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Abstract
This work analyses the performance of Reinforcement Learning (RL) versus Swarm Intelligence (SI) for coordinating mul-
tiple unmanned High Altitude Platform Stations (HAPS) for communications area coverage. It builds upon previous work 
which looked at various elements of both algorithms. The main aim of this paper is to address the continuous state-space 
challenge within this work by using partitioning to manage the high dimensionality problem. This enabled comparing 
the performance of the classical cases of both RL and SI establishing a baseline for future comparisons of improved ver-
sions. From previous work, SI was observed to perform better across various key performance indicators. However, after 
tuning parameters and empirically choosing suitable partitioning ratio for the RL state space, it was observed that the SI 
algorithm still maintained superior coordination capability by achieving higher mean overall user coverage (about 20% 
better than the RL algorithm), in addition to faster convergence rates. Though the RL technique showed better average 
peak user coverage, the unpredictable coverage dip was a key weakness, making SI a more suitable algorithm within 
the context of this work.
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1  Introduction

This work presents the concluding results of the compara-
tive analysis of Reinforcement Learning (RL) and Swarm 
Intelligence (SI) for autonomous coordination of multiple 
High Altitude Platform Stations. It complements some of 
the work and results published in previous papers [1, 2], 
which covered some introductory thoughts and key con-
cepts like reward signal design. However, in this paper, 
the challenges of state-space size and the performance 
of the algorithms under extended simulation runs were 
explored. Addressing the state-space constraint further 
was necessary for ensuring that only the classical case of 
RL was implemented since the other option would have 
been using deep q-learning or higher RL implementations. 

In the previous studies, SI consistently showed some supe-
rior performance, and this paper was deemed necessary 
to ensure that the classical cases of both algorithms were 
compared eliminating biases based on improved versions 
of either RL or SI. This will establish a baseline against 
which future iterations of the algorithms will be measured 
in the context of this work.

The International Telecommunications Union (ITU) 
defines HAPS as ‘a station located on an object at an alti-
tude of 20 to 50 Km and at a specified, nominal, fixed point 
relative to the earth’ [3]. This region of the atmosphere 
(known as the stratosphere) is characterised by mild wind 
activity suitable for hosting aerial platforms with minimal 
station keeping [4]. From that altitude, HAPS can provide 
persistent communications coverage to ground users 
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while combining the technical advantages of terrestrial 
and satellite communication systems [4–6]. The potentials 
to project large footprints with low signal latency similar to 
terrestrial systems make HAPS quite suitable for commu-
nications services. Furthermore, it can be easily retrieved 
for maintenance, redeployed or refitted with new service 
payloads to meet various operational scenarios, unlike ter-
restrial or satellite systems [2, 7].

Unmanned HAPS can be considered distinct from other 
unmanned aerial vehicles (UAVs) in configuration, applica-
tion and specifically operation altitude; other UAVs may be 
classified as Low Altitude Platforms (LAPs) [8]. Technically, 
HAPS differ from UAVs or LAPs [9], which operate within 
the troposphere, and typically have smaller footprints 
and lower endurance capabilities. The current capability 
for operating unmanned HAPS systems requires about 
two to four operators working on different aspects of the 
system e.g., mission planning, flight control and sensor 
operation; this mode of operation can be described as 
many-to-one ratio [10, 11]. This implies that implement-
ing multiple HAPS with current operator configuration will 
be challenging in both technical and economical terms. 
In a multi-HAPS context, the operational complexity and 
cost will likely scale making the business case for such a 
solution unjustifiable. The implementation of multiple 
HAPS can significantly increase area coverage capacity, 
i.e., through a network of HAPS. Reversing the many-to-
one ratio to one-to-many can be considered a key objec-
tive of the multiple HAPS coordination research. Incorpo-
rating some level of autonomy into the HAPS operating 
framework may mitigate the operating ratio issue. This will 
minimise or in some cases eliminate the use of human or 
manual input for multi-HAPS operations. Some of the con-
tributions of this paper are;

•	 Analysis of the state-space constraint in the multi-HAPS 
problem context.

