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Abstract
In view of developing new materials with enhanced properties, such as nanocomposite (NC) thin films, special interest 
has been given in optimizing the deposition processes themselves. The latter, if well selected, could give the freedom 
to control the NCs synthesis and final properties. Attempting to overcome severe challenges observed when creating 
NC or oxide-based NC film, hybrid approaches combining injection of colloidal solutions and plasma processes have 
been proposed. This review focuses on oxide-based NCs, using as an example the  TiO2 NPs and  SiO2 matrix as NCs, while 
investigating their optical and dielectric properties. Additionally, this review presents the state-of-the-art in processes 
for the preparation of the NCs. The major categories of hybrid approaches coupling sol–gel and plasma processes are 
given. Finally, a comparative study among the published works is provided, aiming in highlighting the impact that each 
approach has on the physical and chemical characteristics of the produced NCs.

Keywords Oxides · TiO2 · SiO2 · Nanocomposite · Thin film · Deposition processes · Hybrid approaches

1 Introduction

Nanocomposites and nanostructured materials have 
gained the attention, as the properties of the resulting 
composite are likely to differ from the original bulk ones 
[1]. They are part of a more general category, the one of 
nanomaterials (NMs). Nanomaterial (NM) is defined as the 
"material with any external dimension in the nanoscale 
or having internal structure or surface structure in the 
nanoscale," with nanoscale defined as the "length range 
approximately from 1 to 100 nm" (ISO/TS 80,004–1:2015).

Nanocomposites are solid materials composed of at 
least two phases among which one exhibits nanoscale 
dimensions [1–3]. The definition of phase refers here to 
a medium for which no abrupt change in composition or 
density is observed. The surface-to-volume ratio due to 
the nanometric objects is very high, and their behavior 

becomes controlled by surface properties rather than by 
volume properties. In addition to this, the interactions 
between the interfaces of the phases become more impor-
tant in terms of dimension and for the resulting property. 
Consequently, the materials can have novel chemical 
and physical properties that depend on the morphology 
and interfacial characteristics of the component materi-
als. Since 1996 and based on a search in Web of Science 
using the keywords  TiO2,  SiO2 and NCs (carried out June 
12, 2020), nanocomposites have been an emerging field 
providing in an exponential rate many scientific works, 
reaching in 2019 a total amount of 15.790 records. Their 
applications are rather broad with some of the most pre-
dominant ones being the packaging, insulations, antimi-
crobial, antireflective, self-cleaning, solar cells, sensors, and 
optics [4–9].
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Due to the versatile configuration these two phase 
materials can have, some works focused in their theo-
retical study, using effective medium theories (EMT) 
[10, 11], volume averaging theory (VAT) [12] or the Lipp-
mann–Schwinger equation [13]. Garahan et al. used the 
VAT model and finite elements to describe the boundary 
conditions of the nanoinclusion shapes, for the effective 
dielectric (κ) and electrical properties and derived the 
effective index of refraction neff and absorption index keff 
of nanoporous materials. These results were used to pre-
dict the behavior of the optical properties of nanocom-
posite materials. It was found out that due to the presence 
of strongly absorbing dispersed phase such as metallic 
nanowires, the effective refractive index was much smaller 
than each of the two continuous or dispersed phases. Rao 
et al. [10], while comparing different EMTs for polymer-
based NCs  (TiO2 NPs, polymer matrix), stressed out that the 
use of the effective medium can hold only when the two 
phases are chemically independent (no chemical bind-
ing between the components). In addition, Lozovski et al. 
[13] indicated that the size of the nanoparticles or more 
generally the filler, the thickness of the nanocomposite 
and the distance the filler is located from the substrate 
can play a key role in the optical absorption of the NC. The 
aim of these studies was to render it possible through this 
theoretical analysis to predict the properties of the final 
NCs, even if they were not implemented and characterized 
experimentally. In detail, it is proposed that knowing the 
tunable parameters that could affect the optical response 
(such as the filling factor, the nature of the NPs and matrix, 
the size and shape of the filler, the thickness of the NC) 
can provide the guidelines for the design of the NCs ori-
ented for the targeted applications. Also, the way (linear, 
parabolic, etc.) that the optical response is managed could 
additionally provide such guidelines.

In this work, a review on the hybrid processes cou-
pling sol–gel and plasma deposition techniques for the 
production of NC thin films is attempted. Initially, this 
review focuses on the interest oxide-based NCs can have, 
using as an example the  TiO2 NPs and  SiO2 matrix. Subse-
quently, the major categories of hybrid approaches cou-
pling sol–gel and plasma processes are given. Finally, a 
comparative study is provided, aiming in highlighting the 
impact that each approach has on the physical and chemi-
cal characteristics of the produced NCs.

