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Abstract
This paper addresses the m-machine no-wait Flow Shop Scheduling with Setup Times (NW-FSSWST). Two performance 
measures: total flow time and makespan are considered. The objective is to find a sequence that minimizing total flow 
time ( 

∑

Cj ) and makespan ( Cj ) simultaneously. A Hybrid Genetic Local and Global Search Algorithm (HGLGSA) is proposed 
to solve the NW-FSSWST for two performance criteria. The hybrid genetic algorithm is constructed by insert-search and 
self-repair algorithm with self-repair function. The proposed HGLGSA is tested on 192 benchmark problems of NW-FSS-
WST in the literature. A full factorial experimental design is made for determined the best parameter sets that improve 
the performance of the proposed algorithm. The computational results are compared with the benchmark solutions 
from the literature. The experimental results demonstrate the effectiveness and efficiency of the proposed HGLGSA for 
solving NW-FSSWST.

Keywords  Hybrid genetic algorithm · No-wait flow shop scheduling · Total flow time · Makespan · Local search · Global 
search · Self-repair · Insert-search

1  Introduction

Scheduling is a highly effective method for modeling 
industrial production processes [1]. No-wait flow shop 
problems are specific forms of flow shop problems. In flow 
shop problems, parts flow through serial machines. While 
some parts are processed in a certain machines, others 
might be skipped those machines. In a no-wait flow shop 
scheduling problem, a certain process of a job needs to 
be conducted uninterruptedly from the beginning of the 
process to the end of the process [2]. No-wait scheduling 
has many applications in real-world such as flight, train, 
and surgery problems.

Minimizing total flow time in a no-wait flow shop 
environment attracts the attention of many researchers. 
To minimize the work-in-process inventory by using the 

total flow time as a criterion in no-wait scheduling prob-
lems is meaningful for today’s production environment 
due to stabilizing usage of resources [3]. Besides, the 
makespan criterion is directly related to resource utiliza-
tion. The makespan performance is the most commonly 
used as a criterion for the no-wait scheduling problems. 
In this paper, two performance measures: total flow time 
and makespan are considered. The makespan is defined as 
the completion time of the last job on the last machine. 
The total flow time is defined as a sum of the completion 
times of all jobs.

The no-wait flow shop scheduling is an NP-hard prob-
lem with a single objective if the number of machines is 
more than two. In this research, total flow time and makes-
pan performance measures are considered for NW-FSS-
WST problems. For solving the NW-FSSWST problems, the 
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genetic algorithm is hybridized. A genetic algorithm (GA) 
is an effective population-based meta-heuristic method 
for solving combinatorial optimization problems. But, GA 
has got some disadvantages steps during the run time. For 
example, GA can sticks into local optima, after a few solu-
tion steps. To eliminate this disadvantage of GA, improve 
its performance, and reducing search time a hybrid 
method is proposed. The GA is hybridized by the insert-
search and self-repair method. These hybridize methods 
are refining the search space and performing local explora-
tion. Insertion-search is used as a local search procedure. It 
searches a small neighborhood. The self-repair is used as a 
global search method. Also, it searches a large neighbor-
hood in a search space. The aims of the insert-search and 
self-repair method are to find out better fitness value by 
inserting a chosen gene to other possible locations on the 
chromosome and repairing the chromosome itself.

It can be seen in the literature review section, there is no 
published paper about the no-wait flow shop scheduling 
problem with setup times to minimizing total flow time 
and makespan simultaneously. The contributions of this 
paper are summarized as follows.

•	 This is the first study to use the total flow time and 
makespan performance criteria simultaneously for no-
wait flow shop scheduling problems with setup times.

•	 The proposed hybrid genetic local and global search 
algorithm is first used to solve the no-wait flow shop 
scheduling with setup times problems for two criteria.

•	 A full factorial experimental design is done for deter-
mining the best parameter sets of the proposed hybrid 
genetic algorithm for solving the no-wait flow shop 
scheduling problems with setup times.

•	 The proposed HGLGSA is calibrated for NW-FSSWST by 
some benchmark problems in the literature.

•	 The NW-FSSWST benchmark problems in the literature 
are solved by the proposed HGLGSA with two criteria.

The experimental results showed that the proposed 
HGLGSA provides better makespan and total flowtime 
values for the NW-FSSWST problems.

The remaining contents of the paper are organized as 
follows. The literature review related to no-wait sched-
uling problems is given in Sect. 2. Section 3 defines the 
NW-FSSWST formulation. Section 4 provides the hybrid 
genetic local and global search algorithm. Section 5 gives 
the computational results. Section 6 gives the conclusion 
and future researches.

