significantly different from the results of other meth-
ods and are almost equal to each other. Examination of 
standard deviation values shows that the results of the 
proposed method have an acceptable agreement with the 
results of the MCS method. However, the standard devia-
tions obtained from the PEM and CM are slightly different 
from the other MCS and HAM methods. The reason for this 
phenomenon is the estimation of the cumulative prob-
ability function in the PEM and CM based on the Cornish-
Fisher and Gram-Charlier series, respectively. Although the 
PEM and CM are the best among analytical methods, the 
proposed method offers a much better estimate.

Figure 4 shows a graph of the mean eigenvalues of the 
system under study on the plane of the complex num-
bers. As expected, according to the dimensions of the state 

matrix, the system eigenvalues can be clustered in four 
modes. The first mode is completely real eigenvalues that 
are close to zero. The second and third modes are conju-
gated to each other and are considered critical eigenval-
ues of the system due to their damping factors. The eigen-
values of the fourth mode are also completely real, which 
are more dependent on the excitation system and are the 
farthest eigenvalues from the imaginary axis. In modes 2 
and 3, the eigenvalues for generators 1, 2, and 3 have the 
lowest damping factors. Re-examination of Table 2 shows 
that among these three generators, generator 3 has the 
lowest damping factors. It is noteworthy that Generator 3 
also showed the highest standard deviation. Therefore, in 
addition to the lowest stability margin, generator 3 also 
has the highest sensitivity to load power changes among 
system generators.

Figure 5(a) shows the cumulative distribution function 
of the real part of the mode#2 eigenvalue of the third 

Table 1   Mean and standard 
deviation of bus voltages in 
IEEE 14-bus test system

Bus 
number

Bus 
type

Mean value of |V| Standard deviation of |V|

HAM MCS PEM CM ChAM HAM MCS PEM CM ChAM

1 Slack 1.06 1.06 1.06 1.06 1.06 0 0 0 0 0
2 PV 1.045 1.045 1.045 1.045 1.045 0 0 0 0 0
3 PV 1.01 1.01 1.01 1.01 1.01 0 0 0 0 0
4 PV 1.0176 1.0176 1.0176 1.0176 1.0176 0.0012 0.0011 0.0014 0.0013 0.0011
5 PQ 1.0195 1.0195 1.0195 1.0195 1.0195 0.001 0.0009 0.0011 0.001 0.0009
6 PV 1.07 1.07 1.07 1.07 1.07 0 0 0 0 0
7 PQ 1.0615 1.0615 1.0615 1.0615 1.0615 0.0012 0.0012 0.0016 0.0014 0.0012
8 PV 1.09 1.09 1.09 1.09 1.09 0 0 0 0 0
9 PQ 1.056 1.0559 1.0559 1.0559 1.0559 0.0021 0.0021 0.0028 0.0024 0.0021
10 PQ 1.051 1.0509 1.051 1.0509 1.051 0.0019 0.0019 0.0026 0.0023 0.0020
11 PQ 1.0569 1.0569 1.0569 1.0569 1.0569 0.001 0.001 0.0014 0.0012 0.0011
12 PQ 1.0552 1.0552 1.0552 1.0552 1.0552 0.0007 0.0007 0.001 0.0008 0.0007
13 PQ 1.0504 1.0504 1.0504 1.0504 1.0504 0.0009 0.001 0.0014 0.0012 0.001
14 PQ 1.0356 1.0355 1.0355 1.0355 1.0355 0.0022 0.0022 0.0031 0.0027 0.0022

Fig. 3   Cumulative distribution function of voltage magnitude at a bus 14, b bus 12, in IEEE 14-bus test system
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generator (�2,G3) . As can be seen, the results of the pro-
posed method are not significantly different from the MCS 
method and have good accuracy. However, the CDF func-
tion obtained from the PEM and CM methods, although 
have good accuracy in terms of the mean value, has an 
asymmetric difference in other points with the results 
of the proposed and MCS methods. In fact, it should be 
noted that based on the results of the HAM, ChAM, and 
MCS methods, the CDF function of the real part �2,G3 has 
asymmetry or skewness from the right, however, the PEM 
and CM methods have not been able to approximate this 
skewness correctly. Figure 5(b) shows the probability dis-
tribution function of the real part �2,G3 . As can be seen, the 
PDF function shown in Fig. 5(b) has positive skewness in 
the HAM, ChAM, and MCS methods. The value of this skew-
ness is 0.4421 but the skewness value obtained from the 
PEM and CM methods are 0.4079 and 0.4082, respectively, 
which are significantly different from the correct amount.

