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Abstract
Coordination is an important requirement for most Multiagent Systems. A setplay is a particular instance of a coordinated 
plan for multi-robot systems in collective sports. Setplays are usually designed by robotics specialists using some existing 
tools, like the SPlanner, or by hand-coding. This work presents recent improvements to the Strategy Planner (SPlanner) 
and its corresponding FCPortugal Setplays Framework (FSF) to provide sophisticated setplays. This toolkit is useful to 
design strategic plans for robotic soccer teams as a particular case of Multi-Agent Systems (MASs). The new enhance-
ments enable more realistic setplays, including, but not limited to, the definition of better pass strategies and defensive 
setplays. The enhanced tool is used to populate a dataset with demonstrations made by soccer experts and used in a 
Learning from Demonstration (LfD) approach to allow robotic soccer teams to learn new setplays. A new demonstration 
mode in the RoboCup Soccer Simulation 3D (SSIM3D) viewer RoboViz was also introduced to integrate this tool with 
SPlanner. Domain experts can use this set of tools to capture a specific scene in a game in RoboViz and use it as an initial 
step for a new setplay recommendation in SPlanner. The resulting dataset is organized into fuzzy clusters to be used in 
a reinforcement learning strategy. This paper describes the whole process.
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•	 This paper’s main contribution is generating a dataset of setplays to supportlearning from demonstration in robotic 
soccer.

•	 A set of new features were added to the Strategic Planner(SPlanner) to enablethe design of more realistic setplays.
•	 The official RoboCup viewer (Roboviz) was integrated with SPlanner using anew demonstration mode.
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1  Introduction

Multi-Agent Systems (MASs) is a computational combi-
nation of interacting agents. In these systems, one can 
assume agents are both autonomous and collaborative, 
which means they are capable of making independent 
decisions and cooperating with other agents to achieve 
the designed goals [23].

The design of MASs is usually accomplished through 
predefined cooperative plans, which use different strate-
gies such as pattern of policies [7], learning agent pairs 
[13] , mixed of single and coordinated agent learning pro-
cess [24], game-theoretic approach [26], and multiagent 
planning with uncertainties [27].

The coordination among agents is critical for develop-
ing large-scale, distributed, and complex MASs. The Rob-
oCup Simulation Leagues can be considered a suitable 
framework to develop new solutions for coordination in 
MAS. The Soccer Simulation League,1 for instance, presents 
a scenario where an agent represents each robotic soccer 
player and a MAS represents each team. In this scenario, 
the agents work alongside a common objective to over-
come the adversary. In the context of soccer simulations, a 
coordinated plan is known as a setplay. Setplays have been 
successfully used in Robocup Soccer Simulation Competi-
tions [1, 10, 11, 15, 19]. The design of setplays from scratch, 
however, is time-consuming and hard to be accomplished. 
Simões and Nogueira [21] have proposed a solution to 
enable domain experts (both robotic and human soccer 
experts) to watch matches between robots’ teams and 
report situations where they identify good moves. All 
these moves populate a dataset of experts’ recommen-
dations used as input of a Learning from Demonstration 
(LfD) engine. In order to support this approach, Simões 
et al. [22] proposed a new dataset schema designed to 
represent relevant features of a setplay. The authors used 
the RoboCup Soccer Simulation 3D (SSIM3D) competition 
rules and its associated software to validate their proposal. 
The 3D competition was chosen as a test-bed because it 
is more similar to real soccer games than the 2D competi-
tion. Humanoid robots are the base of SSIM3D rules; thus, 
the team’s tactic and individual player skills become rel-
evant to perform well in this competition.

Aiming at validating the aforementioned LfD approach, 
a case study with Bahia Robotics Team (BahiaRT)2 was car-
ried out. In this case study, the Strategy Planner (SPlan-
ner) [6]3 and the FCPortugal Setplays Framework (FSF) [16] 

were used to populate the setplay dataset. The existing 
version of SPlanner presents several drawbacks to imple-
menting the LfD approach. This version does not sup-
port opponent teams, which means that only one team 
is allowed in the field. This limitation does not let setplays 
designers exploit opponents’ positions to describe bad 
situations and recommend good behaviors. The version 
also lacks defensive setplays actions. Moreover, there is 
no option for passes when the SPlanner’s user wants to 
delegate the receiver player’s decision to the team.