2 � Literature review

This section is devoted to the literature review related 
to the no-wait flow shop scheduling problems. The no-
wait flow shop scheduling (NW-FSS) problem has been 
addressed widely in the literature. Some of them are given 
as follows. Hall and Sriskandarajah [4] provided literature 
reviews with no-wait in process from 1970 to 1993. Allah-
verdi [5] provided second literature reviews with no-wait 
in process from 1993 to 2016. Grabowski and Pempera [6] 
suggested and compared different local search algorithms 
like descending search algorithms with multi-moves and 
tabu search algorithms for minimizing Cmax. They also 
proposed dynamic tabu lists to avoid trapped at a local 
optimum. Wang et al. [7] compared simulating annealing 
and genetic algorithm in an environment of 10–300 jobs 
on 2–3 machines on account of scheduling efficiency for 
no-wait scheduling problems. Liu et al. [8] suggested a 
hybrid particle swarm optimization algorithm for the no-
wait scheduling problem. In their study, a meta-lamarckian 
simulating annealing algorithm was used as a local search 
algorithm for hybridizing their particle-swarm optimiza-
tion algorithm. Laha and Chakraborty [9] suggested a 
heuristic for minimizing Cmax in case of job insertion. They 
also compared their algorithm with well-known methods 
in the literature. Pan et al. [10] proposed a hybrid discrete 
particle swarm optimization to solve NW-FSS problems 
with the criterion of Cmax. Tseng and Lin [11] improved a 
hybrid genetic algorithm to minimize total completion 
time. They hybridized the genetic algorithm and a novel 
local search schema. An orthogonal-array-based crosso-
ver operator was designed to enhance the capability of 
intensification in the genetic algorithm. They proposed 
a local search schema that combines two local search 
methods: the insertion search and a novel local search 
method for makespan performance criterion. Engin and 
Gunaydin [12] studied an adaptive learning approach to 
obtain total completion time in NW-FSS problems with 
setup times. Chaudhry and Khan [13] presented a general 
GA methodology for no-wait flow shop scheduling and 
compared it with other well-known meta-heuristics. Allah-
verdi and Aydilek [14] tried to minimize total completion 
time in NW-FSS with constrained Cmax value which must 
be less than a certain time. Panwalkar and Koulamas [15] 
considered two-machine no-wait open shop scheduling 
with minimum makespan objective. An optimal algo-
rithm was proposed to solve two-machine no-wait open 
shop scheduling problems. Lin and Ying [16] designed a 
no-wait flow shop as an asymmetric traveling salesman 
problem and suggested two metaheuristics algorithms to 
solve it for minimizing the makespan criterion. Ye et al. [17] 
proposed a heuristic that was named “average departure 
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time” to minimize makespan. Ye et al. [18] introduced an 
average idle time heuristic to minimize makespan in no-
wait flow shop production. An initial sequence algorithm 
was proposed in which current and future idle times were 
taken into consideration. They used insertion and neigh-
borhood exchanging methods to improve solution quality. 
Shao et al. [19] suggested an iterated greedy algorithm for 
distributed no-wait flow shop scheduling problems with 
the makespan criterion. Engin and Güçlü [20] developed 
a Hybrid Ant Colony Optimization (HACO) algorithm for 
no-wait flow shop scheduling problems with setup times. 
Zhao et al. [21] proposed a discrete water wave optimi-
zation algorithm to solve no-wait flow shop scheduling 
problems.

No-wait flow shop scheduling with the total flow time 
performance criteria has been addressed in the literature 
by a limited number of researchers. Some of these studies 
are given as follows: Filho et al. [22] improved an evolution-
ary algorithm for minimizing total flow time in the NW-FSS 
problem. Also, they compared their algorithm with Olivera 
and Lorana’s evolutionary clustering search algorithm. 
Akhshabi et al. [23] proposed a hybrid particle swarm opti-
mization algorithm for the NW-FSS problem to minimize 
the total flow time. Laha et al. [24] proposed a penalty-
based construction algorithm for the NW-FSS problem 
with the minimum makespan and total flow time objec-
tives. Originally, it was derived from Hungarian penalty 
method to generate an initial schedule of jobs. Koulamas 
and Panwalkar [25] offered an index priority rule for NW-
FSS with makespan criterion for specially-structured job 
processing times. Moreover, they derived an index priority 
rule for two machine NW-FSS with the minimum weighted 
total completion time criterion. Zhu et al. [26] presented 
a novel quantum-inspired cuckoo co-search algorithm for 
solving the NW-FSS problem with the makespan criterion. 
Allahverdi and Allahverdi [27] developed a two-machine 
NW-FSS problem with the total completion time perfor-
mance criteria. They developed eight algorithms for the 
processing and setup times on both machines, convert the 
two machine problem into a single machine one.