2  Oxide‑based NC thin films:  TiO2 NPs 
and  SiO2 matrix

In general, nanoparticles can be classified depending 
on their nature (for example, carbon-based, ceramic, 
metallic, polymeric and semiconductor NPs [14]), size, 

morphology, physical and chemical characteristics, etc. 
Among the different existing dielectric materials,  TiO2, as 
high-κ (dielectric constant > 80 [8, 9]), stable and low-cost 
semiconductor has been identified as an ideal candidate 
for its electrical [15,16], optical [17], dielectric [8, 9] and 
photocatalytic [18] properties. Trying to expand these 
properties,  TiO2 NPs were extensively prepared in differ-
ent configurations [19] and studied especially for cosmetic 
[20], antibacterial [21], solar cell [22–25], self-cleaning [26], 
hydrophobic [27] and dielectric-isolative [28] applications. 
Given the different properties that the nanoparticles can 
have compared to the bulk materials, we gathered in this 
paragraph the effect of nanostructuration on the opto-
electronic properties: band gap, dielectric constant, opti-
cal index, and how they can be adjusted by preparing NC.

It is well known and often observed experimentally that 
when the diameter of the crystallite of a semiconductor 
(SC) particle falls below a critical radius of about 10 nm, 
charge carrier behave quantum mechanically. As a result of 
this quantum confinement, as shown in Fig. 1a), the elec-
tron density of states of nanometric SC materials exhibits 
features which are intermediate between the situation 
of clusters, composed of discrete energy levels, and the 
one of periodic crystalline solids. Thus, the electron struc-
ture is composed of wide bands, namely the valence (VB) 
and conduction bands (CB) separated by the band gap. 
The quantum confinement in nanocrystalline SC induces 
a narrowing of VB and CB, and consequently, this leads 
to the enlargement of the band gap. Those shifts of the 
band edges also introduce a modification of the redox 
potentials associated with these levels [29, 30]. Enright 
et Fitzmaurice [31] predicted the size dependence for 
the energy of the valence and conduction bands, which 
is given in Fig. 1b. Based on this, for anatase nanocrystal-
lites below 10 nm, a decrease in the band gap is observed. 
This decrease is more pronounced for nanocrystallite sizes 
below ~ 5 nm. Above the value of 10 nm, the band gap is 
expected to have similar behavior as the bulk material. A 
sensitive tool to follow the anatase nanocrystallite sizes is 
Raman spectroscopy, and attempts to correlate the size of 
the  TiO2 crystallite with the Raman shift were carried out 
by Pighini et al. [32].

Regarding the dielectric characteristics  TiO2 NPs can 
have, in comparison with bulk materials or different NPs 
diameter, the work of Zhang et al. [33] was one of the earli-
est reports. As shown in Fig. 2, the real part of the dielec-
tric constant �

r

′ was measured in a frequency range of 
 101–105 Hz.

Different size of anatase nanoparticles was used and 
was compared with  TiO2 anatase coarse grains with a 
size of ~ 1 µm. The results indicated that in this frequency 
range, the dielectric constants of  TiO2 NPs have equal 
or larger values than the coarse grain anatase  TiO2. In 
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addition to this, for larger diameter size (in the nanom-
eter range) a higher value is observed especially in the 
low frequencies. In this frequency range, this effect origi-
nates from the polarization of the dielectric materials 

based on interfacial and space charge mechanisms. Hence, 
under the action of an external electric field, positive and 
negative space charges in the interfaces move toward 
negative and positive poles of the electric field, respec-
tively. As a consequence, for coarse-grain  TiO2 NPs (large 
domains), the number of interfaces is very small and the 
space charge polarization becomes too weak to have an 
impact. Contrary to this, for small nanoparticles (nanome-
ter range), the volume fraction of interfaces is much larger, 
so that the contribution of space charge polarization in 
interfaces to �

r

′ becomes large enough to enhance the 
dielectric constant. These findings were later verified by 
other authors [34–36]. Specifically, it was observed that for 
several materials such as aluminum oxide, titanium oxide 
and silicon dioxide, the relative dielectric constant is 10 
times higher for the nanoparticles in powder compacts 
than for the bulk materials [36].

Conventional dielectric materials are ceramics with 
large dielectric permittivity, coupled with high stiffness 
and excellent thermal stability. However, their applicabil-
ity for passive components such as capacitors is largely 
impeded by their small breakdown strength and challeng-
ing processing conditions. Observing that these materi-
als can exhibit enhanced characteristics in the nanoscale, 
attempts were carried out to disperse them as fillers in 

Fig. 1  a Molecular orbital (MO) model for particle growth of N 
monomeric units. The spacing of the energy levels (i.e., density of 
states) varies among systems. Reproduced with permission from 
[29],  copyright 1995 ACS Publications. On the left-hand side of the 
scheme the bands of Q-size particles become narrower compared 

to the bulk semiconductor. b Theoretical prediction of the Eg band 
gap as a function of the particle radius. With bars, the experimen-
tally determined changes in the energy of the valence and conduc-
tion band edges are plotted. Reproduced with permission from 
[31], copyright 1996 ACS Publications