One of the significant challenges of this work is to 
translate soccer expert’s common-sense knowledge into 
a set of recommendations for the LfD engine, which will 
become planning actions of setplays of a MAS. Common-
sense knowledge is the set of all techniques and wisdom 
that experts acquire during their lifetime. This knowledge 
is not easily formalized or stated in the form of generic 
rules. Aiming at converting this knowledge into a recom-
mendation, we provide domain experts with pre-recorded 
videos or simulations of a MAS in action and ask them to 
stop at any point where they think the robots are not per-
forming well. The expert then can write down, using a 
domain-specific schema, the best recommendation to fix 
the wrong move. The idea is to capture real situations and 
set recommendations of coordinated plans to increase the 
MAS performance.

One can use SPlanner and FSF to design and run a set-
play from scratch, starting with an empty field. In this case, 
the designer should imagine the entire game situation to 
start the setplay. This work proposes that domain experts 
can watch the MAS in action and then capture a specific 
situation where he thinks the robots are not doing well. 
The initial scene of this situation must be captured and 
launched in the SPlanner. Thus, the setplay designer can 
start from a predefined game situation to create a new set-
play. A new demonstration mode was added to the official 
SSIM3D viewer RoboViz4 to support the integration with 
the SPlanner. This new demonstration mode integrates the 
RoboViz and the SPlanner and makes a set of new features 
available to users.

Some of the enhancements to turn the SPlanner eligi-
ble to support this work were already presented [20]. This 
paper updates these enhancements, filling all gaps. Using 
the integration of Roboviz and the new version of SPlan-
ner, users can now create recommendations of setplays 
to populate a consistent dataset. We have updated the 
dataset schema presented in our previous work [22] and 
performed some assessment to validate its organization 
in fuzzy clusters. These results confirm that the dataset we 
can generate using all the methods described in this paper 1  See https://​ssim.​roboc​up.​org.

2  http://​www.​acso.​uneb.​br/​bahia​rt.
3  Available at https://​sourc​eforge.​net/​proje​cts/​fcpor​tugal​splan​
ner/. 4  Available at: https://​github.​com/​magma​Offen​burg/​RoboV​iz.

https://ssim.robocup.org
http://www.acso.uneb.br/bahiart
https://sourceforge.net/projects/fcportugalsplanner/
https://sourceforge.net/projects/fcportugalsplanner/
https://github.com/magmaOffenburg/RoboViz
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is ready to be used as input for a reinforcement learning 
strategy. This strategy is the final step in our project to 
transfer knowledge from domain experts to robots using 
demonstrations.

This paper’s remainder is structured as follows: Sect. 2 
discusses some related work concerning techniques and 
tools for setplay learning. Section 3 presents the improve-
ments added to SPlanner to support setplays’ devel-
opment based on LfD approach. Section 4 details new 
features added to RoboViz. Section 5 presents a dataset 
schema used to organize the setplays’ dataset and make 
it adequate to use in a reinforcement learning approach. 
Section 7 draws conclusions and indicate future works.

2 � Related work

MAS, in general, and MAS planning, in particular, has been 
a very active area of study in the artificial intelligence com-
munity. Many researchers have investigated planning con-
sidering a large number of agents. A scalable solution to 
large teams (1024 agents), for instance, considers the team 
geometric pattern instead of individual agent positions for 
multiagent learning [7]. A neural network model named 
HyperNEAT was used to generalize the agents’ roles in the 
MAS from the system’s agents’ positioning. The authors 
argue that their contributions are conceptual. The model 
was not validated in real applications or well-known chal-
lenges in the scientific community.

Another work [26] describes the use of Bayesian net-
works to learn opportunistic criminals’ behavior in an 
urban area. The idea is to plan the schedule of patrol units 
based on the criminals’ behaviors. This work was further 
extended [25] to use the Expectation Maximization(EM) 
algorithm alongside Bayesian networks to enhance the 
learning of opponent agents behavior (e.g., opportunistic 
criminals in urban areas). Opponents’ behavior learning 
is also explored using Markov chain models with Monte 
Carlo methods to support MAS planning [17]. MAS plan-
ning is alternated with opponents’ behavior learning to 
feed the plans generated. None of these approaches learn 
new cooperative multiagent plans. They use learned infor-
mation about opponent behaviors to support the classical 
multiagent planning process.