The functions of cumulative distribution and probability 
distribution of the real part of the mode#1 eigenvalue of 
the third generator �1,G3 are also shown in Figs. 6(a) and (b), 
respectively. As can be seen, the results of the HAM, ChAM, 
and MCS methods are not significantly different, but the 
PEM and CM methods still failed to correctly approximate 
the CDF and PDF functions of the real part �1,G3 . As can 
be seen in Figs. 6(a) and (b), the CDF and PDF functions 
approximated by the HAM, ChAM, and MCS methods 
have a negative skew (left), however, in the PEM and CM 
methods, this skew has not been approximated correctly. 
Another noteworthy point in Figs. 3, 5, and 6 are that the 
probability functions obtained from the proposed method 
are also completely consistent with the MCS method in 
terms of kurtosis, but the results obtained from the PEM 
and CM methods are almost erroneous from this point of 
view. By comparing the ChAM and HAM methods, it can be 

seen that the accuracy of the proposed method is higher 
and the results are more consistent with the MCS method.

3.1.2 � IEEE 39‑bus test system

The graph of the mean eigenvalues of the IEEE 39-bus 
system on the plane of the complex numbers is shown 
in Fig. 7. In this system, similar to the 14-bus system, the 
system eigenvalues can be clustered in four modes. The 
first and the fourth modes are completely real eigenval-
ues that are close to zero and far from the imaginary axis, 
respectively. The second and third modes are conjugated 
to each other and are considered critical eigenvalues of 
the system due to their damping factors. In modes#2 and 
#3, the eigenvalues for generators 9, 6, 2, 7, and 3 have the 
lowest damping factors.

The mean and standard deviation of the eigenvalues 
of the IEEE 39–bus system in modes#2 and #3 are shown 
in Table  3. As can be seen, the mean values obtained 
from the proposed method are not significantly different 
from the results of other methods and are almost equal 
to each other. Examination of standard deviation values 
shows that the results of the proposed method have an 
acceptable agreement with the results of the MCS method. 
However, the standard deviations obtained from the PEM 
and CM are slightly different from the other MCS and HAM 
methods. The reason for this phenomenon is the estima-
tion of the cumulative probability function in the PEM 
and CM based on the Cornish− Fisher and Gram–Charlier 
series, respectively. Although the PEM and CM are the best 
among analytical methods, the proposed method offers a 
much better estimate.

Re–examination of Table 3 shows that among these 
generators, generators of 9 and 6 have the lowest damp-
ing factors. It is noteworthy that Generators 9 and 7 also 
showed the highest standard deviation. Therefore, in addi-
tion to the lowest stability margin, generator 9 also has the 
highest sensitivity to load power changes among system 
generators.

Figs. 8(a) and 8(b) show the CDF and the PDF func-
tions of the real part of the mode#2 eigenvalue of the 6th 
generator (�2,G6) . As can be seen, the proposed method 
exhibits an acceptable accuracy and is in consistent with 
the MCS method. However, the CDF and PDF functions 
obtained from the ChAM, PEM, and CM methods, despite 
good accuracy in terms of the mean value, have an asym-
metric difference in other points with the results of the 
proposed and MCS methods. It should be noted that in 
39-bus system, a fundamental difference has been shown 
in the accuracy of the approximation of HAM method with 
ChAM method.

The CDF and PDF functions of the real part of the 
mode#2 eigenvalue of the 9th generator �2,G9 are shown 

Fig. 4   Eigenvalues locus plot of IEEE 14-bus system
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in Figs. 9(a) and (b), respectively. As can be seen, the results 
of the HAM and MCS methods are not significantly differ-
ent, and the shape of the CDF and two peaks PDF obtained 
from MCS method has almost been fitted by the proposed 
method. However, the PEM and CM methods failed to 
correctly approximate the CDF and PDF functions of the 
real part �2,G9 . In addition, Figure 9 illustrates that as the 
scale and complexity of the system increase, the ChAM 
method is unable to approximate the governing equa-
tions correctly and loses much of its accuracy. Investigat-
ing the results of the proposed method and comparing 
them with the Monte Carlo method as a criterion, shows 
that the proposed method has considerable accuracy in 
analyzing the small-signal stability of power systems. The 
important point is that the proposed method has not only 
been able to accurately estimate the mean and standard 

Fig. 5   a Cumulative distribution function, and b Probability distribution function of the real part of the mode#2 eigenvalue of the third gen-
erator (�

2,G3
) , in IEEE 14-bus system

Fig. 6   a Cumulative distribution function, and b Probability distribution function of the real part of the mode#1 eigenvalue of the third gen-
erator (�

1,G3
) , in IEEE 14-bus system

Fig. 7   Eigenvalues locus plot of IEEE 39-bus system
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deviation of the output variables, but also the CDF and 
PDF functions of probability variables have approximated 
with high accuracy, so that even the qualitative character-
istics of these functions, such as skewness and kurtosis, are 
also properly approximated.