•	 Performance analysis of RL and SI for multi-HAPS coor-
dination.

•	 Unique insights into challenges with designing and 
implementing RL for coordination.

•	 Highlighting challenges with multi-HAPS coordination 
in the communications coverage domain.

The paper is laid out as follows: Section  1 introduces 
the work and puts it in some context, while Sect. 2 cov-
ers related works and relevant background. Section 3 
addresses key concepts of RL and SI. Section 4 summa-
rises the modelling and simulation methodology applied 
in this work. In Sect. 5, the simulation results and analysis 
are covered in some detail, while Sect. 6 highlights key 
findings. Finally, Sect. 7 draws conclusions on the work and 
considers future work.

2 � Literature review

The key motivation for solving the multiple HAPS coor-
dination problem is to minimise human input in multi-
HAPS/UAV networks, thereby improving efficiency and 
lowering operational cost. In the literature, very limited 
publications addressed HAPS specifically unlike UAV-
themed research. However, reviewing UAV-themed 
publications provided useful context for aligning HAPS 
within the aerial vehicle space. The authors considered 
publications where SI or RL was applied to UAV-based 
scenarios and made useful extrapolations from those. 
The HAPS coordination problem can be abstracted as 
a biologically inspired swarm [12], simulating the HAPS 
platforms as biological agents foraging for food (ground 
users) within the area of interest. The multiple HAPS 
coordination problem also satisfies the general prin-
ciples accepted for modelling the broad behaviour of 
swarms of homogeneous agents, mainly the proximity 
and quality principles which define how swarms develop 
objectives and respond to quality factors like food and 
safety [13]. The RL and SI were deemed suitable solu-
tion candidates for the research problem because of the 
prospect for achieving learning with RL, and the simple 
but powerful SI techniques proven from its use in swarm 
robotics [14]. In the literature, different applications of 
the SI technique to various problems are available, but 
this work addresses only UAV-related applications. For 
instance, Particle Swarm Optimisation (PSO) for coordi-
nating multiple UAVs [15]; swarm intelligence for real-
time UAV coordination for search operations [16]; and 
swarm intelligence-based coordination for UAV swarm 
self-segregation, aggregation and cohesion [17]. Other 
SI approaches include the use of coordination proto-
cols comprising of SDN-based UAV communication 
and topology management algorithms [18]; a proactive 
topology-aware scheme tracking network topology 
changes [19] . Though in the literature different applica-
tions of SI in UAV coordination have been cited, the area 
coverage scenario using fixed-wing unmanned multiple 
HAPS platforms is largely unavailable.

In the RL domain, some relevant applications to the 
problem domain in the literature are distributed Multi-
Agent Reinforcement Learning (MARL) algorithm pro-
posed by [20]; adaptive state focus Q-learning by [21]; 
area coverage control in conjunction with reinforce-
ment learning [22]; application of reinforcement learn-
ing (using Q-learning) to the flocking problem [23]; 
Apprenticeship Bootstrapping via Inverse Reinforcement 
Learning using Deep Q-learning (ABS via IRL-DQN) by 
[24]; and decentralised deep reinforcement learning 
algorithm [25]. It is not the aim of this paper to provide 
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an exhaustive list of all RL based UAV applications but to 
identify implementations that put this work in the right 
context, particularly for multi-HAPS implementations. 
More details of related works have been captured in the 
authors’ preceding publication [26].

