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Abstract 
Based on the global need to efficiently eliminate highly produced amounts of sewage sludge, alternative technologies 
are required to be practically developed. Reduction of sewage sludge waste quantities with energy recovery is the most 
important and modern practice, with least possible impact on the environment. Appropriate technologies for treating 
and disposal sewage sludge are currently considered: incineration, gasification and pyrolysis. The main products gener-
ated during the pyrolysis process are bio-gas, bio-oil and bio-residue, providing sustainable fuels/ biofuels and adsor-
bents. Compared to other disposal methods of sewage sludge, pyrolysis has advantages in terms of the environment: 
waste in small quantities, low emissions, low level of heavy metals. From a technological point of view, pyrolysis is the 
most efficient in relation to its final products, pyrolysis oil, pyrolysis gas and solid residue that can be transformed into 
CO2 adsorbent with the help of chemical and thermal activation processes. The incineration process of sewage sludge 
has a number of disadvantages both environmentally and technologically: organic pollutants, heavy metals, toxic pol-
lutants and ash resulting from combustion that needs a disposal process. A comparison of different types of sewage 
sludge elimination for the energy recovery is described in the present paper.

Article Highlights 

•	 Sewage sludge is a waste in increasing quantities, 
which requires disposal and energy recovery, in a clean 
way for the environment.

•	 The pyrolysis process of sewage sludge is the clean-
est method of its recovery. Pyrolysis products, bio-oil, 

syngas and biochar, can be used as alternative fuels to 
fossil fuels.

•	 The pyrolysis process of the sewage sludge is the most 
advantageous from the point of view of the obtained 
products and of the environment, in comparison with 
the incineration and gasification processes.
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1  Introduction

The global production of sewage sludge has increased 
in recent years and is constantly growing, the sewage 
sludge (SS) being a by-product resulting from the waste-
water treatment process [1]. The main challenge is the 
removal of sewage sludge, which is a real toxic cocktail 
due to pollution and heavy metals. At the same time, the 
world’s population is facing another challenge, namely 
the energy deficit. In order to overcome this energy defi-
cit, alternative energy from renewable sources must be 
developed, with environmental protection measures. 
Because of these problems, the sewage sludge is suit-
able for the development of renewable energy through 
various processes [2].

Sewage sludge may contain pathogenic microor-
ganisms, parasites or several toxic compounds, such as 
heavy metals, polycyclic aromatic hydrocarbons, dioxins 
and furans. High amounts of SS, 60 million tons, of 80% 
moisture have been reported in China, with potential of 
increasing by 10% each year [2]. While in EU, the increas-
ing SS amounts can reach about 13 million tons in the 
2020 year. In Table 1 is presented the quantity of sewage 
sludge in different countries for several years.

The traditional methods currently used to eliminate SS 
are composting for use in agriculture, gasification, pyroly-
sis and incineration. Lately, composting of SS is prohibited 
due to the strong smell, leachate, spread of pathogenic 
microorganisms and environmental contamination with 
toxic compounds [4]. Incineration of SS has a number of 
negative side effects, among them emissions of green-
house gas, dioxins and furans being a great concern. More-
over, the resulted ash must also be removed by an addi-
tional treatment [5]. This method requires large amounts 
of energy which limits the development and implementa-
tion of such technology. The European Commission task is 
the reduction of waste by 50% until 2050 [6]. This category 
also includes SS from the wastewater treatment plants 
(category 19 of the waste code) in accordance with the 
Decision no. 856/2002 [7]. EU studies showed that 53% of 
produced SS is used for the final disposal, used in agricul-
ture/composting, while only 20% is used for incineration.

As shown in Figs. 1a, b and 2, SS can be used in the 
manufacture of construction materials, land applica-
tion and incineration. Even if these possible usages 
have been identified, a significant amount of SS is elimi-
nated by improper discharge. The methods of treatment 
and disposal of SS varies from one country to another 
depending on its socio-economic development and the 
legal requirements [8].