Fig. 2  Spectra of dielectric constant as a function of the frequency f 
at room temperature for nano-TiO2 with various particle diameters 
d. Anatase: (o) d = 9.8 nm, (⧊)14.4 nm, (•) 17.8 nm, (x) 28.5 nm, ( +) 
coarse grains (~ 1 µm). Reproduced with permission from [33],  cop-
yright 2006 John Wiley and Sons Publishing
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matrix materials. The aim was to capitalize the high per-
mittivity of such nanoparticles with the good electrical 
strength of the matrix resulting in the creation of nano-
composites with novel properties. Many works use poly-
mer matrices as they exhibit high electrical strength, flex-
ibility and can be easily processed [37]. The drawback of 
these polymer matrices is that they lack in transparency or 
in high mechanical strength. Therefore, inorganic matrixes 
such as silica are a good alternative as they can exhibit 
significant isolative properties (high electrical strength), 
high mechanical strength and optical properties such as 
transparency in a broad spectral range.

Since 2014, approximately 892 publications including 
the keywords of  TiO2,  SiO2 and nanocomposites have been 
reported. The most cited applications of these works are 
regarding photocatalytic and antibacterial or dielectric 
and optical applications. Focusing mainly on the  TiO2–SiO2 
nanocomposites  (TiO2 NPs,  SiO2 matrix), Sarkar et al. [38] 
attempted to investigate the  TiO2–SiO2 nanocomposite 
thin films elaborated by sol–gel. In this specific work, the 
size of the nanoparticles was varied from ~ 1 to 22 nm. 
At the same time for the larger NPs, a higher concentra-
tion of the Ti content was successfully achieved. Current 
density–electric field (J-E) measurements showed that for 
all the NPs sizes an ohmic conduction is observed in the 
low field. However, depending on the size of the  TiO2 NPs, 
their low field resistivity was found to decrease by a fac-
tor of  102 (from 2.2  1012 to 2.2  1010 Ω cm) for the larger 
sizes. The explanation given by the authors was that in 
these cases a percolated network of  TiO2 nanoparticles is 
created, controlling its conductivity. For higher electrical 
fields, as expected all compositions exhibit space-charge 
limited behavior. For the nanocomposite with NPs sizes as 
low as ~ 1 nm, some oscillations were observed and this 
phenomenon was attributed to the single electron tun-
neling effect (SET) caused by the small nanocrystallites 
isolated inside the amorphous silica matrix having a wide 
band gap.

In recent years apart from studying the electrical 
response of such nanocomposites, nanoparticles have also 
been used to make transparent nanocomposite structures 
having high refractive indices. If the NPs are small com-
pared to the wavelength of light, scattering is avoided, and 
the nanocomposites are transparent even at high nano-
particle filling factors. Hence, it is possible for the refrac-
tive index to be tuned over a wide range by changing the 
filling factor and type of filler [12, 39, 40]. Following this 
direction, Kermadi et al. examined the optical characteris-
tics of sol–gel-derived  TiO2–SiO2 NCs with varying compo-
sition. The size of the  TiO2 NPs was between 4 nm for low 
fraction of  TiO2 in the NC and increased up to 10 nm for 
higher compositions. Using ellipsometry and Lorentz-Lor-
entz effective medium approximation this author showed 

that as the fraction of  TiO2 increases the refractive index, 
and in addition, the porosity of the film increases [41, 42]. 
In a similar way, Lopes de Jesus et al. [43] investigated both 
the porosity and the effective refractive index of the films 
using sol–gel-derived  TiO2-SiO2 NCs. Using Bruggeman 
effective medium approximation, it was possible to show 
the modulation of the refractive index (from 2.08 to 1.44 
at λ = 633 nm), by varying the composition of the NC or its 
thickness (layered deposition with dip casting).

Based on these findings, the ability to choose the nature 
of the nanoparticles and more importantly their filling fac-
tor and size in the matrix is of great interest, as both the 
electrical and optical characteristics of the nanocomposite 
can be tuned in a controlled manner.

3  Processes for the preparation 
of nanocomposite thin films 
and nanomaterials

One of the most significant challenge in the develop-
ment of such nanocomposites is the control of the growth 
mechanisms, the final morphology and the spatial distri-
bution of the nanoparticles using reproducible, versatile 
and low-cost processes. Since nanocomposites and nano-
materials are an emerging scientific and industrial field, 
several approaches enable their production. A good dis-
crimination could be the bottom-up and top-down ones 
[44].

In this section, we have decided to separate the pro-
cesses for the creation of nanomaterials in three general 
categories: approaches involving the precursors to be 
processed in (i) the liquid phase, (ii) the gas phase and 
(iii) both the liquid and gas phases. We denote the latter 
process the hybrid approach since it is coupling the two 
previous ones.