In the no-wait literature, multi-criteria scheduling prob-
lems have been addressed by using different criteria. There 
are a few studies in the literature. Some of these studies are 
given as follows: Allahverdi and Aldowaisan [28] suggested 
a hybrid genetic algorithm and hybrid simulated annealing 
algorithm to minimize just Tmax and both of Tmax and Cmax 
in no-wait flow shop scheduling. Tavakkoli-Moghaddam 
et al. [29] suggested an artificial immune system algorithm 
to minimize means of Tmax and Cmax. Rahimi-Vahed et al. 
[30] presented a search algorithm for minimizing weighted 
completion time and weighted mean tardiness time simul-
taneously. Pan et al. [31] improved a multi-objective par-
ticle swarm optimization algorithm for solving no-wait 

flow shop scheduling problems with Cmax and Tmax criteria. 
Aydilek and Allahverdi [32] proposed several algorithms, 
including a simulated annealing algorithm for solving no-
wait flow shop scheduling problems to minimize Cmax and 
Total Completion Time (TCT) performance criteria. Aydilek 
and Allahverdi [33] developed two improved simulated 
annealing algorithms for solving the no-wait flow shop 
scheduling problem to minimize Cmax and TCT criteria. 
Allahverdi and Aydilek [34] generated different versions 
of insertion in genetic algorithm in the no-wait flow shop 
to minimize TCT and Cmax. Allahverdi et al. [2] proposed an 
algorithm that was a combination of simulated annealing 
and insertion algorithm for solving the no-wait flow shop 
scheduling problem with two criteria: total tardiness and 
Cmax.

3 � No‑wait flow shop scheduling with setup 
times

This paper considers m-machine, n-job no-wait flow 
shop scheduling with setup times for total flow time and 
makespan performance criteria. The m-machine no-wait 
flow shop with setup times for makespan performance 
measure, denoted by Fm∕no − wait, sj, i∕Cmax, where Fm 
denotes the flow shop with m machines; no-wait indicates 
the no-wait processing characteristic, sji denotes the setup 
time of job j on machine i, and Cmax (makespan) indicates 
the performance criterion [20].

Some preconditions in the NW-FSSWST are as follow 
[20]:

•	 All jobs and machines are available,
•	 All jobs have a setup and processing times,
•	 The setup and processing times of each job on each 

machine are given before,
•	 The setup time is dependent on both job and machine,
•	 A job can be only processed on a single machine at a 

moment,
•	 Each machine can process only one job at a time,
•	 Before processing a job on a machine, its setup must 

be completed
•	 Jobs are independent,
•	 Jobs must be processed without waiting time,
•	 The target of the scheduling is to find out minimum 

total flow time and makespan values simultaneously.

The m-machine no-wait flow shop with setup times 
for total flow time performance measure, denoted by 
Fm∕no − wait, sj, i∕

∑

Cj , where 
∑

Cj indicates the perfor-
mance criterion, total flow time of job j.

In this study, two performance criteria: total flow time 
and makespan are considered. This problem is denoted by 
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Fm/no-wait, sj,i/Cmax, 
∑

Cj. Several approaches have been 
developed for bi-criteria and multi-criteria scheduling 
problems in the literature. In this type of problem, some 
conflicting criteria have to be optimized simultaneously. The 
existing approaches for solving bi-criteria or multi-criteria 
no-wait scheduling problems do not integrate explicitly a 
manager’s preferences [35, 36]. Thus, we proposed an aggre-
gation procedure for two performance criteria. Total flow 
time and total completion time combined as a satisfaction 
function in the proposed procedure to solve no-wait flow 
shop scheduling problems. Also, this procedure was used 
by Allouche et al. [35] for multi-criteria flow shop schedul-
ing problems in the literature. To the best of our knowledge, 
this is the first study that combined total flow time and total 
completion time performance criteria combined as the sat-
isfaction function for the no-wait scheduling problem.

The NW-FSSWST consists of a set of n jobs (j = 1,2,…,n) to 
be processed on a set of m machines (i = 1,2,…,m) with an 
sj,i setup time of job j on machine i.

The NW-FSSWST is formulated as follow;

n	� Job number
m	� Machine number
�	� Permutation of job � =

{

�1,�2,… , �n
}

ST
(

�j , i
)

	� Setup time of the job j on machine i.
PT

(

�j , i
)

	� Processing time of the job j on machine i.
MinD

(

�j−1,�j
)

	� Minimum delay on the first machine 
between starting time of job �j and �j−1

MCT 	� Minimum completion time.
∑

Cj	� Total flow time (TFT) of job j.

The MinD calculated from the following Eqs. 1, 2, 3 [6, 10, 
20].

(1)

MinD
(

�j−1,�j
)

= ST
(

�j−1, 1
)

+ PT
(

�j−1, 1
)

+max

[

0, max
2≤i≤m

{

m
∑

i=2

(

ST
(

�j−1, i
)

+ PT
(

�j−1, i
))

−

m−1
∑

i=1

(

ST
(

�j , i
)

+ PT
(

�j , i
))

}]

(2)Makespan = Cmax(�) = MCT(�) =

n
∑

j=2

MinD
(

�j−1,�j

)

+

m
∑

i=1

(

ST
(

�n, i
)

+ PT
(

�n, i
))

(3)MCT(�∗) ≤ M
(

�n,m
)

∀
�
∈ �

(4)

∑

Cj =

n−1
∑

j=2

(n − j)MinD
(

�j−1,�j
)

+

m
∑

i=1

(

ST
(

�n, i
)

+ PT
(

�n, i
))

(5)TFT(�∗) ≤ TFT
(

�n,m
)

∀
�
∈ �

4 � Hybrid genetic local and global search 
algorithm

4.1 � Genetic algorithm

The genetic Algorithm which was proposed by Holland 
in 1975 firstly, is a method commonly used in the solu-
tion of combinatorial optimization problems [37]. A 
genetic algorithm is a population-based meta-heuristic 
method. It tries to find an optimum or closer solution for 
NP-hard problems [38, 39]. Fundamental parts of genetic 
algorithms are chromosome, population, and gen which 
is the smallest meaningful element of a chromosome. 
Every gen represents a job in a scheduling problem. 
Thus, multiple gens come together to generate a chro-
mosome. Similarly, a population consists of a set of chro-
mosomes [40]. The basic steps of a genetic algorithm are 
presented below [37, 41].