Because of the global need to properly eliminate SS, 
alternative technologies have been emerged in order to 

treat, reduce and eliminate such wastes. Pyrolysis repre-
sents an appropriate technology, from which bioenergy 
can be obtained, while harmful organic substances and 
pathogens may be eliminated [11]. The residue left after 
the pyrolysis process can be used for the development 
of efficient adsorbents [12, 13]. These adsorbents can 
be used to reduce the level of heavy metals or organic 
pollutants [14, 15]. Thus, pyrolysis can be considered a 
clean and efficient method of SS disposal [16]. From the 

Table 1   Annual production of sewage sludge (unit of measure in 
thousand of tonnes) in Europe, by country, during 2016–2018 [3]

Country 2016 2017 2018

Belgium – – –
Bulgaria 65.8 68.6 –
Czech Republic 206.71 223.27 228,22
Denmark – – –
Germany – – –
Estonia 18.34 – –
Ireland 56.018 58.773 –
Greece 119.768 – –
Spain 1174.4 – –
France 1006 1174 -
Croatia 19.72 17.6 19.23
Italy – – –
Cyprus 7.408 7.166 8.406
Latvia 25.923 24.94 24.591
Lithuania 44.422 42.488 44.192
Luxembourg 8.918 8.618 8.28
Hungary 215.078 264.713 217.842
Malta 10.77 10.3 8.28
Netherlands 347.6 – 341.03
Austria 237.938 – 234.481
Poland 568.329 584.454 583.07
Portugal 119.17 – –
Romania 240.41 283.34 247.76
Slovenia 32.8 36.7 38.1
Slovakia 53.05 54.52 55.93
Finland – – –
Sweden 204.3 205.6 210.9
United Kingdom – – –
Iceland – – –
Liechtenstein – – –
Norway – – 147.6
Switzerland – 177 –
Montenegro – – –
North Macedonia – – –
Albania 94.5 98.12 94.5
Serbia 11.2 13.3 9.6
Bosnia and Herzegovina 9.5 9.5 9.5
Turkey 299.296 – 318.503



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:775  | https://doi.org/10.1007/s42452-021-04758-3	 Review Paper

pyrolysis process results three types of products: liquid, 
solid and gaseous. Liquid and gaseous products (bio-oil, 
bio-gas) can be used as raw or refined materials to obtain 
chemical fuels, while solid products (bio-residue) can be 
used as functional materials [17–20]. NOx compounds 
resulting from the combustion of gases to release energy 
are considered air pollutants. To reduce air pollution, a 
nitrogen reduction method for SS pyrolysis must be 
identified. A number of studies have been conducted to 
reduce the emission of nitrogen-containing gases during 
the pyrolysis, as follows: fixation of nitrogen in the solid 
fraction by pretreatment or roasting [21–26]; mixing the 
raw material with mineral calcium, CaO, Ca and Na to 
perform a catalytic pyrolysis [27–30]; changing the con-
ditions under which the pyrolysis process takes place by 
changing the temperature or atmosphere; transforma-
tion of nitrogen-containing gas into N2 [31].

In order to produce large quantities of sustainable 
energy from SS, there are some technological limits. SS has 
different physico-chemical properties than conventional 
solid fuels (biomass or coal) which make processing more 
difficult and complex [32]. The SS contains nitrogen and 
phosphorus compounds, non-toxic organic compounds, 
toxic heavy metals (Pb, Ni, Cd, Hg, As), organic pollutants 
(dioxins, pesticides, polycyclic aromatic hydrocarbons), 
pathogenic bacteria, inorganic compounds (silicates, cal-
cium and magnesium compounds) and a lot of water [33], 
composition which may largely vary [34]. To reduce the 
volume of SS that must be treated or removed, the opera-
tion of removing excess water is needed. There are two 

stages of water removal, performed during dehydration 
and thickening phases [35, 36]. The moisture content must 
be considerably reduced so that it can be disposed or used 
for energy recovery [37]. The SS properties are influenced 
by the applied technology, season or type of wastewater 
that enters the treatment plant [38, 39]. Due to its proper-
ties, SS is considered a fuel based on its high calorific value 
(10–14 MJ) and high volatiles [40, 41].

The purpose of this paper is to describe several sus-
tainable technologies currently applied for SS valoriza-
tion, including those for energy recovery, and to pre-
sent an overview of the advantages and disadvantages 
of applying processes such as gasification, pyrolysis and 
incineration.