3.1  Liquid‑phase processes

The term “liquid phase” is used, to describe the condition 
when wet chemistry is carried out for the fabrication of the 
nanomaterials. One of the most widely used process for the 
creation of nanomaterials is sol–gel. The sol–gel process is a 
chemical synthesis that starts from an ionic or a molecular 
compound and forms a three-dimensional network through 
oxygen or hydroxyl bond formation between the ions and 
the release of water or other small molecules. Some advan-
tages of this technique are the low temperature during the 
process, the widely used precursors and the reproducibility. 
On the other hand, when drying (to create nanocomposite 
films), nanoparticles may be released arising several toxicity 
issues [20, 36]. In case films are targeted, drying needs to be 
perfectly controlled in order to avoid cracks.
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In more detail, sol–gel process is a chemical method 
which is based on hydrolysis and condensation reactions 
[44–47]. With the correct amount of reactants, nanosized 
particles nucleate. There are three basic steps in the 
sol–gel process: a) the partial hydrolysis of the reactant 
that can be metal alkoxides (a widely used precursor given 
as an example here) to form reactive monomers, b) the 
condensation of these monomers to form colloid-like poly-
mers (sol formation). At this step, the hydrolysis and con-
densation reactions lead to the formation of solid particles 
that are suspended in the liquid, a so-called sol. Depend-
ing on the surface charge of the objects, the sol is stable if 
the zeta potential lies above 30 mV in absolute values. As 
the third step, the particles contain on their surface groups 
still active in condensation steps, and therefore, they cross-
link to a gel. The latter is defined as a solid network that 
contains liquid in its pores [48]. The last step involves dry-
ing the gel. Consolidation can be obtained by annealing at 
high temperature if densification is needed to lead either 
to films, fibers or powders.

Figure 3 shows schematically all the steps needed to 
acquire a nanomaterial through sol–gel. As this technique 
has been investigated since the middle of the nineteenth 

century [49], there have been, as expected, numerous 
reports. Focusing on the materials of interest, meaning 
 TiO2 and  SiO2, such reports target mainly on their photo-
catalytic [50–54], antireflective [24, 53, 55], hydrophobic 
[56, 57] and dielectric [38] properties. To attain the final 
nanocomposite, three main experimental processes were 
followed. There are preparation of two different sols and 
the mixture of them [24, 51, 52, 58], the preparation of  TiO2 
sol and the mixture with an alkoxide such as tetraethoxysi-
lane (TEOS-  SiO2 precursor) [55–57] or the mixture of  TiO2 
NPs inside the TEOS precursor [54]. The deposition of the 
produced nanocomposite sol–gel is taking place through 
spin coating, dip casting or drop casting.

3.2  Gas‑phase processes

The term “gas phase” is used, to describe the state of the 
precursors in these processes being in a vapor or initially 
solid state inside the reactor/system.

Fanelli and Fracassi divided these processes in three 
categories. First, systems that use the same chemical 
source and strategy for the creation of NCs. This could 
be for example one plasma-enhanced chemical vapor 

Fig. 3  Different sol–gel process 
steps to control the final 
morphology of the product. 
Adapted from [59, 60]
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deposition (PECVD) system using a mixture of precur-
sors. This may lead in the production of mixed oxide one-
phase films, rather than a nanocomposite. In case these 
processes take place separately, then for instance  TiO2 
NPs could be deposited through atmospheric pressure 
plasma-based systems [61–64] and  SiO2/SiOX matrices 
through low-pressure plasma-based ones [65–69]. Sec-
ond, the deposition using two independent chemical 
sources with one strategy such as co-sputtering [70], or 
co-evaporation [71]. Finally, the third category, where 
separated strategies and different sources are being 
followed. Over the last years, this category was proven 
more versatile in regard to the nature of the NPs and the 
matrix, thus focusing more the attention of the scientific 
community. Hence, for the elaboration of nanocompos-
ite films through this category of processes, a combina-
tion of deposition systems is used for the simultaneous 
or step-by-step creation of the NPs and the matrix. For 
instance, in the past, several works involved the com-
bination of physical vapor deposition (PVD) and the 
plasma-enhanced chemical vapor deposition (PECVD) for 
the simultaneous deposition of the NPs and the matrix 
accordingly [72–75]. For the deposition of the NPs, sput-
tering-deposition techniques have been utilized such as 

DC glow discharges, capacitively coupled RF discharges, 
DC/RF magnetron plasma sources. Typical examples of 
successfully developed films consisting of metallic (e.g., 
Ag, Au, Pt, Ti) or metal oxide (e.g.,  SiO2,  TiO2, ZnO) NPs 
embedded in a large variety of polymeric matrices have 
been reported through these approaches [39].

More recently, gas aggregation nanocluster sources 
(GAS) have been used for the preparation of metal [76–82] 
or metal oxide nanoparticles such as  TiO2 ones [83–86], 
mainly based on vacuum metal evaporation or magnetron 
sputtering. This takes place in an aggregation chamber 
enclosed by an orifice through which the expanding gas 
(usually an inert gas such as Ar or  N2) carries the clusters 
into the low-pressure deposition chamber (typically ultra-
high vacuum one) [87]. This process can then be used for 
the synthesis of the matrix using for instance plasma pro-
cesses or using another magnetron configuration to create 
core–shell nanoparticles.