3.2 � Evaluation of computational efficiency

In Table 4, the computational time as well as the number 
of deterministic load flow calculations of the proposed 
method is compared with the PEM, CM, MCS, ChAM 
methods, and also the method presented in [23, 24]. As 
can be seen, the number of deterministic calculations in 
the Monte Carlo method should be high in order for the 
response accuracy to be acceptable, which leads to heavy 
and time-consuming calculations. However, in analytical 
and polynomial approximation methods, since the deter-
ministic calculations are very limited and are performed 

only for a certain number of operating points, the com-
putational burden and computation time is much less 
than the Monte Carlo method. By comparing analytical 
methods (PEM and CM) and polynomial approximation 
methods (HAM and ChAM), it can be said that since the 

Fig. 8   a Cumulative distribution function, and b Probability distribution function of the real part of the mode#2 eigenvalue of the 6th gen-
erator (�

2,G6
) , in IEEE 14-bus system

Fig. 9   a Cumulative distribution function, and b Probability distribution function of the real part of the mode#2 eigenvalue of the 9th gen-
erator (�

2,G9
) , in IEEE 14-bus system

Table 4   The computational efficiency of different methods

Method of 
analysis

Computation time (sec) Number of required 
deterministic calculation

IEEE 14-bus IEEE 39-bus IEEE 14-bus IEEE 39-bus

MSC 65.37 434.18 10,000 20,000
PEM 0.92 9.38 31 61
CM 1.49 15.34 31 61
HAM 11.78 86.46 276 861
ChAM 3.11 59.53 45 157
[23, 24] – – 276 861
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number of deterministic calculations required to deter-
mine polynomial coefficients in the approximation meth-
ods is slightly more than analytical methods, the time 
and volume of calculations in the approximation method 
is slightly more than the analytical methods. However, it 
should be noted that the accuracy of the calculations in 
the approximation methods is very high and almost equal 
to the Monte Carlo method, but the burden of calcula-
tions and its complexity is about the analytical methods, 
and this feature is the biggest advantage of polynomial 
approximation methods over other methods. Comparing 
methods HAM and ChAM, it can be seen that the num-
ber of deterministic calculations and computation time 
in method HAM is more than method ChAM, however, 
the simulation results have shown that the accuracy of 
method HAM is also more than method ChAM. It is worth 
noting that the process of forming matrix [M] for the ran-
dom changes of all system loads using the methods pre-
sented in [23, 24] is unstable and does not result even after 
over ten minutes.

4 � Conclusion

This paper proposes a polynomial approximation-based 
method for probabilistic small-signal stability analysis of 
power systems. In the presented method, the governing 
equations of power systems are modeled based on Her-
mite polynomials so that instead of the governing equa-
tions, the obtained polynomials are used to calculate the 
state matrix and eigenvalues of the system. The unknown 
coefficients of polynomials, which have a direct effect on 
the accuracy of this method, are determined based on a 
novel approach that in addition to high efficiency, also has 
a good speed and convergence. The proposed approach 
makes it possible to use the polynomial approximation 
method for power systems with any number of random 
input variables. In order to evaluate the accuracy and effi-
ciency of the proposed method, the IEEE 14-bus and IEEE 
39-bus systems have been simulated in MATLAB software 
and all its loads have been modeled as random variables. 
The validity and effectiveness of the proposed method is 
demonstrated in contrast with the Monte Carlo, Point Esti-
mation, Cumulant, and Chebyshev polynomial approxima-
tion methods. Evaluating the simulation results shows that 
the proposed method has not only been able to accurately 
estimate the mean value, the standard deviation, and the 
probability distribution functions of the output variables, 
but also the properties of the mentioned functions, includ-
ing kurtosis and skewness, have properly approximated. 
Ease of use, fewer calculations, high analysis speed, accu-
racy, and efficiency are some of the advantages that the 
proposed method has shown in probabilistic small-signal 

stability analysis of power systems, especially when the 
number of input random variables is significant.
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