Step 1 All possible solutions must be presented as an 
array of gens in the solution space. So, all solutions are 
coded as a set of arrays in this study.

Step 2 An initial population is created by random 
generally.

Step 3 A fitness value is calculated for every array.
Step 4 A certain number of arrays are selected for the 

process of breeding randomly.
Step 5 Fitness values of every individual in the new 

generation are calculated. Then, they are crossed over 
and mutated.

Step 6 Step 3 to Step 5 is repeated up to reach a pre-
determined generation number.

Step 7 The arrow which has the best fitness value is 
selected.

Operators of genetic algorithm are explained in 
below;
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4.1.1 � Breeding operator

The intention of breeding operators in genetic algorithms 
is that the individuals that have better fitness values are 
more likely to be in the next generation. Hence, the fitness 
value of those individuals is normalized by the mean of 
the population.

4.1.2 � Crossover operator

Crossover operator exchanges information between arrays 
and produces better individuals. Randomly (generally) 
selected at least two gens from two arrays are interchanged. 
In other words, it generates two possible solutions. Although, 
there are many types of crossover in the literature, single-point 
crossover, and multi-point crossover are used widely [42]. 
Position-based, order-based, partial-mapped crossover, linear 
order-based crossover are well-known multi-point crossovers.

4.1.3 � Mutation operator

The mutation is a sudden change in a parent’s genotype 
which is caused by an alteration in a gene or a chromo-
some. The number of genes is constant in a process of 
mutation. Mutation occurs just on one array (chromosome). 
Reverse mutation, exchanging randomly chosen two genes, 
exchanging randomly chosen three genes, and gene inser-
tion are widely used mutation operators in the literature.

4.1.4 � Elitism strategy

After breeding, crossover, and mutation operators, the indi-
viduals which have the best fitness value in their population 
might not be transferred to the next generation. To avoid this 
undesirable condition, the individuals which have better fit-
ness value are exchanged with other individuals those have 
worse fitness value in their population by the elitism process 
[43].

4.1.5 � Crossover and mutation probability

Crossover and mutation probabilities are used as param-
eters of the genetic algorithm. These may have a value 

between 0 and 1. Thus, they are considered probabilities. 
If the “0” value is given to an operator, it means none of the 
individuals will be changed in this population as a result 
of that operator. Similarly, if “1” is given as a parameter, 
that means all the individuals, in other word, all popula-
tions will be changed. Both of those values are not to be 
given generally since they don’t contribute efficiency of 
the algorithm. So, we choose a value between 0 and 1 for 
crossover and mutation probabilities in this study.

4.2 � Hybrid genetic local and global search

The genetic algorithm uses a selection and recombina-
tion operator for global exploration in the search space. 
During the run time, the genetic algorithm converges 
slowly toward the local optimum. After a few solution 
steps, the genetic algorithm sticks to a local optimum. 
Therefore, the proposed algorithm hybridizes the 
genetic algorithm for refining the search space and per-
forming local exploration. The insertion search is used as 
a local search algorithm. The local search method plays 
important role in the search spaces. The insertion search 
is used for searching a small neighborhood. Also, the 
self-repair algorithm is used as a global search algorithm. 
The self-repair algorithm is responsible for searching a 
large neighborhood in a search space.

The flow chart of the HGLGSA is given in Fig. 1. Local 
and global search procedures were likewise utilized in 
addition to a hybrid genetic algorithm. After initializa-
tion, insert-search and self-repair algorithms are inte-
grated into 3rd step. While insert search algorithm 
works as a local search algorithm, self-repair algorithm 
addresses to repair the chromosomes itself. Addition-
ally, when the self-repair algorithm is executed, it sends 
a2 cut point parameter to the insert-search algorithm 
instead of a1. We avoid designing a too greedy algorithm 
for preventing the trap of local optimal point. Thus, P1 
and P2 chromosomes are chosen randomly rather than 
utilizing the best pair of chromosomes in the initial 
population.

The proposed insert search and self-repair algorithm 
are given in Figs. 2 and 3, respectively. Also, flow chart 
of the self-repair function is given in Fig. 4.

The insert-search is a kind of local search method 
which aims to find better fitness values by inserting a 
chosen gene to other possible location on the chromo-
some. It doesn’t check all possible neighborhoods of 
all genes in the chromosome, but it searches different 
neighborhoods of a chosen genes in the chromosome.