A model for concurrent planning in a MAS was pre-
sented using two learning approaches: Monte Carlo 
and LfD [24]. The authors validated this work in a static 
manipulator robots domain, where the robots cooperate 
in a MAS to assemble an object. The nature of data in this 
environment is different from the data in mobile robots 
of a Multi-Robot System (MRS) in a stochastic, real-time, 
partially observable environment (e.g., robotic soccer). 
This work does not treat semantic equivalence or any 

similar issue, which means that it does not identify when 
domain experts’ recommendations are slightly different 
but have similar semantic meanings.

The interdependence of agents’ behavior in a MAS 
was explored using the Q-Learning algorithm and dis-
tributed Bayesian networks to model supply chains’ 
planning in a global product sales market [28]. Another 
approach [14] investigates fault (and their causes) detec-
tion in MAS plans. The fault detection is associated with 
agents’ actions interdependence. Bayesian inference was 
used to diagnose the MAS faults and their causes. On the 
one hand, none of these solutions provides new coordi-
nated plans. On the other hand, both work with learning 
or reasoning about behaviors interdependence, which 
can help deal with abort conditions in a setplay.

Synergy Graphs were presented for real-time coordi-
nation between agents in a MAS [13]. The work used the 
well-known multi-armed bandit problem for validation. 
The authors did not mention if the learning process is 
restricted to the coordination between agents or if the 
process learns full coordinated plans with all their steps 
and agents’ behaviors. In any case, no demonstrations 
from domain experts were used.

A MAS with a set of moving agents must have a set 
of functions, information, strategy models, among other 
aspects [21]. Since there is a substantial number of com-
ponents, the MAS also needs to consider coordination 
to work cooperatively. Cooperation relies on many com-
munication protocols so that the agents can agree with 
each other and accomplish their objectives. For instance, 
in a soccer game, the team may decide whether or not 
to be more aggressive (i.e., changing the behavior of 
selected players) in the case in which it is losing the 
match [22].

In robotic soccer, the complexity of creating setplays 
and the fact that every team has its design methods led to 
creating a standard language for setplay developments. A 
framework to produce setplays named SPlanner was pro-
posed by Cravo et al. [6]. SPlanner was designed to make 
setplays creation faster, easier, and more intuitive. Thus, 
even those with no knowledge about robotic soccer can 
develop their setplays.

SPlanner [6] is composed of a syntactic analyzer, an 
interpreter, and a real-time selection and execution soft-
ware. This framework also has a pattern of predefined 
general-purpose behaviors. In this way, teams’ devel-
opers can easily map the behavior language to their 
teams’ algorithms, making the design and usage of set-
plays easier. The authors validated this tool in RoboCup 
competitions showing good results [6], both in the 2D 
Soccer Simulation and Middle-Size soccer. A recent work 
[18] has also extended the validation of SPlanner to the 
SSIM3D competitions, adapting BahiaRT to use FSF. To 
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validate this extension, the authors have developed 
some simple setplays using SPlanner.

Machine learning has already been used in setplays 
development or optimization context. Automatic analy-
sis of match logs was used to generalize a setplay in a 
simulated robotic soccer environment from a sequence 
of successful events [1]. A sequence of behaviors derived 
from coordinated positioning is formalized as a plan and 
incorporated into the team’s setplay library for future 
use. The knowledge used emerges from the agents’ nat-
ural interaction. These agents do not use any domain 
expert knowledge for coordination.

SPlanner and FSF were also used to support experi-
ments with multiagents. In [10], multi-agent Q-Learning 
was used to learn a transition function for multi-flow set-
plays. In multi-flow setplays, each state can lead to more 
than one following state, depending on the transition 
conditions. In that work, these transition conditions were 
generalized using reinforcement learning. However, the 
proposal does not present how agents can learn a com-
plete setplay.

Simões and Nogueira [21] proposed a complete 
framework to learn new setplays from a set of demon-
strations created by domain experts. Simões et al. [22] 
have also presented a dataset schema to represent these 
demonstrations in a LfD engine. The authors defined that 
two setplays are semantic equivalent if they represent 
the same gameplay and the same teams’ goals in a spe-
cific situation. Their approach organizes the dataset into 
fuzzy clusters, grouping semantic equivalent setplays. 
The next section describes the enhancements made in 
SPlanner to support experiments using the LfD engine 
with the proposed dataset schema for setplays.