Autonomy as a concept has levels and largely con-
tingent on application specifics, function and design 
considerations [2, 7, 27]. There are very few publications 
where the autonomy of HAPS for communications cover-
age has been treated specifically. Giagkos et.al [28] com-
pared different approaches for the autonomous capabil-
ity for unmanned aircraft used for communications. The 
approaches considered were a non-cooperative game 
(NCG) and the use of evolutionary algorithm (EA) to plan 
flying strategies for the unmanned aerial fleet, but the 
vehicles considered in this work were not solar-powered. 
Gangula et al. [8] proposed the application of low-altitude 
platform (UAV) relay for providing end-to-end connectivity 
and applying autonomous placement algorithms. Moraes 
& Freitas [29] considered the development of an autono-
mous and distributed movement coordination algorithm 
for UAV swarms though in the context of communication 
relay networks and exploratory area surveillance missions. 
Choi et al. [30] implemented a new coverage path plan-
ning (CPP) for multiple UAV scenario for an aerial imaging 
use case which differs from a communications area cov-
erage scenario. Stenger et al. [31] highlighted the grow-
ing importance of autonomous operation for UAVs and 
investigated the use of a cognitive agent-based architec-
ture Soar for the decision-making process in autonomous 
systems.

3 � RL and SI—summary of concepts

In RL, a model of the environment is required in model-
based (planned) methods; otherwise, the model-free (for 
explicitly trial-and-error learners) is used [32, 33]. The 
model-based RL approach employs the transition prob-
ability (TP) model, which requires the generation of the 
system’s state transition model. This method can be com-
putationally burdensome, especially for large-scale prob-
lems. However, the model-free approach does not require 
computation, storing and manipulating TPs but uses sto-
chastic approximation [34]. RL problems can be formalised 
with the Markov Decision Process (MDP) framework and 
can be solved using specific approaches or algorithms. The 
three (3) main classes of algorithms that can be used to 
solve RL problems are Dynamic Programming (DP), Monte 
Carlo (MC) and Temporal Difference (TD) Learning [32, 35]. 
TD is a model-free approach that learns directly from expe-
riences by updating state-values as they are visited. This 

means learning on the go, rather than wait till the end of 
the episode (e.g. Q-learning algorithm)

Classical Q-learning was adopted for this work due to 
its universal application and ease of design so far as the 
state-action space is computationally manageable [34]. 
The central idea in the Q-learning algorithm is to store the 
state-action pair value Q(s, a) called Q-values of each itera-
tion as the agents interact with the environment. At the 
beginning of the simulation, the Q-values are initialised to 
zero and stored in a table or an array (each HAPS (agent) 
maintains its own Q-table). The agent visits some state s 
and takes action a, and then transits another state. The 
immediate reward gained from this action is stored and 
the Q-value updated using the following mathematical 
relationship [32, 34];

where r denotes the reward at time t, 0 < 𝛼 < 1 is a given 
learning rate and � is discount factor. The expression is 
used to update the Q-table until the values converge to 
a near-optimal solution. In the simulation carried out, the 
HAPS are defined as agents and user mobility modelled 
as part of the environment and ‘states’ are mapped to pre-
selected and fixed coordinates (i.e. beacons). Though the 
‘states’ are mapped to fixed coordinates, the user distribu-
tion within these states is not fixed but follows the user 
mobility model. The HAPS (agent) could be in one of a set 
of states, {S1, S2, S3, ...Sn} , where Sn is mapped as below

where �, � are the coordinates (latitude and longitude) 
mapped to Sn. The model-free approach applied in this 
work does not require the computation, storage and 
manipulation of transition probabilities but uses stochas-
tic approximation.

The agent can execute two action set:{A1,A2} i.e. ‘Relo-
cate from’ or ‘Remain within’ state Sn;

As mentioned earlier, the ‘states’ are mapped to fixed coor-
dinates, if the decision to ‘relocate from’ a current state is 
taken, the agent transits to an initially randomly chosen 
next ‘state’ (i.e. coordinate), and subsequently greedily 
chosen. Conversely, if the agent decides to ‘remain within’ 
a current state it simply stays within the same coordinate.