Self-repair method, repeats to run self-repair function and 
insert-search methods up to reach a pre-assigned loop num-
ber. The main purpose of the self-repair function is to find 
out better fitness value by repairing the chromosome itself. 
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Fig. 1   Flow chart of proposed HGLGSA

Fig.2   Insert-search algorithm

Fig.3   Self-repair algorithm
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The function chooses the most problematic gene pair, where 
makes the biggest difference in total completion time as a 
repair location. Then, it explores to find better fitness values 
by inserting those genes into several locations on the chro-
mosome. Also, it has a random chromosome selection pro-
cess to prevent overpressure of elitist strategies.

5 � Computational results

In this study, we suggested a self-repaired multi-objective 
hybrid genetic algorithm for NW-FSSWST. Moreover, we 
have tried to optimize the goals in Tseng and Lin [3]’s study 
which are Cmax and 

∑

Cji in a flow shop environment. Total 
flow time and total completion time were combined as a 
satisfaction function of Allouche et al. [35] to reflect the 
manager’s preferences. The manager’s preferences can 
explicitly express any deviation of the achievement from 
the aspiration level of each objective. The model that 
explicitly incorporates the manager’s preferences through 
the satisfaction functions for objectives of makespan and 
total flow time is given in Eq. 6 [35].

where c is defined as the number of criteria (Makespan and 
total flow time); SRc is defined as satisfaction rate for crite-
rion c, and RPDc is defined as relative percentage deviation 
for criterion c.

According to Allouche et al. [35]’s study, the best value 
of every goal could deviate a certain rate in a multi-objec-
tive based algorithm. Similarly, we built a satisfaction func-
tion. When the RPD is between 0 and 1%, the manager is 
completely satisfied. If the rate goes between 1 and 3%, SR 
is reducing from 100 to 0%. When the satisfaction rate gets 
a “0” value, there is no satisfaction but the solution is still 
acceptable up to %5 of deviation. After “0” satisfaction and 
5% RPD, the solutions of the multi-objective model will be 
rejected. The satisfaction function is presented in Fig. 5.

(6)Maximize

2
∑

c=1

SRC
(

RPDc

)

Fig. 4   Self-repair function

Fig. 5   The satisfaction function
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In this study, 192 no-wait flow shop, n jobs {n = 8, 10, 12, 
50, 100, 150, 200, and 250} and a set of m machines {m = 2, 
3, 5, 8, 10, 15, 20, and 25}, with setup times problems that 
were generated by Engin and Günaydın [12], were used as 
benchmark instances. According to the processing times 
on each machine, these problems are classified a, b, and c 
type problems. These problems are commonly used in the 
literature [12, 20, 44–46].

Thus, 192 problems were solved by proposed HGLGSA 
with two-performance measures Total Flow Time (TFT) and 
makespan (Cmax).

Minimize TFT
Subject to Cmax

5.1 � Parameter optimization of HGLGSA 
for NW‑FSSWST

The operating parameters of the HGLGSA are playing 
important role in the quality of the NW-FSSWST problem’s 
solution. The parameters of HGLGSA are initial population 
number, crossover and mutation rates, local and global 
terminators, loop quantity, cut point, a range for insert-
search local terminator (α1), and search range of global 
terminator (α2). The parameter levels are shown in Table 1.

A full factorial experimental design was performed for 
obtaining a set of the best parameters, which are given 
in Table 2.

5.2 � Calibration of proposed HGLGSA 
for NW‑FSSWST

The proposed HGLGSA was calibrated by Engin and 
Günaydın [12]’s benchmark instances.

The performance of the HGLGSA is compared with 
the GEN-2 (Aldowaisan and Allahverdi’s genetic algo-
rithm for no-wait flow shop problems [44]), ALA (Engin 
and Günaydın’s Adaptive Learning Algorithm [12]), and 
HACO (Engin and Güçlü’s Hybrid Ant Colony Optimiza-
tion [20]) as a Relative Percentage Deviation (RPD). The 
RPD is given in Eq. 7 [47].

At Eq. 7, Best (Cmax) is the minimum makespan-Cmax of 
the Engin and Günaydın [12]’s benchmark instances the 
best values found by CPLEX solutions [12, 20, 44]. Also, 
the heuristic algorithms are defined as the proposed 
HGLGSA, GEN-2 [44], ALA [12], and HACO [20].

Solution performance of the proposed HGLGSA, 
GEN-2 [44], ALA [12], and HACO [20] is given in Table 3 
for 48 problems totally.

Average Relative Percentage Deviation (ARPD) of 
proposed HGLGSA is compared to the GEN-2 [44], ALA 
[12], and HACO [20] algorithms. The ARPD is defined with 
Eq. 8. For each problem group, the number of instances 
is given as I (L = 1,…, I) notation at Eq. 8 [20].