3 � Enhancements in SPlanner for better 
passing and defense strategies

The main focus of this paper is to make the SPlanner 
useful to populate datasets [22] based on robotic soccer 
domain experts’ demonstrations. We also intend to make 
SPlanner more adequate for using in the SSIM3D compe-
tition and fill some gaps that limit its use in robotic soc-
cer matches. To achieve these goals, changes in SPlanner 
are developed as follows.

–	 Opponent Team: some defensive actions were depend-
ent on an adversary player. Thus, the possibility of plac-
ing enemy agents on the setplays was added to make 
these actions viable, as seen in Fig. 1.

	   A full team of 11 opponents using blue shirts was 
added along with a board for them on the side of the 
field. Each opponent has three possible behaviors:

–	 Run—makes the player move to a targeted posi-
tion. This action offers to the setplays designer the 
option of estimating the opponents’ movements 
from one setplay step to the following one. This 
action can be used both in offensive and defensive 
setplays.

–	 Kick—kicks the ball to another opponent player. 
The purpose is to let the user estimate passes done 
by the adversary team. This behavior is available 
only for the opponent who owns the ball in defen-
sive setplays.

–	 Shoot—the setplay designer can use this behav-
ior to estimate a situation where an opponent can 
shoot to the goal. This action is available only for 
the adversary player who owns the ball in a defen-
sive setplay.

	    Fig. 2 shows the opponents’ behaviors menu.
–	 Defensive Setplays: there was a defensive setplay 

option on the previous version of SPlanner [6], but the 
available version of this tool does not implement it. 
Defensive setplays are as crucial to the team’s strategy 
as offensive setplays are. We have changed SPlanner 
to effectively implement the defensive setplays to all 

Fig. 1   Adversary players board

Fig. 2   Opponent behaviors’ menu



Vol.:(0123456789)

SN Applied Sciences           (2021) 3:608  | https://doi.org/10.1007/s42452-021-04571-y	 Research Article

situations where an offensive setplay was available. 
This option has highly amplified the team’s capacity to 
perform setplays at any time in a game. One important 
feature to support defensive setplays is the presence of 
opponent players, since defensive behaviors can use 
adversaries as reference. For example, one teammate 
can perform a defensive marking action during a set-
play to follow an opponent in the field and prevent him 
from receiving a pass.

–	 New Behaviors: SPlanner came along with eight actions 
that could be executed by each player in its base ver-
sion, as can be seen in Fig. 3 [6]. These actions are: 

a.	 pass: perform a pass to a specific teammate;
b.	 pass forward to <player number>: pass to an 

advanced point in the field where the teammate 
chosen to receive the pass is supposed to move to 
intercept the ball;

c.	 dribble: carry the ball on avoiding opponents;
d.	 hold: standstill while keeping the ball possession;
e.	 shoot: shoot to the opponents’ goal;
f.	 wait: standstill in the same place;
g.	 run: move to a specified position;
h.	 go to offside line: move to a position just behind 

the offside line.

	    Besides these actions, new ones were added to 
make the toolkit more suitable for the 3D league and 
for populating the LfD engine dataset. Fig. 4 shows the 
modified behaviors menu for offensive setplays. There 
are two versions of these menus: one for players with-
out ball possession (A) and another for players with ball 
possession (B). Each of the new implemented actions is 
described as follows:

–	 Run - Straight:
	   This action is a new walking/running method. 

Many teams have at least two types of walking: one 
is slower and more reliable, with little to no falls, 
and the other is faster, closer to a running skill, but 
with less balance. Run–Straight is a behavior cre-
ated to map the fastest walking/running behavior 
present in the team. This behavior, in most cases, 
prioritizes velocity to balance, and usually, the 
player is not aware of collision avoidance.

–	 Run - Path planned:
	   We graphically changed the name of this behav-

ior from ”run” to ”run - path planned” so that the 

Fig. 3   SPlanner’s base version actions: a pass, b pass forward to 
<player number>, c dribble, d hold, e shoot, f wait, g run, h go to 
offside line

Fig. 4   New Behaviors for offensive setplays: a behaviors menu for players without ball possession; b behaviors menu for players with ball 
possession
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user can notice the difference from this walking/
running action to the Run - Straight behavior. In the 
Run—Path planned, the player prioritizes balance 
to velocity avoiding collisions.