An example of gas-phase approaches is given in Fig. 4. 
In this figure three different experimental strategies are 
followed for the creation of Ag/plasma polymer nano-
composites: in Fig. 4a, the simultaneous sputtering and 
plasma polymerization of the NCs, in Fig. 4b the deposi-
tion of the NCs from two independent magnetrons (having 

Fig. 4  Different approaches for 
the production of Ag/plasma 
polymer nanocomposites: a 
simultaneous sputtering and 
plasma polymerization, b 
deposition from two inde-
pendent magnetrons and c a 
combination of a gas aggre-
gation  source and plasma 
polymerization. Reproduced 
from [88], open source MDPI 
Publishing
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the possibility to adjust the experimental conditions/char-
acteristics both of the NPs and the matrix) and in Fig. 4c 
a combination of a gas aggregation source and plasma 
polymerization.

Some appealing characteristics of these gas-phase 
approaches are the high purity of the synthesized NPs and 
the environmentally friendly character (since no solvent or 
liquid precursors are needed). Contrary to that, the con-
trol of the NPs’ characteristics is dependent on the system 
parameters with a small freedom for parameterization.

3.3  Hybrid approaches coupling liquid‑ 
and gas‑phase processes

Several liquid- and gas-phase processes aim in the elabo-
ration of nanomaterials or nanocomposite thin films. The 
drawback of liquid-phase processes such as sol–gel is 
related to its multiple steps until acquiring a nanocom-
posite thin film as well as the toxicity that the NPs can have 
during the drying of the film [44]. Moreover, through gas 
phase processes, it has been shown that a combination of 
vacuum techniques is being used. This allows the simul-
taneous creation of the nanoparticles and optionally the 
matrix without the actual manipulation of the nanopar-
ticles by the user. Unfortunately, the size, form and other 
parameters of the produced nanoparticles are difficult to 
control.

Hence, recently, an increasing trend has appeared 
from the scientific community aiming to the production 
of nanomaterials or nanocomposite thin films, by combin-
ing liquid- and gas-phase processes. This is attempted by 
creating an aerosol of the NPs colloidal solution or directly 
injecting the colloidal solution inside a gas-phase system. 
The flexibility offered by aerosol-assisted deposition pro-
cesses, in respect of those in which NPs are generated 
in situ, mainly resides in the possibility of using many pre-
formed NPs in combinations with any compatible conven-
tional precursor [39].

The challenging part in approaches like these mainly 
lies in the droplet or aerosol production. Hence, a specific 
system will be needed to allow this droplet production in 
atmospheric or low-pressure gas-phase systems. Thanks 
to the spray drying [89, 90] techniques, spray pyrolysis 
[91–93] or analytical techniques, such as inductively cou-
pled plasma optical emission spectrometry and mass 
spectrometry (ICP-OES, ICP-MS) [94–98], the adaptation 
of these systems could be possible. Several droplet gen-
eration techniques exist involving different driving force to 
assist the droplet formation such as vaporization, pressure, 
centrifugation, electrostatic forces and ultrasonic atomiza-
tion [89].

In this section, these hybrid configurations will be intro-
duced, being categorized by the working pressure of the 

gas process system (atmospheric or low pressure). At the 
end of this section, an accumulative table with the hybrid 
approaches used and the film characteristics will be given 
in order to make a qualitative assessment of the produced 
films.

3.3.1  Atmospheric pressure‑based systems

Several attempts have been published over the past ten 
years aiming in the deposition of either nanoparticles only 
or nanocomposite thin films using hybrid approaches. In 
this part, some of the atmospheric pressure configurations 
will be analyzed along with their injection system. Three 
main categories were reported in the literature: The Sus-
pension Plasma Spray, the systems using non-equilibrium 
atmospheric pressure Plasma Jets and the ones using die-
lectric barrier discharges (DBD).

Regarding the first category, the Suspension Plasma 
Spray [99–102] utilizes the high-temperature and high-
velocity plasma jet to melt and spray nanometer-sized 
nanoparticles. Each drop of the liquid stream is frag-
mented into droplets (< a few μm), which, after vaporiza-
tion of the liquid phase, result in nano- or sub-microm-
eter-sized melted or partially melted particles, forming 
nanostructured coatings [101]. This process resembles the 
one of spray pyrolysis with the difference that the heat 
comes from the plasma (temperature up to 10,000 K) and 
not from a furnace. The resulted films have a melted like 
appearance with polydispersed in size-deposited particles.

Moreover, the approaches using non-equilibrium 
plasma jet configuration usually involve a system where 
the working gas along with the matrix precursor and the 
nebulized liquid is fed to the plasma jet [103–105]. For 
instance, as described by Liguori et al. [105] and given 
schematically in Fig. 5, at the same time the solution con-
taining NPs is injected into the plasma source through the 
primary channel. Simultaneously, a second flow of Ar is 
introduced in a nebulizer system containing the disper-
sion of Ag NPs in ethanol (EtOH). The so-formed aerosol is 
injected into the plasma source through the secondary gas 
channel. The resulted films were polymerized polyacrylic 
acid (pPAA) and silver nanoparticles (around 100 nm in 
size) having antimicrobial applications, a SEM image of 
which can be seen in Table 1 [90].