Reward (or penalty) signals are fed back to the HAPS 
to reinforce actions that influence goals (e.g., maximise 
user coverage) positively or otherwise. A random walk 
user mobility model was implemented in this work. The 
reward signal is mapped directly to the number of users 

(1)Q(s, a) ≈ (1 − �)Q(s, a) + �

[

r + � maxt+1Q(st+1, at+1)

]

(2)Sn ∶ (�n, �n)

(3)As ∶ {A1,A2}



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:663  | https://doi.org/10.1007/s42452-021-04658-6

(U) covered in each state (s) by the HAPS after taking a 
specific action (a) and is given by;

The SI algorithm applied to this problem was a variant 
of the classical bee algorithm with modifications to suit 
the uniqueness of the application domain. In the context 
of this work, the algorithm was modelled such that the 
HAPS network is abstracted as a swarm (HAPS platforms) 
foraging for food (users) around the simulation scenario. 
Fundamental concepts central to achieving SI are self-
organisation and division of labour [12, 13]; both of which 
are reflected in the logic behind the algorithm. The partici-
pating HAPS in the swarm exchange data as they explore 
the environment were akin to foraging. Theoretically, the 
source quality is measured and is a relation between gain 
and cost given as [36]:

i.e. the gain versus cost computation. This is mapped to 
the computed distance to be travelled (cost) by HAPS in 
relation to the potential number of users that will be cov-
ered (gain).

4 � Modelling and simulation background

The modelling and simulation process or methodology 
used for this research involved aggregating various mod-
els of key elements of the simulated phenomenon. Some 
key models simulated in software are the HAPS flight 
dynamics model, propulsion model, navigation model, 
inter-HAPS link and solar energy model. These models are 
simplified enough to meet the specific scope and interest 
of the research using standard mathematical and physics 
models of aerodynamics and communications without 
compromising theoretical or practical considerations. Fur-
ther reference and details of the modelling and simulation 

(4)r(s, a) ↦ Us

(5)SourceQualityi = (Gaini − Costsi)∕(Costsi)

methodology implemented in this work are covered in [7, 
26, 37].

The parameters in Table 1 describe the HAPS system 
communications and link budget parameters which ulti-
mately defines the profile of the service segment, e.g., 
HAPS communications payload power and link data rates. 
The link budget is based on a payload power of 80 Watts, 
with the simulated HAPS network supporting about 500 
subscribers/users spread over a large area (typical cover-
age density profile for HAPS). In such thinly populated sce-
narios, terrestrial networks would not be economical and 
satellites may be too expensive and ineffective.

5 � Results and analysis

A simulation of four (4) HAPS covering about 500 users 
moving randomly around a specified geographical area 
was performed, with each HAPS in the network carrying 
out its own Q-learning individually. The mobility model of 
the ground users is random and unknown to the HAPS.

Each HAPS is simulated at 20km altitude, 22 degrees 
elevation (angle from the user’s local horizon to the HAPS), 
and 135 degrees HPBW, with a footprint covering about 
7160km2 and the total area of interest covering about 
102,101km2 . The size of the coverage area and the HAPS 
footprint was carefully designed to effectively accommo-
date only 4 HAPS in order to allow room for testing out the 
coordination algorithm. The ground users are randomly 
distributed across the geographical area, and the ultimate 
goal is to maximise user coverage through autonomous 
coordination of the 4 HAPS.

5.1 � Benchmarking and algorithm evaluation

In order to provide a method to validate the algorithms 
and simulation method, a benchmark was introduced. The 
benchmark was to evaluate the performance of the mul-
tiple HAPS network without a coordination algorithm. In 