2 � Agriculture valorization

The sewage sludge used in agriculture has two types of 
benefits: the recirculation and recycling of important nutri-
ents such as nitrogen and phosphorus and the ecological 
and adequate disposal of waste from wastewater treat-
ment. The use of sewage sludge as soil fertilizer is benefi-
cial in increasing productivity, but special care must be 
taken in terms of soil contamination that leads to block-
age of ecosystem functions and hence the deterioration 
of flora, fauna and human health [42–48]

When sewage sludge is used in agriculture, a major 
problem arises, namely the toxicity of heavy metals that 
affect the health of humans, animals and plants, which is 
why the EU has implemented European Council Directive 
86/278 /EEC on environmental and soil protection. Before 
being used in agriculture, sewage sludge goes through a 
series of biological, chemical, thermal treatment processes, 
then it is stored for a long time to significantly reduce the 
sewage sludge fermentation and for safety and health 
population, plants and animals. After going through a 
series of processes and stages such as biological stabi-
lization, digestion, composting, the sewage sludge has 
component nutrients benefical for soil improvement and 
energy production [49]. The use of SS in agriculture has 

Fig. 1   Data on different meth-
ods of elimination of sewage 
sludge produced in USA (a) 
and China (b) [9]
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Fig. 2   Sewage sludge usage in Europe according to [10] 
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been done for several beneficial effects: improving the 
physical, chemical and biological soil properties, and sup-
plementation of soils with essential plant nutrients [50, 
51]. Unfortunately, SS is a biological residue with a com-
plex chemical structure [52], which may provide potential 
toxic components to soil through chemical and biologi-
cal contamination [53]. Plastics and heavy metals are the 
main contaminants of the soil after fertilization with SS 
[54], causing the accumulation and transfer of toxic com-
pounds into the environment [55] which negatively influ-
ences microorganisms and plant growth [56, 57]. The risk 
of contaminating the environment through fertilization 
soil with sewage sludge is due to the presence of heavy 
metals, drugs and organic compounds in the sewage 
sludge. Medicines can reach the environment through sev-
eral routes, but mainly through sewage, the water from the 
sewer reaches the treatment plant, and after water treat-
ment they reach the sewage sludge [58–62].

Soil quality and fertility is maintained through micro-
bial activity. From this point of view, sewage sludge has 
the role and ability to intensify these processes due to the 
high content of organic matter. The application of a sew-
age sludge with a low content of heavy metals on the soil 
has a positive effect on organic carbon, microbial activities 
and on microbial biomass. On the other hand, if the sew-
age sludge has large amounts of heavy metals, a negative 
effect occurs: the decrease of the carbon concentration 
and activities in the soil [63–66].

Due to the risk of contamination, the EU has issued 
the Directive 86/278/EEC,which establishes regulations 
to combat and prevent possible damage to the environ-
ment and to human health, and heavy metals admissable 
levels, as well [67]. The most frequent contaminants are 
pharmaceutical compounds, especially antibiotics, which 
are in fairly large amounts in wastewater because they 
are poorly metabolized by the human body [68, 69]. Dur-
ing the wastewater treatment process, antibiotics are not 
eliminated, reaching the soils for which SS was used as 

fertilizer. These antibiotics influence different types of the 
enzymatic transformations in soil [70].

3 � Energy valorization

Reduction of SS waste quantities aiming the energy recov-
ery is one of the most important and modern practice, 
with the least possible impact on the environment. Valori-
zation of SS through different methods of energy recovery 
and the obtained products (bio-gas, bio-residues, bio-oil, 
heat, ash, tar and other chemical compounds) [71–73] is 
presented in Fig. 3.

The different methods of SS elimination for energy 
recovery, comparatively illustrated in Table 2 will be fur-
ther described.

3.1 � Incineration

SS incineration aims at the complete oxidation of organic 
compounds at high temperatures. This process has been 
used very often in the process of energy recovery, but also 
in order to reduce the amount of waste:for example, Japan 
incinerates 70% of the SS [75].