Since 2006 many reports involve the dielectric barrier 
discharge (DBD) systems, for the injection of the colloidal 
solution and the deposition of nanomaterial thin films 
[39, 106–114]. For the efficient preparation and injection 
of the liquid solution containing NPs, two main systems 
were used, which are the nebulizer and the atomizer. In the 
case of the nebulizer, the flow rate of the colloidal solution 
is fed to the nebulizer through its regulation by a syringe 
pump. There the carrier gas for the production of the 
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aerosol is introduced, and based on the Venturi effect, an 
aerosol is generated at the outlet of the nebulizer [115]. In 
the case of the atomizer, compressed air expands through 
an orifice to form a high-velocity jet. At the same time, 
the liquid is drawn into the atomizing section through a 
vertical passage and is then atomized by the air jet [116]. 
Recently, using a DBD system with a nebulizer, Profili et al. 
[110–113] reported several experiments for the deposi-
tion of nanocomposite thin films using the DBD reactor 
given in Fig. 6. This group attempted the deposition of 
 TiO2 NPs only or nanocomposite thin films through vari-
ous approaches such as dissolving the NPs inside the hexa-
methyldisiloxane (HMDSO) liquid and injecting it in the 
system (see Table 1, Ref 96 for the SEM images) or in a two-
step approach injecting first the colloidal solution of NPs 
(see Table 1, Ref 95 for the SEM images) and second the 
 SiO2 matrix (introducing the vapor in the plasma).

3.3.2  Low‑pressure‑based systems

A small number of scientific reports have been published 
involving low-pressure physical systems. This could be due 
to the fact that handling of aerosols or liquids at low pres-
sure is challenging. These challenging conditions can be 
for instance the reactor contamination, especially when 
working at room temperature, the degradation of the tur-
bopump lifetime and plasma perturbation (if there is use 
of plasma) due to pressure variation caused by the solvent 
vaporization [39, 117]. Two main categories will be given 
here, the thermally activated vacuum techniques such as 
the chemical vapor deposition (CVD) and the ones based 
on PECVD. Due to the scope of this work, the main focus 
will be given at the low-pressure plasma systems used and 

their configuration to produce nanomaterials through this 
hybrid approach.

Some works involve the combination of the CVD sys-
tems with a direct liquid injector to produce nanomaterials 
[118–120]. An example of the configuration based on the 
direct liquid injection of the solvent containing nanopar-
ticles is given in Fig. 11a.

As observed in this scheme (Fig. 7a), the injector has 
been positioned at the top of the reactor facing the rotat-
ing substrate holder which is heated at 150 °C. This results 
in the deposition of gold nanoparticles whose size was 
found to depend on the flow rate of the injected solution 
(containing NPs). AFM scan of the deposited gold nano-
particles is given in Table 1, [105]. The gas used for this 
approach was  N2, in order to avoid any reactions with the 
gold NPs. In Fig. 7b a detailed diagram of the injection sys-
tem is given, being comprised of an atomizer and a heated 
chamber. This allows the production of the aerosol with 
the help of a carrier gas.

Additional works have been found using a similar direct 
liquid injection (DLI) system for CVD [121–123] and atomic 
layer deposition (ALD) [124, 125] systems but without 
though the presence of nanoparticles in the injected liq-
uid. They only capitalize the DLI process to atomize the 
injected liquid, vaporize it and generate the reactive vapor.

The first report using a low-pressure plasma system, 
aiming at the simultaneous injection of the NPs in a solu-
tion and the injection of the matrix precursor using the 
PECVD technique, has been proposed by Ross et Gleason 
[126] in 2006. These authors report that the atomization of 
the solution is accomplished by a 40 kHz ultrasonic atom-
izer (Sonics and Materials, model VC134-AT with custom 
probe) located at the top of the reactor. The ultrasonic 
atomizers are based on the vibration of a quartz at high 

Fig. 5  Experimental setup 
of the plasma co-deposition 
process. Reproduced with per-
mission from [105],  copyright 
2015 John Wiley and Sons 
Publishing
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frequencies, typically 1–4 MHz. Vibrations created cause 
the surface liquid film to burst into very fine droplets. How-
ever, these devices are used in the case of a large flow of 
suspension. Through a distribution ring, the matrix precur-
sor (HMDSO) was introduced inside the reactor. The pro-
duced plasma was created using  O2 as a working gas and 
an RF power supply as shown in Fig. 8.