Table 1   HAPS system 
communications and link 
budget parameters

S/N Item Specification Justification

1 Half power beam width (HPBW) 145 degrees Specific to model
2 Normalised signal to noise ratio (Eb/No) 10 dB Assumed for link
3 EIRP Depends on slant range Power to support 1 

subscriber at edge of 
cover

4 Data rate 10 Kbit/s Desired link data rate
5 HAPS transmitter antenna efficiency 0.75 Assumed for model
6 Ground receiver antenna gain 1 Assumed for model
7 Signal frequency 7 GHz Assumed for model
8 System noise temperature 350K Standard
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this scenario, the HAPS randomly searched and explored 
the environment without any form of coordination or 
logic. This benchmark represents the worst-case scenario 
where no coordination algorithm is applied (‘Do Nothing’ 
approach), the HAPS essentially navigate randomly with-
out cooperating or exchanging information with each 
other. The outcome of this experiment or scenario pro-
vided a means to compare and validate the performance 
of the RL and SI coordination algorithms as applied in this 
work. Also note that in computing coverage, no user can 
be covered by more than one HAPS at a time. This is also 
applicable to the HAPS; this way duplication of coverage is 
avoided. It is assumed in this simulation that hard hand-off 
is implemented in the system (as each HAPS completely 
releases a user, before the next HAPS attaches it). In the 
benchmark scenario, no coordination algorithm is applied; 
the performance of this benchmark approach is shown 
and analysed comparatively with the SI and RL methods 
at the end of this section.

5.2 � RL algorithm—application, simulation 
and results

This section details important aspects of implementing 
the RL technique and provides insight based on the simu-
lation and results analysis. In order to apply the technique 
correctly, all the elements and concepts of the technique 
were analysed and mapped to the HAPS scenario. Ele-
ments such as the state space, action set, reward signals 
and all relevant components of the RL methodology were 
analysed, and insights gained were directly applied. This 
approach enabled the use of empirical means to under-
stand the impact of the parameters on different aspects 
of the algorithm’s implementation.

5.2.1 � Reward signal design and RL hyper‑parameters

The reward signal design is very critical in any RL-based 
implementation. In this work, the reward signal was 
designed to reinforce more user coverage by the HAPS. 
In other words, the reward was directly translated from 
the user coverage metrics. The number of users covered 
by each HAPS in any given state is directly used as the 
reward signal. Essentially, the HAPS evaluated the utility 
of each state and action based on the user coverage met-
ric. Hyper-parameters are those parameters that are fixed 
before the RL algorithm is applied to the simulation. Two 
hyper-parameters critical to the RL algorithm as applied to 
this work are epsilon-greedy ( � ) and learning rate ( � ). The 
discount factor ( � ), which is the third hyper-parameter was 
not necessarily of much significance in the context of this 
work, as the problem scenario by design favoured immedi-
ate rewards over delayed future rewards. Essentially, the 

HAPS prefer to get maximum immediate rewards (higher 
user coverage) over any form of delayed future rewards. 
In other problem domains, the reverse is the case, for 
instance, some games are designed to favour delayed 
future rewards. However, delayed future rewards do not 
benefit the HAPS coordination problem scenario which 
favours very low discount factor; discount factors range 
from 0 to 1. In this work, a discount factor of between 0 
to 0.2 was used. In most experiments, the value was fixed 
at 0, emphasising immediate rewards over delayed future 
rewards. However, in some cases, the hyper-parameters 
were designed to decay over time (parameter tuning) and 
not necessarily fixed. The impact of high and low learning 
rates was tested and based on results parameter tuning 
was adopted where necessary. The details of the reward 
signal design and hyper-parameter tuning were covered 
in a previous paper [1].

5.2.2 � Analysis of state‑space dimension

In this work, the state-space problem was analysed fur-
ther and defined by partitioning the area of interest into 
equally spaced beacons the size of towns or regions identi-
fied by their coordinates. The state-space sizes of 4, 8, 12, 
16, 20 and 24 were arbitrarily chosen and defined as pre-
fixed set of states (see Fig. 1). Essentially, it is like dividing 
up a location into very large regions of 4, 8, 12, 16, 20 or 
24 identified by the unique coordinates of those regions. 
These beacons (or coordinates) remain fixed through-
out the duration of any run of the simulation. The HAPS 
explore the area of interest by visiting the beacons (fixed 
coordinates) storing the ‘value’ of each visited ‘state’. This 
technique reduced the states space to a manageable size 
while leveraging the mathematical and computational 
convenience of using geographical coordinates. In order 
to investigate the impact of state vectors on the perfor-
mance of the algorithm, an experiment was designed to 
run different state-space vectors. Each state-space dimen-
sion was run under the same conditions and the global 
performance measured as shown in Fig. 2.