(7)

RPD =
Heuristic Algorithm

(

Cmax

)

− Best
(

Cmax

)

Best
(

Cmax

) × 100

(8)ARPD =

∑I

L=1
ARPD(L)

I

Table 1   The SRMOHGA’s 
parameter levels used for the 
parameter optimization

Parameters Values

Initial population 5 10 15 20 25 30 35 40 45 50
Crossover rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mutation rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Local terminator 1 2 3 4 5 6 7 8 9 10
Global terminator 1 2 3 4 5 6 7 8 9 10
Loop quantity 1 2 3 4 5 6 7 8 9 10
N (cut point) 0 1 2 3 4 5 6 7 8 9
α1 (local terminator) 2 4 6 8 10 12 14 16 18 20
α2 (global terminator) 2 4 6 8 10 12 14 16 18 20

Table 2   Parameters of NW-FSP Parameters Values

Initial population 10
Crossover rate 0.3
Mutation rate 0.1
Local terminator 3
Global terminator 6
Loop quantity 1
N (cut point) 3
α1 (local terminator) 2
α2 (global terminator) 4
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The 48-benchmark instances, ARPD for proposed 
HGLGSA, GEN-2, ALA, and HACO are calculated as 0.0233; 
2.3679; 2.3282, and 1.2543, respectively. The proposed 
HGLGSA has found a smaller ARPD than GEN-2, ALA, and 
HACO. These results showed that the proposed HGLGSA 

has better solution performance on NW-FSSWST. Also 
to better understand the performance of the proposed 
HGLGSA, the t-test is done with 95% significance for m 
(2, 3, 5, 8, 10, 15, 20, 25)—machines instances. The results 
are given in Table 4. The average RPD values, in Table 4, 
are analyzed on a box plot in Fig. 6.

In Fig. 6, for average HACO-RPD and HGLGSA-RPD box 
plots are given. Also, minimum, first quartile (Q1), median, 
third quartile (Q3), maximum, mean, and range values 
were calculated. It can be seen in Table 4 and Fig. 6, the 
proposed HGLGSA performance is better than HACO.

The CPU time of the proposed HGLGSA is compared 
with the GEN-2 [44], ALA [12], and HACO [20] algorithms. 
The results are given in Table 5.

It can be seen in Table 5, the CPU time of the proposed 
HGLGSA is shorter than GEN-2, ALA, and HACO.

5.3 � Computational results of two performance 
measures

The 192 NW-FSSWST benchmark instances, which were 
created by Engin and Gunaydin [12], were solved by pro-
posed HGLGSA for minimizing Cmax and 

∑

Cj values. Com-
putational results are given in Table 6.

Table 3   RPD of HGLGSA, GEN-
2, ALA and HACO

Problem RPD Problem RPD

GEN-2 ALA HACO HGLGSA GEN-2 ALA HACO HGLGSA

8 × 2-a 0.0000 0.0000 0.0000 0.0000 10 × 2-a 0.0000 0.0000 0.0000 0.0000
8 × 2-b 0.0000 0.0000 0.0000 0.0000 10 × 2-b 0.2967 2.0771 1.4836 0.0200
8 × 2-c 0.0000 0.6451 0.6451 0.0100 10 × 2-c 2.0654 0.5163 0.3442 0.0100
8 × 3-a 0.0000 0.0000 0.0000 0.0000 10 × 3-a 1.7094 2.5641 0.8547 0.0300
8 × 3-b 0.0000 4.8278 4.1379 0.0500 10 × 3-b 4.6961 1.3812 0.0000 0.0100
8 × 3-c 1.2544 0.7168 0.3584 0.0100 10 × 3-c 3.8980 3.1484 0.7496 0.0300
8 × 5-a 0.7937 0.0000 0.0000 0.0000 10 × 5-a 2.8985 1.4492 0.0000 0.0000
8 × 5-b 0.0000 0.5050 0.5050 0.0100 10 × 5-b 6.9264 11.0389 8.4415 0.1100
8 × 5-c 1.0753 0.0000 0.0000 0.0000 10 × 5-c 4.4673 3.5509 2.4054 0.0400
8 × 8-a 0.0000 0.0000 0.0000 0.0000 10 × 8-a 1.1834 1.1834 0.5917 0.0100
8 × 8-b 0.0000 0.0000 0.0000 0.0000 10 × 8-b 8.2311 9.1068 7.5306 0.0900
8 × 8-c 0.0000 0.0000 0.0000 0.0000 10 × 8-c 9.6654 9.6654 8.3643 0.1000
8 × 10-a 1.3245 0.6622 0.6622 0.0100 10 × 10-a 3.4090 4.5454 1.1363 0.0500
8 × 10-b 0.0000 0.0000 0.0000 0.0000 10 × 10-b 6.8627 10.9477 7.1895 0.1100
8 × 10-c 0.0000 0.6024 0.0000 0.0100 10 × 10-c 11.3028 9.9534 2.8472 0.0600
8 × 15-a 0.0000 0.0000 0.0000 0.0000 10 × 15-a 3.7209 2.7906 0.0000 0.0200
8 × 15-b 0.5174 0.5174 0.2587 0.0100 10 × 15-b 4.4758 3.5335 0.8244 0.0400
8 × 15-c 0.0000 0.0000 0.0000 0.0000 10 × 15-c 3.1250 4.5955 1.5913 0.0500
8 × 20-a 0.4629 0.0000 0.0000 0.0000 10 × 20-a 2.7237 1.9455 1.1673 0.0300
8 × 20-b 0.5636 0.5636 0.5636 0.0100 10 × 20-b 4.5062 3.6433 1.8216 0.0400
8 × 20-c 0.0000 0.0000 0.0000 0.0000 10 × 20-c 4.4444 3.5555 1.8271 0.0400
8 × 25-a 0.0000 0.0000 0.0000 0.0000 10 × 25-a 3.6363 3.2727 1.0909 0.0300
8 × 25-b 2.6666 1.8095 1.1428 0.0200 10 × 25-b 4.6025 4.4351 1.6736 0.0400
8 × 25-c 2.4865 0.0000 0.0000 0.0000 10 × 25-c 3.6720 2.0068 0.0000 0.0200