The plasma was pulsed at an on–off rate of 10–40 ms, 
with a peak power of 300 W. For the deposition, the pres-
sure was maintained between 100 and 500 mTorr. The 
resulting films were polystyrene nanospheres with 96 nm 
diameter embedded inside the carbon-doped silicon diox-
ide matrix (see Table 1, [111]). An interesting observation 
from this work was the appearance of droplets formed at 
the surface of the film. Hence, the first attempts investigat-
ing how the volatility of the solvents can improve this phe-
nomenon were established using water, ethylene glycol 
and labeled dextran (for fluorescent microscopy).

Three years later, in 2009, Ogawa et al. [127] reported 
a complete experimental study of directly introducing 
the liquid inside the low-pressure Ar capacitively coupled 
plasma (CCP) powered by an RF power supply (Fig. 9). This 
was established using a Denso fuel injector (23,209-0D040) 
in a pulsed mode and a produced droplet diameter esti-
mated at 50 µm. The deposited Fe nanoparticles (brown 
rings) using this approach can be seen in Table 1, [114].

Furthermore, as discussed in a relative recent review of 
Bruggeman et al. [117] on plasma–liquid interactions, both 
the impact of the plasma to the droplets and vice versa has 
been poorly understood and studied. Ogawa’s study was 
the first attempt to refer to the term “misty plasmas,” being 
plasmas that contain liquid droplets. This term was first 
proposed by Coppins [130, 131] in 2004. Coppins stated 
also that these misty plasmas would not differ significantly 
from the dusty plasmas (plasma containing millimeter 

to nanometer particles) but that the liquid state of the 
droplets could allow droplet deformation and make sur-
face tension forces more important. On this basis, Ogawa 
attempted the creation of a model describing the energy 
fluxes entering and exiting the droplet under the specific 
plasma conditions. Using this model and the energy bal-
ance equation he was able to determine the parameters 
affecting the droplet evaporation in this low-pressure 
medium. Finally, in a following work [128] he investigated 
the transient effects caused by the liquid injection on the 
same low-pressure plasma.

Recently, Clergereaux’s group [132, 133] reported a new 
safer-by-design method for NC thin-film plasma deposi-
tion. This method allowed them to synthesize NPs from 
organometallic precursor in the reactor–injector prior to 
their injection in the RF low-pressure (750 mTorr) plasma 
reactor. The resulted nanocomposites consisted of small 
(6 ± 3 nm) and isolated (i.e., non-aggregated) ZnO NPs 
homogeneously dispersed in an amorphous hydrogen-
ated carbon matrix (SEM image in Table 1, [117]). As seen 
in the top of Fig. 10, they were able to control the chemical 
synthesis of the NPs inside the reactor on Tabinjector and 
the characteristics of the deposition were controlled by 
the low-pressure plasma reactor. During this work, studies 
to investigate the pulsed injection impact on the plasma 
were carried out.

As for the most recent reports, our group [134] 
attempted for the first time the pulsed injection of the 
colloidal solution (laboratory-made) [135] [136] in much 
lower-pressure plasma system such as 3 mTorr. The objec-
tive of this study was to elaborate  TiO2-SiO NC thin films 
though a versatile and agile hybrid process. The interest 
of very low pressure in terms of plasma species lies in the 
possibility to finely control the growth of the silica matrix 
which exhibits a high optical quality. To achieve the NCs 
synthesis, in a low-pressure PECVD system, a Kemstream 
liquid doser was mounted as shown in the experimen-
tal setup provided in Fig. 11a, b. The injection sequence 
was optimized to allow the solvent to be fully oxidized 
and the pressure to be maintained in a low range. Each 
sequence lasted one minute during which N pulses of 
1 ms injection separated by 2 s OFF time were performed, 
with N = 0, 2, 10, 30. This sequence was repeated for a 
controlled duration. The cross section of the film (see 
Table  1, [119]) revealed a fairly homogeneous distri-
bution of the NPs inside the matrix, at the local scale. 
Among others, the most prominent and promising result 
from this work was the fact that adjusting the parameters 
of the injection sequence (from N = 2 to N = 30), NC films 
with lower and higher  TiO2 NPs content (7–53%) and thus 
different optical properties (refractive index 1.50–1.74) 
could be achieved.

Fig. 6  Schematic of the dielectric barrier discharge reactor used 
for the growth of nanocomposite thin films in the works [110–113]. 
Reproduced with permission from [111],  copyright 2016 AIP Pub-
lishing
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3.3.3  Characteristics of the produced nanomaterials 
through the hybrid approaches

Due to the originality of this hybrid approach coupling 
the gas and liquid phase processes, Table 1 is produced, 
indicating a majority of the works since 2006. In this table, 
details regarding the process parameters, the system used, 
the precursors and working pressure are given. Moreover, 
the characteristics of the produced films and the evolution 
of the NPs size upon deposition are discussed.