The global coverage for each predefined state space 
was measured and compared for any statistically signifi-
cant results. The exploration–exploitation dilemma which 
defines the binary decision set of either to explore the 
environment or exploit current location had some effect 
on the results. The dynamics of the exploration–exploita-
tion dilemma is a well-known and critical aspect of any 
RL implementation. The ‘noisy’ coverage plot in Fig. 2 
highlights this phenomenon clearly, as the HAPS explore 
(relocates to new location) or exploit (remains in the same 
location) with varying outcomes on user coverage. The 
HAPS will randomly cover less or more users due to this 
exploration (relocation) or exploitation (remain) decision 
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loop. One challenge of the RL technique is to manage this 
‘dilemma’ by finding the right exploration–exploitation 
balance. Choosing to either explore or exploit infinitely 
will negatively impact the algorithm, as the probability 
of remaining in suboptimal states becomes higher. The 
epsilon-greedy ( �-greedy) hyper-parameter controls the 

exploration–exploitation decision and determines how 
the HAPS balances this decision loop. Due to this noisy 
coverage signal, statistical tools were used to analyse the 
simulation results to establish any statistically significant 
outcomes.

5.2.3 � Analysis of variance (ANOVA) test for RL states 
experiment

To further test the results of the different RL states and 
establish statistical significance in achieved global cov-
erage for each state, an ANOVA test was carried out. The 
ANOVA data in Table 2 show the outcome of the mean 
variability among all the states (groups), i.e. 4, 8, 12, 16, 20 
and 24. The one-way ANOVA tests the null hypothesis that 
all group means are equal against the alternate hypothesis 
that at least one group (state) is different from the other 
states [38]. The data in the ANOVA table (Table 2) show 
the source of the variability (Source), the sum of squares 
from each source (SS), degrees of freedom (df ), mean 
squares for each source (MS), F-statistic (F) and Prob>F 
(p value) [38]. The row of the table provides information 
about variability between the groups (columns) and 
within the groups (error). The F-statistic is used to test the 

Fig. 1   States space sizes of 4, 8, 
12, 16, 20 and 24 (fixed latitude 
and longitude coordinates)
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Fig. 2   Global coverage for 4, 8, 12, 16, 20 and 24 states space

Table 2   ANOVA data—
coverage variance for all states 
space

Source SS df MS F Prob>F

Columns 37293295.26 5 7458659.052 2045.863862 0.01
Error 481213956.3 131994 3645.72599
Total 518507251.6 131999
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significance of any observed variability. The p value is then 
used to decide on the significance of this variability by 
comparing it with the significance level set for the experi-
ment (normally 0.05 or 0.01). Essentially, the p value is the 
probability that F-statistic (F) can take a value that is larger 
than the computed test statistic [38]. For this work, a sig-
nificance level of 0.01 is used; therefore, if the p value for 
the computed F-statistic is smaller than 0.01 (significance 
level), the null hypothesis is rejected. Using a 0.01 signifi-
cance level implies only 1% risk (99% confidence level), 
while the commonly used 0.05 significance level implies 
about 5% risk (95% confidence level). From the ANOVA 
table (Table 2), computed for the RL states experiment, 
the p value is < 0.01, which implies that the null hypothesis 
can be rejected; the alternate hypothesis is, therefore, true, 
i.e. the group mean of at least one of the states is differ-
ent. The box plot (Figure 3) provides graphical assurance 
that the group means are different, though the box plot 
shows the median of the groups (the line inside the box). 
The main aim of the test was to establish that there is a dif-
ference in the performance (group means) of the different 
states. However, to know which pairs of the different states 
(groups) are significantly different, a multiple comparison 
test was carried out (see Fig. 4). This test shows the com-
parison interval between the group means and provides a 
way to statistically and graphically establish which group 
means differ. Two groups are concluded to be significantly 
different if their intervals do not overlap (an overlap indi-
cates no significant difference) [38].