The incineration process is an important process in the 
management of wastewater such as sewage sludge. This 
process leads to the decomposition of toxic organic sub-
stances and to the reduction of waste quantities by 70% 
-90% [76, 77]. Following the incineration process of the 
sewage sludge, renewable energy obtained can be used 
in the form of electricity or heat. After incineration of the 
sewage sludge, an ash residue results. The resulting ash 
is considered dangerous due to high concentrations of 
heavy metals with a negative impact on the environment, 
and for this reason is used in various fields of industry: in 
the manufacture of cement and concrete [87] and as road 
construction materials, for glass and ceramics [78].

Fig. 3   Different methods of 
enegy recovery from sewage 
sludge and their products [74]

Sewage Sludge Processing

Incineration with O2, 
T=800-11500C

CO2, H2O,CO,N2,NOx, 
SOx,PM,heat,ash, smoke 

gases

Pyrolysis without O2, 
T=300-9000C

CH4,CO2, bio-oil, bio-gas, 
bio-char

Gasification with partial 
oxidation

Bio-char,Synthesis 
gas(CH4,CO2,H2,CO), tar



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:775  | https://doi.org/10.1007/s42452-021-04758-3	 Review Paper

As described in Fig. 4, mechanically dried SS enters 
the combustor, where SS turns into an inert ash at tem-
peratures > 850 °C [79]. The incineration process con-
sists in a rapid combustion, chemical reaction with O2 
to produce light, and heat release. Oxidation occurs at 
any temperature, while combustion occurs only at the 
ignition temperature. The incineration system consists 
of the following components: sludge supply, mechanical 
dehydration, dryer, combustor, ash handling system and 
control devices for air pollution.

Energy recovery by incineration of SS has a number of 
technological, environmental and societal benefits, but 
also economic. The advantages of this process are: well-
established technology, heat generation and electricity; 
negligible organic pollutants; the possibility of using it 
together with another solid fuel to reduce greenhouse 
gases; easy integration of pollutant capture technol-
ogy; use of existing infrastructure; use together with 
another solid fuel to reduce costs; energy saving for sew-
age treatment plants. The disadvantages of this process 
may include: dehydration of SS as it contains increased 

Table 2   Comparison of main characteristics of technologies applied for sewage sludge elimination [74]

Parameters Incineration Pyrolysis Gasification Hydrothermal liquefaction

Process temperature (°C)  > 850 300–900 750–900 250–370
Gas production No Bio-gas Synthesis gas No
Oil production No Bio-oil Liquid fuel potential Liquid bio-crude
Char production No Bio-char Tar
Emissions CO2, H2O, CO, N2; NOx, SOx, 

PM, Smoke gases
Low emissions of CO2 and 

heavy metals
CO, CO2, H2, N2 Hydrocarbons

Amines and amides
Costs High High High
Advantages Heat Electricity Low waste Useful 

Products(oil, gas, char)
Liquid fuel potential Liquid fuel potential

Disadvantages Ash waste High moisture 
of SS

High Moisture of SS Toxic effects from the 
mixture of heavy metals 
and organic pollutants 
High Moisture of SS

Toxic effects

Fig. 4   Incineration of sewage sludge [80]
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moisture; requirement for disposal or reuse of ash waste, 
CO2, NOx, SOx emissions; public acceptance; high costs for 
technological cleaning and ash removal; strict control of 
process pollutants [81].

3.2 � Pyrolysis

Pyrolysis is a transformation process of sewage sludge in 
the absence of oxygen and nitrogen atmosphere, which 
results in 3 types of pyrolysis products: gaseous product—
pyrolysis gas, liquid product—pyrolysis oil and solid prod-
uct—pyrolysis residue [82–84]. First time in the pyrolysis 
process the vapors resulting from the volatile components 
of the sewage sludge are formed, then the non-volatile 
substance is decomposed and the following are obtained: 
residue, tar and gases [85, 86]. Pyrolysis can be of several 
types, depending on temperature ranges and residence 
time: slow pyrolysis, fast pyrolysis. If the temperature is 
lower and the residence time is longer, then large amounts 
of pyrolysis residues are produced, if the temperature is 
medium and the residence time is short, large amounts 
of bio-oil are produced [87, 88].