–	 Offensive Marker:
	   BahiaRT’s set of behaviors inspired this action. 

The main goal is marking enemy agents that 
impose the risk of taking the ball possession from 
one of our teammates. The player moves to a stra-
tegic position between the enemy and the player 
with the ball, blocking the adversary while keeping 
a certain distance so it won’t affect the freedom of 
the player with the ball to kick, do a pass, or any 
other action it might take.

–	 Pass To Best Player:
	   Just like the offensive marker, this action also 

comes from the BahiaRT. It uses a selection algo-
rithm to choose the ally in the best conditions to 
receive a pass. When used correctly, this action can 
result in excellent plays in a game. When the set-
play designer uses this behavior, he should create 
multiple transitions for the current step where this 
behavior is used. Each transition takes the setplay 
to a next step considering a different teammate 
chosen to receive the pass.

–	 Intercept: this behavior is not exhibited in any 
behaviors’ menu. It is an implicit behavior related 
to the Pass forward to <player number> action. 
When the user assigns the Pass forward to <player 
number> and selects a teammate to receive the 
ball, this receiver is implicitly assigned to the Inter-
cept action. The receiver is supposed to move to 
the region where the player who owns the ball 
passes the ball to and then try to intercept it. In 
this version, the Intercept receives the region to 
where the ball is passed as a parameter. This modi-
fication makes it easier for the teams to implement 
this behavior when extending the FSF.

	    Some new behaviors were also designed for defen-
sive situations. Fig. 5 shows the menu for defensive 
situations. These new actions can be described as fol-
lows:

–	 Defensive Marker:
	   This action is concerned with marking oppo-

nents in defensive situations. It can be split into 
two types: the active marker when the player 
marks the adversary with the ball possession try-
ing to regain possession of the ball; and the passive 
marker when the player marks a potential enemy 
receiver for a pass executed by the adversary, thus 
disturbing any opponent plays. In the SPlanner, 

only a general defensive marker behavior is used. 
When a team extends the FSF, it can provide the 
two specializations (active and passive) of the 
defensive marker behavior.

–	 Become Owner:
	   This action switches the owner of the ball to the 

player who executes this behavior. It was designed 
for use in defensive setplays. The purpose of this 
behavior is to make a teammate take the ball pos-
session of an opponent. In general, this is the last 
action used in a defensive setplay, once the main 
goal of a defensive strategy is to take the ball pos-
session back to our team.

–	 Step Abort Conditions:
	   In the base version, this field was initially called “Step 

Times” [6]. But we realized the need to add a “Step 
Abort Conditions” field. Since those times where also 
abort conditions, we also decided to reuse the field 
changing the name and adding what we needed. In a 
setplay, there are conditions for it to begin executing 
(start conditions), conditions that assure its continuity 
(transition conditions), and conditions that once met 
are supposed to abort the execution of the setplay 
(abort conditions). SPlanner had general abort condi-
tions, for instance, when the enemy steals the ball. But, 
there were no specific abort conditions for each step 
of the setplay, and those were necessary since there 
are situations during a specific step where the desir-
able conditions are not met, and the setplay should 

Fig. 5   New Behaviors for defensive setplays
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be terminated, as an example, a pass that was poorly 
executed. To fix that, we added to the ”Step Abort Con-
ditions” field the “passFailed” option, which terminates 
the setplay in case of a bad pass (Fig. 6).

All these changes in SPlanner must be mirrored in the 
FSF as changes in the libSetplay5. When the design of a 
setplay is finished in SPlanner, the user can export it to a 
text file using a specific language defined by the FSF [6]. 
This language is based on an s-expression syntax. Figure 7 
shows the relations between SPlanner, FSF and BahiaRT.

The language used to represent the setplay in a file 
was extended to support new behaviors described in this 
section. The syntax for these new and modified actions 
is exhibited in Fig. 8. This syntax is the way the actions 
are generated and read by the FSF. This extension in the 

libSetplay turns all the enhancements presented in this 
work available for any robotic team that can extend the 
FSF.

The following section presents some examples of 
use that take advantage of the new features added to 
SPlanner.

3.1 � Examples of use and discussion

All enhancements incorporated in SPlanner come along 
with tutorials describing possible situations where they 
can be used. We selected some of these examples to dis-
cuss such enhancements.