From the comparison test, it can be seen that there is 
no overlap in the graph of the states. Though the states 
space performance showed marginal improvement across 
(group means vary slightly). However, the 12 states space 
vector showed better group mean (about 295 users) com-
pared to the rest. The 16, 20 and 24 states had lower mean 

coverages of about 260, 250 and 254 users, respectively, 
while states space 4 and 8 had slightly better performance 
with a mean coverage of about 280 and 288 users, respec-
tively. The statistical implication of the results and analy-
sis strongly supports the alternate hypothesis that there 
is a difference in performance based on the variance of 
the group means. Furthermore, the multiple comparison 
test provided statistically supported evidence that the 
12-state global coverage output is better with the group 
mean of almost 295 users representing almost 60% global 
coverage. Based on this result 12 states space partitions 
were used as the best case state-space definition within 
the context of this work. The results also suggested that 
coverage performance declined with an increase in the 
number of the states after 12 states i.e. increasing states 
space beyond 12 did not improve coverage. This may be 
explained by the increased proximity of the HAPS to each 
other as the states ‘physical’ size shrunk with increase in 
states. State-space design for HAPS-related problems can 
impact coordination performance and hinder user cover-
age goals as demonstrated by this experiment.

5.3 � SI results and analysis

The results and analysis of the SI-based algorithm imple-
mented for the coordination of the HAPS are explained in 
this section. Applying the SI algorithm in the same sce-
nario with the RL and benchmark techniques will enable a 
fair comparison of their individual performances and capa-
bilities. The behaviour and performance of the SI algorithm 
are captured graphically and analysed accordingly.

Figure 5 shows the behaviour of the SI algorithm over 
an extended run. As demonstrated from the graph, the SI 
algorithm converged to a solution early in the simulation. 
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All the HAPS can be seen rising in coverage from the ini-
tial level at the starting epoch. Each HAPS converged to a 
solution within short periods and maintained consistent 
coverage all through the simulation time.

Unlike the RL method, the SI method was able to con-
verge to a good solution at a relatively short time. The 
global coverage in Fig. 6 clearly highlights this trend.

5.4 � Comparing performance of the algorithms

The sections above have been dedicated to investigating 
and analysing the behaviour of the various algorithms. 
At this point, statistical means will be used to compare 
the performance of the three methods—Benchmark, RL 
and SI techniques. The ANOVA test will be used for analys-
ing the performance of the algorithms. The experiments 
were conducted under the same set of conditions. For this 

comparison, the global coverage was considered as this 
provided a high-level or global-level review of the perfor-
mance of the algorithms.

The SI method converged faster (see Figure  7) as 
recorded in all previous runs. The SI algorithm also main-
tained better mean global coverage at 71%, while RL and 
Benchmark methods posted 51% and 44%, respectively. 
Statistically, the results as shown by the p value of zero (see 
Table 3) are significant with differences in the population 
means. The box plot of the extended run of the experiment 
provided the graphical assurance of the performance anal-
ysis. However, the SI method had a high number of outliers 
indicating that the HAPS at certain points covered an unu-
sually small number of users and may not have attempted 
to relocate to correct this. The reluctance to relocate is due 
to the rules-based minimum distance of the SI-based algo-
rithms. In the SI implementation, the HAPS are not allowed 
to relocate if the minimum distance constraint would be 
violated. As such, the HAPS remain in locations where user 
density may have shrunk due to user mobility. This is one 
area where the random exploration of the RL algorithm 
shows superiority as such suboptimality in coverage will 
be handled differently. This is the reason the RL result has 
far fewer outliers in comparison (Figs. 8, 9).