Pyrolysis oil can also be called bio-oil, is dark brown 
and can be used as an alternative fuel to fossil fuels after 
a series of refining and water removal processes. Pyrolysis 
gas is the non-condensable gas obtained from the pyroly-
sis process of sewage sludge, such as H2, CO, CO2, CH4, C2 
H2, C2H6. These gases can be used in different technologies 
if were separated and purified [89, 90].

Figure 5 shows the pyrolysis process of sewage sludge 
and products obtained from the process: bio-oil, syngas 
and bio-char.

The advantages of the pyrolysis process are: minimal 
amounts of generated waste; production of useful oil, gas 
and solid residue; use of both raw and digested SS; low 
emissions and decreased level of heavy metals than from 
other processes; feasible technology for large treatment 
plants; low carbon potential for the energy industry. Of 
course, there are some disadvantages, such as: require-
ments for dehydration of SS; complex reaction; technology 
at an early stage, expensive technology with large capital 
[91–95].

3.3 � Gasification

The gasification process involves partial oxidation with dif-
ferent gasifying agents (oxygen, air and steam) (Fig. 6) [96]. 
The gasification process of the sewage sludge is used to 
produce electricity, the energy conversion efficiency has 
a proportion of 14% -30%, but it needs a series of steps 
to clean the gas of contaminants, which are: tars, heavy 
metals, dust, acid gases and sulfur. All these cause corro-
sion and harmful effect for human health and environment 
[97]. The gas resulting from the gasification process is rich 
in hydrogen H2, which means that it can be used as an 
alternative fuel [98].

The gasification process with the help of air results a mix-
ture of CO, CO2, H2, CH4, N2 and tar. This mixture has combus-
tion difficulties, especially in a turbine, because the calorific 

Fig. 5   Pyrolysis of sewage sludge according to [35]
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value of the gas is 5 MJ/m3 [99, 100]. If oxygen is used in the 
gasification process, the calorific value of the resulting gas 
can reach a value of 10 MJ/m3 up to 12 MJ/m3, and nitro-
gen is missing from the gaseous product. The difference 
between using oxygen or air is both in quality and cost. 
Oxygen is more expensive, but the quality of the resulting 
gas is clearly superior. If steam is used, the concentration 
of methane and hydrocarbons increases, thus changing the 
proportions of the components. The gas obtained from the 
gasification process has a calorific value of 15 MJ/m3 up to 
20 MJ/m3. The sequence of events during the gasification 
process is as follows: evaporation of moisture from the raw 
material, gas production, oil production and then the solid 
residue [101–103].

The advantages of the gasification process are: energy 
efficient technology; liquid fuel potential; stand-alone tech-
nology; waste in small quantities; low emissions; favoring 
the treatment plants from an economic point of view; low 
carbon potential for the energy industry. The disadvantages 
are the following: requirements for dehydration of SS; com-
plex reaction; release of heavy metals and organic pollutants 
having toxic effects; expensive technology with high capital 
and operating costs [104].

4 � Conclusions and future remarks

Sewage sludge is a complex matrix consisting of sev-
eral residual products, such as biomass waste, paper 
and cardboard, microplastics, textiles, waste oils, traces 
of fossil fuels, human and animal feces, traces of drugs. 
This viscous matrix has an extremely high moisture con-
tent > 80%. However, the organic composition makes it 
attractive for the energy sector.

From an environmental point of view, the pyrolysis 
process provides more advantages because it produces 
minimal amounts of waste, low emissions, low level of 
heavy metals than those resulted from the gasification 
and incineration processes. In terms of technology, the 
pyrolysis process is the most efficient due to its final 
products, oil, gas and solid residues that can be used 
as catalysts. Instead, the combustion process generates 
heat, the gasification process is energy efficient, but 
the reaction is complex and releases organic pollutants, 
heavy metals and other toxic pollutants. Considering 
incineration, the resulting ash requires its elimination. 
Also, during this process CO2, NOx, and SOx are released.

Fig. 6   Gasification processof sewage sludge [96]
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The economic advantages of low carbon potential for 
the energy industry advocates for the use of pyrolysis and 
gasification processes. An economic advantage for incin-
eration is the existing infrastructure that can be used. But 
incineration may become expensive due to the require-
ment for the ash removal, pollutant control and techno-
logical cleaning. Gasification and pyrolysis processes also 
require a large investment capital.
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