The first example shows the usefulness of Offensive 
Marker behavior (Fig. 9). The player number 2 tries to per-
form a pass, but the opponent number 6 can try to block 
this pass. So we have used the Offensive Marker behavior 

Fig. 6   New “Step Abort Conditions” field with the “passFailed” con-
dition

Fig. 7   SPlanner generates a s-expression file containing a setplay 
to be interpreted by FSF and executed by BahiaRT

Fig. 8   New actions syntax

Fig. 9   Setplay using the new behavior Offensive Marker. The player 
number 7 uses the Offensive Marker to block the opponent and let 
the player number 2 to perform a pass

5  libSetplay is an open-source library where the FSF is implemented
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in the teammate number 7 to block the movement of the 
opponent and let the player number 2 free to execute the 
pass.

Humanoid robots can not perform passes so quickly as 
wheeled robots. A humanoid needs to position itself and 
then control a set of joints to perform the kicking move-
ment. Opponents can reach the ball before our player 
can complete the kicking movement most of the times. 
For this reason, the offensive marker is a vital behavior to 
enable the success of ball passing. The pass is an essential 

movement in most setplays. The addition of the offensive 
marker behavior increases the usefulness of the FSF and 
SPlanner to the humanoid robots’ soccer domain.

The second example demonstrates the use of the Pass 
to Best Player, as seen in Fig. 10. The image shows a com-
mon situation where player number 8 is with the ball and 
has to choose whether he passes it to player number 7 
or player number 10. The SPlanner has a resource called 
multi-flow, where you can split the setplay course of 
actions depending on its flux. The addition of the Pass To 

Fig. 10   Examples of use of the 
behaviour PassToBestPlayer 
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Best Player takes a great advantage of the multi-flow. Inter-
esting usage situations arises when the setplay designer 
wants to delegate to MAS the task of evaluating the tar-
gets for a pass, and decide a different flow for the setplay 
depending on this decision. The designer can plan two or 
more different flows and the MAS takes the decision of 
which one the agents will follow according to the chosen 
player to receive the pass.

In example Fig. 10a, we can observe that player num-
ber 8 picked player number 7 as his pass target, thus, 
this player will continue the setplay flux as the new ball 
owner. Fig. 10b shows a situation where player number 
10 was chosen instead of number 7. The teams’ algorithm 
is responsible for analyzing which teammate is the best 
one to receive the pass. When the designer picks a team-
mate by himself, he assumes that the team will be able to 
execute that specific action exactly the way he planned, 
but that is not always true. As mentioned before, the Pass 
to Best Player allows the setplay designer to delegate to 
the MAS the decision of which teammate to receive a pass. 
Delegating this choice to the team’s AI makes this action 
far more reliable, as it increases its chance of success.

On the third setplay (Fig. 11), there is another situation 
where the objective is to execute a pass. The player num-
ber 2 is going to execute a pass forward to player num-
ber 7, who is going to move to the region informed by 
player number 2 using the new intercept action. Since the 
enemy is showing a potential threat, the player number 6 
executes an offensive marking to protect player number 2 

pass attempt. In this example, the main modification dem-
onstrated is the use of the new intercept action. In this ver-
sion, the setplay will define that the player who will try to 
intercept the ball will move to a specific field region where 
is the target of the ball passing. The player can start mov-
ing towards the target region earlier and the chances of 
success in the ball interception are increased.

The last example (Fig. 12) shows a defensive corner 
setplay. In this example, player number 10 approaches 
the region where the kick is going to happen in order to 
disturb the enemy player supposed to receive the pass. 
Player 10 uses the run - straight since there are no obstacles 
between him and the target region. The players number 
9 and 11 execute the passive Defensive Marker to prevent 
other enemy agents from receiving a pass, and while 
doing so, they also try to regain the ball possession from 
the enemy team.