6 � Discussion

The performance of the RL and SI algorithms as analysed 
earlier is discussed further below:

•	 Convergence: SI algorithm showed consistent conver-
gence behaviour and consistently converged within 
60–90 minutes. The RL algorithm showed weaker 
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convergence behaviour as a result of its exploration 
strategy.

•	 Mean Global User Coverage: The SI algorithm consist-
ently achieved better mean global user coverage of 
more than 70%, while RL recorded about 51%. The SI 
algorithm performed about 20% better than the RL 
technique.

•	 Peak Coverage: The RL algorithm achieved higher peak 
coverage of about 80% mean global coverage (though 
for short periods of time).

•	 Coverage Availability: The SI algorithm maintained bet-
ter coverage availability due to consistent convergence, 
while the RL algorithm had more dips in coverage.

•	 Exploration Policy: The RL algorithm explored the envi-
ronment more and was rewarded with peak coverages 
and equally ‘punished”’ with higher coverage dips.

•	 Exploitation Policy: SI exploited the environment 
aggressively and only explored very minimally.

•	 Comparison with Benchmark: RL and SI algorithms 
achieved higher mean coverage against the bench-
mark. SI performed about 27% better than the bench-
mark, while RL performed about 7% better.

6.1 � RL and SI comparative analysis

The comparative analysis of the RL and SL algorithms 
reveals certain insights about their implementation within 
the multi-HAPS coordination problem context. Some of 
these novel insights are summarised below:

•	 The continuous state-space problem complicates the 
implementation of RL techniques but not a factor in SI 
implementation.

•	 The size of the state-space partition impacts the per-
formance of the RL algorithm, so partitioning size has 
to be carefully selected.

•	 The main factor challenging the convergence of the RL 
algorithm was not the nonstationary stochastic envi-
ronment but the exploration strategy of the HAPS.

•	 The SI techniques have superior convergence profile 
and could improve system reliability, an important fac-
tor for communications use cases.

7 � Conclusions and future work

This work concludes the comparative analysis of the per-
formance of Reinforcement Learning (RL) and Swarm Intel-
ligence (SI) in the Multi-HAPS coordination problem con-
text. In previous papers, the authors have laid out other 
important aspects of this analysis, for instance, reward 
signal designs, hyper-parameter impact on RL algorithms. 
This paper focused on addressing one of the critical 

Table 3   ANOVA data: coverage 
variance—all algorithms 
(extended run)

Source SS df MS F Prob>F

Columns 685948687.9 2 342974343.9 399462.9933 0.01
Error 222543571 259197 858.5885293
Total 908492258.9 259199
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challenges highlighted from previous work, i.e. the con-
tinuous state-space challenge for RL implementation. The 
impact of using some form of partitioning was explored as 
a means of solving the continuous state-space problem. 
This was necessary to ensure that only the classical cases 
of both algorithms were compared.

In the final analysis, it was established from the work 
that SI-based approach performed better than classical 
RL techniques like Q-learning, covering more than 70% 
of the users consistently compared to 51 and 44% posted 
by the RL and Benchmark techniques, respectively. The 
SI algorithm demonstrated more stable and consistent 
results compared to the RL algorithm in the multi-HAPS 
coordination problem scenario; however, it is important 
to highlight the peak user coverage of the RL technique. 
This work reveals that SI may be best suited for the com-
munications area coverage problem where reliability and 
network availability are key.

Future work will consider other variations or implemen-
tations of RL like Deep Q-Learning against SI techniques. 
This will involve going beyond the classical cases of both 
algorithms. The results from this work will serve as a base-
line to measure improvements as higher versions of the 
algorithms are implemented. The rules-based approach of 
SI and its relatively low cost on computation resources will 
provide a good benchmark against learning algorithms 
and associated implementation overheads.
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