Table 4   The results of the t-test for proposed HGLGSA and HACO 
[20]

Problem machines (m) HACO-RPD aver-
age

HGLGSA-
RPD aver-
age

2 0.412 0.006
3 1.016 0.021
5 1.893 0.026
8 2.747 0.033
10 1.972 0.038
15 0.445 0.020
20 0.896 0.020
25 0.652 0.018
Mean 1.374 0.025
Variance 0.708 5.899E-05
Pearson correlation 0.858
P (T <  = t) two-tail 0.0052
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When we are analyzing Table 6, we see that deviation 
values of Cmax and 

∑

Cj are raised generally if the amount 
of machines and jobs are increased. There are just 3 posi-
tive 

∑

Cj deviation values for 2 machines; on the other 
hand, there are 12 positive 

∑

Cj deviation values for 25 
machines. Similarly, while there are 16 “0” Cmax deviation 
values for 8 jobs, there is just one “0” Cmax deviation value 
for 250 jobs.

Satisfaction status based on Cmax and 
∑

Cj of HGLGSA is 
given in Table 7 for “completely satisfied” “satisfaction level” 
and “acceptance borders” to minimize 

∑

Cj and Cmax values 
of every job-machine combination.

Also, the satisfaction status based on 
∑

Cj and Cmax 
objectives is given in Fig. 7 by graphical results.

As seen in Table  7 and Fig.  7, full satisfaction is 
obtained in 156 of 192 problems based on 

∑

Cj objec-
tive deviation. While 29 of 192 deviations are satisfac-
tion levels, 6 deviations are acceptance borders. One 
deviation is rejected.

Also, 56 of 192 fully satisfied deviations are found 
regarding to Cmax objective value. While 11 of 192 are 
satisfaction levels, 6 of 192 are acceptance borders. 119 
of 192 are rejected.

Fig. 6   Box plots for the average RPD values

Table 5   The maximum 
CPU times of the proposed 
HGLGSA, GEN-2 [44], ALA [12], 
and HACO [20]

Heuristic algorithms Configuration of the computer Maximum 
CPU times (s)

Proposed HGLGSA AMD turion 64 2.2 GHz—4 GB memory 87
GEN-2 PC pentium IV—3.0 GHz—1 GB memory 156
ALA PC Pentium IV—3.0 GHz—1 GB memory 110
HACO AMD Turion 64–2.0 GHz—1 GB memory 110
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Table 6   Computational 
results of HGLGSA in case of 
satisfaction function

Machine Job Problem 
type

Deviation from single 
objective

Machine Job Problem 
type

Deviation from 
single objective

∑

Cj Cmax
∑

Cj Cmax

2 8 a 0 0 3 8 a 0 0

b 0 0 b 1 3

c 0 0 c 0 1

10 a 0 0 10 a 1 1

b 0 2 b 1 0

c 0 1 c 0 0

12 a 0 1 12 a 0 2

b 0 0 b 0 0

c 0 0 c 0 0

50 a 0 5 50 a 0 9

b 0 10 b 0 14

c 0 11 c 0 16

100 a 0 7 100 a 0 11

b 0 14 b 0 14

c 4 17 c 0 18

150 a 0 8 150 a 1 11

b 0 16 b 0 19

c 0 15 c 3 23

200 a 1 10 200 a 0 12

b 0 0 b 0 19

c 0 0 c 2 23

250 a 0 9 250 a 0 13

b 0 16 b 1 19

c 1 18 c 0 21

5 8 a 0 0 8 8 a 0 0

b 0 1 b 1 0

c 0 0 c 0 0

10 a 3 0 10 a 0 0

b 0 9 b 0 1

c 3 2 c 1 10

12 a 1 6 12 a 1 1

b 0 5 b 4 0

c 2 7 c 0 5

50 a 2 9 50 a 0 9

b 0 19 b 1 17

c 0 17 c 0 17

100 a 0 13 100 a 1 0

b 4 24 b 0 0

c 1 25 c 1 0

150 a 0 13 150 a 3 15

b 0 19 b 0 23

c 0 20 c 0 25

200 a 1 15 200 a 0 16

b 0 23 b 0 24

c 0 0 c 1 26

250 a 0 14 250 a 0 15

b 1 23 b 2 25

c 0 21 c 0 22
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Table 6   (continued) Machine Job Problem 
type