A first observation from this table is that the majority 
of the provided works were conducted at atmospheric 
pressure. This could be linked to the relative easier setup 
as there is no turbomolecular pump and the injection of 
the aerosol is facilitated by the geometry of the system 
and the gas flow configuration. The preponderant use 
of DBD configurations over plasma jets could be linked 
to the lower temperature the first exhibits, and the pos-
sibility to deposit over higher surface area. Additionally, 
DBD have the unique and main advantage of being cold 
plasmas (namely out of local thermodynamic equilibrium) 
created at atmospheric pressure, in other words, a lot of 
similarities with low-pressure plasmas but without huge 
pumping device. It remains nevertheless one difference 
between low-pressure plasmas and DBD, due to high pres-
sure which is the low ion energy and very small mean free 
paths which limit the possibility of depositing dense films 
and can limit the homogeneity (in terms of thickness and 
composition, independently of the NC dispersion). On the 
other hand, it is suited for deposition on planar substrates 
but not on other geometries. An issue occurring frequently 
in these works is the agglomeration of the initial NPs upon 
deposition. Some more recent works, such as from Pro-
fili et al. [113], investigated the impact of the AC voltage 
parameters of the DBD power supply on the deposited size 
distribution of the NPs. In addition to this, regarding the 
low-pressure system Vervaele et al. [120] showed that for a 
low-pressure CVD system, the mass flow rate of the intro-
duced solvent significantly affects the size of the deposited 
NPs. Furthermore, three general categories of experimen-
tal strategies were identified for the production of nano-
materials. First, the NPs colloidal solution was injected 

Fig. 7  a Schematic of the process chamber. b Schematic of the Kemstream Vapbox 1500 injection head. Reproduced with permission from 
[120],  copyright 2016 AIP Publishing

Fig. 8  Reactor configuration for simultaneous plasma-enhanced 
deposition of matrix material and ultrasonic atomization deposi-
tion of particles. Reproduced with permission from [126],  copy-
right 2006 John Wiley and Sons Publishing
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only in the plasma system for the deposition of NPs. In 
this scenario, when the solvent is organic, a carbon-like 
matrix could be observed surrounding the NPs. Second, for 
the creation of NC thin films, the NPs were dissolved in the 
liquid precursor of the matrix. Third, the deposition of the 
matrix precursor and the NPs took place from two separate 
sources. Three works were identified with the latter experi-
mental strategy. The first by Profili et al. [110] where two 
steps were followed, namely the deposition of the  TiO2 NPs 
(from the aerosol) and after the injection of the HMDSO 
vapor precursor in the DBD reactor. The created film was 
a layered nanocomposite. The second work was from Ross 
et Gleason [126] where the colloidal solution with the NPs 

was injected simultaneously with the HMDSO vapor pre-
cursor in the low-pressure (100–500 mTorr) plasma reactor 
(RF CCP). The third work was from our group [134] where 
the  TiO2 NP colloidal solution was introduced simultane-
ously with the HMDSO vapor precursor of the matrix in the 
low-pressure 3 mTorr  O2 plasma reactor (RF ICP).

From the characteristics regarding the produced nano-
materials in Table 1, it appears that the majority of the 
works have an organic matrix. This could be linked with 
the transient effects happening during the liquid vapori-
zation (pressure variation, discharge perturbation, etc.) or 
the released organic species that can affect the inorganic 
quality of the deposited matrix (in case it is preferred for 
the application of the produced films). Finally, the concen-
tration of the distributed NPs has propelled the curiosity of 
the researchers. For the majority of the works the NPs con-
tent remains in low levels (less than 5%). Brunet et al. [114] 
attempted to control the coverage percentage through 
the power supply frequency of the DBD (adjusting the 
process), whereas Fanelli et al. [109] chose to increase the 
NPs concentration in the solution (by adjusting the precur-
sor). Finally, we [134] showed that it was possible through 
a specific approach and particularly by optimizing the 
sequence of injection to tune the  TiO2 NPs content up to 
58% while achieving tunable optical properties of the film.

4  Conclusion

The aim of this review paper was to gather novel 
approaches for the deposition of NC thin films, based 
on the coupling of liquid- and gas-phase deposition 
processes. While oxide-based NC thin films (such as 
 TiO2–SiO2 NCs) have several attractive applications, 
most of the works discussed in this review also include 
an organic matrix. This is linked to the novel character of 
these approaches and the complex phenomena induced 
when liquid and more specifically an organic solvent is 

Fig. 9  A schematic diagram of 
the experimental apparatus 
used in [127–129]. Reproduced 
from [129], Open Access IOP 
Publishing

Fig. 10  Reactor–injector and RF low-pressure plasma system used 
by Carnide et al. Adapted with permission from [132]
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introduced in gas-phase deposition systems. From this 
detailed comparative overview, the challenges and dif-
ficulties to develop NC films, retaining the initial mono-
dispersity in size of the NPs, with controlled composition 
and homogeneous NPs dispersion in the matrix through 
plasma-based hybrid processes are clearly highlighted. 
Additionally, it is evidenced that approaches like these 
lack in computational and theoretical studies, which can 
be proven crucial for the optimization of the reported 
experimental setups. Finally, the paramount objective of 
these approaches is the ability to create an agile process, 
through which it can be possible to tune and adjust the 
properties of the NC film, with a high degree of freedom.
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