Deviation from single 
objective

Machine Job Problem 
type

Deviation from 
single objective

∑

Cj Cmax
∑

Cj Cmax

10 8 a 0 1 15 8 a 0 0

b 0 0 b 0 1

c 0 0 c 0 0

10 a 0 3 10 a 0 0

b 0 4 b 0 0

c 0 0 c 0 2

12 a 0 5 12 a 4 8

b 3 0 b 0 0

c 0 3 c 0 1

50 a 1 11 50 a 0 11

b 5 19 b 2 13

c 3 20 c 0 15

100 a 0 13 100 a 0 13

b 0 21 b 2 0

c 4 25 c 6 24

150 a 0 16 150 a 2 17

b 1 24 b 0 24

c 0 26 c 3 23

200 a 3 17 200 a 0 18

b 0 23 b 0 26

c 0 29 c 0 24

250 a 1 17 250 a 1 20

b 1 25 b 1 26

c 0 27 c 0 27

20 8 a 0 0 25 8 a 0 0

b 0 1 b 2 2

c 0 0 c 0 10

10 a 1 0 10 a 0 0

b 0 4 b 0 0

c 2 0 c 1 0

12 a 0 0 12 a 1 7

b 0 0 b 1 0

c 0 0 c 2 8

50 a 2 12 50 a 2 16

b 0 12 b 2 0

c 0 14 c 0 18

100 a 3 18 100 a 0 13

b 1 24 b 3 30

c 2 27 c 0 0

150 a 1 19 150 a 0 16

b 0 22 b 0 26

c 2 31 c 0 26

200 a 0 17 200 a 2 21

b 0 27 b 2 24

c 1 30 c 1 29

250 a 0 21 250 a 0 20

b 2 28 b 0 29

c 2 0 c 1 28
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According to those results, multi-objective problem 
structure does not affect 

∑

Cj values deeply. Calculated 
deviation values are distributed in a narrow interval.

Because of the multi-objective structure, we could 
have obtained better 

∑

Cj values in some cases. Also, 
the most of 

∑

Cj values have taken place in the full sat-
isfaction area.

6 � Conclusions and future research

In this study, we suggested an insert-search algorithm 
and self-repair algorithm with a self-repair function to 
develop our HGLGSA. HGLGSA was proposed to solve 
the NW-FSSWS, which are well-known NP-hard problems 

in the literature. Firstly, the proposed HGLGSA was cali-
brated by GEN-2, ALA, and HACO in the literature for 
no-wait flow shop scheduling problems. Secondly, a full 
factorial design was performed to determine the best 
parameter sets in the HGLGSA for NW-FSSWST with two 
criteria that enhance the performance of the algorithm. 
Then Engin and Gunaydin [12]’s benchmark NW-FSSWST 
problems were solved by the proposed HGLGSA for two 
performance measures which are total flow time and 
makespan. The parameters of the proposed HGLGSA are 
the number of initial populations, the rates of crosso-
ver and mutation, execution times of local and global 
search, loop quantity, cut point (N), the levels of α1 and 
α2. Finally, Engin and Gunaydin [12]’s 192 test benchmark 
instances were solved based on the satisfaction function 

Table 7   Satisfaction status 
based on 

∑

Cj and Cmax 
objectives

Machines Solved problems

Deviations based on 
∑

Cj Deviations based on Cmax

Com-
pletely 
satisfied

In satis-
faction 
level

In accept-
ance 
borders

Denied Com-
pletely 
Satisfied

In satis-
faction 
level

In accept-
ance 
borders

Denied

2 23 – 1 – 10 1 1 12
3 22 2 – – 7 2 – 15
5 19 4 1 – 5 1 1 17
8 21 2 1 – 10 – 1 13
10 19 3 2 – 2 5 2 15
15 18 4 1 1 6 1 – 17
20 17 7 – – 9 – 1 14
25 17 7 – – 7 1 – 16
Total 156 29 6 1 56 11 6 119

Fig.7   The satisfaction status based on 
∑

Cj and Cmax objectives
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for bicriteria by using the best parameter set of the pro-
posed HGLGSA. A full satisfaction was obtained in 156 of 
192 problems based on 

∑

Cj objective deviation and 11 
of 192 problems based on Cmax objective value.

Experimental results showed that the proposed 
HGLGSA is a highly effective meta-heuristic algorithm 
for solving NW-FSSWST with two performance criteria. 
Moreover, the multi-objective structure has not affected 
∑

Cj objective values dramatically but, it has caused to 
obtain longer Cmax values relatively.

Future studies are suggested to focus on different 
meta-heuristic methods to get fully satisfied Cmax val-
ues in the multi-objective environment for NW-FSSWST 
problems.
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