In this example, the run - straight and defensive marker 
are demonstrated. Many teams are developing or trying 
to develop faster running skills for their humanoid robots. 
The goal is to present a sprint skill to move a robot very fast 
from one region of the field to others. This kind of move-
ment does not care about collision avoidance. A big prob-
lem for the teams when using a sprint is deciding when it 

Fig. 11   Example of a setplay using the existing pass forward to 
behavior with the new actions intercept and offensive marker 

Fig. 12   Example of setplay using the defensive marker behavior and 
the run - straight 



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2021) 3:608  | https://doi.org/10.1007/s42452-021-04571-y

is useful to use this skill. When we added the run - straight 
to the SPlanner, the decision about when a robot should 
use a sprint skill can be delegated to the setplay designer. 
This delegation is important because the strategic choice 
of risky behaviors is preferable to an algorithmic decision. 
Reactive algorithms can not estimate all situations and 
the consequences of using a sprint behavior. The previous 
version of SPlanner lacked a behavior to mark opponents 
without ball possession. Potential receivers can not be free 
to receive a pass and shoot to our goal. So, the defensive 
marker is an essential feature to the setplays designer to 
create defensive strategies to avoid opponents’ pass to be 
well succeeded and regain the ball possession.

4 � Integrating RoboViz and SPlanner

The RoboViz is the official SSIM3D competition viewer. 
RoboViz is used in two operational modes: gaming and log 
modes. The gaming mode is used during real-time games. 
It is the mode use during competitions. The RoboViz con-
nects to a simulator in the network and receives all log 
information while the match is processed by the simula-
tor. RoboViz renders the graphical scene corresponding 
to the current game instant and displays it on a monitor. 
In the log mode, no simulator or online connections are 
necessary. The RoboViz opens a log file previously gener-
ated by the simulator and renders the match recorded in 
this log file. From the user point of view, it is like a replay 
of an old match. The log mode is very useful to developers 
and researchers when they are trying to understand the 
limitations of their teams to define strategies and enhance 
their performance. They can watch matches played during 
competitions or previous test in their labs and detect the 
weakness of their teams. However, when they identify any 
point to enhance, they need to hand code the conditions 

that represents that specific scene in their development 
tools. There is no way to automatically extract that game 
situation to other tools.

In this work, we develop a new demonstration mode in 
RoboViz. This mode can be used when launching RoboViz 
using the –demoMode flag. The RoboViz launches in an 
interface similar to the log mode but containing an extra 
Start demonstration button as shown in Fig. 13. the button 
is disable when the application launches. When a log file 
is open, the button is enabled. The RoboViz starts playing 
a log as soon as the file is open by the user. The remaining 
buttons in the Logplayer window are similar to those in an 
usual video player, like play/pause, rewind, fast forward, 
etc.

During the log play, when the user watches a situation 
where he wants to start a new demonstration, he clicks 
the new button and provide some information as shown 
in Fig. 14. The user should provide some initial informa-
tion on this screen. He chooses one team for whom he is 
providing this new demonstration. Then, he chooses the 
type of the setplay and a play mode. The type can be offen-
sive or defensive. When the offensive type is selected, the 
tool assumes that the chosen team has ball possession. 
Otherwise, it considers that the opponent team owns the 
ball. The list of play modes is context-sensitive. Only the 
play modes that were observed in the current log up to 
the current instant will be shown. If, for instance, there was 
no goal kick in the current match so far, the list will now 
show goal kick as an option. The user should choose the 
play mode corresponding to the point he wants the log 
to be re-positioned to. If you choose BahiaRT Kick-in, for 
instance, the log will reverse to the last kick-in favorable 
to BahiaRT.

When the user fills all the information, he can press 
the Play button to re-position the log. This process may 
be slower because the input for RoboViz is not a video 

Fig. 13   RoboViz initial screen 
in the demonstration mode. 
The Start demonstration button 
can be used during log play to 
create a new demonstration
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streaming. The RoboViz reads a log generated by the simu-
lator. So whenever a log re-positioning is necessary, it must 
build again the sequence of scenes necessary to reach the 
target point in the log. A new window with instructions to 
wait the log to reverse to the target position and to press 
the Pause button when the log is in the scene where the 
user wants to start the demonstration. The forward/back-
ward button may be used to fine tune the exact position 
in the log. The Fig. 15 shows the demonstration start time 
definition window. When the log is re-positioned, the user 
can choose the players form the team he has chosen in the 
previous screen that will take part of the setplay. We call 
these players as teammates. The user just click on each 
player and the number of each selected robot is added to 
a list alongside the option Teammates selected. When all 
players are selected, the user must check the box on the 
left of this option.

Then, the user must select the players from the oppo-
nent team that he wants to include in the setplay and 
check the Opponnets selected option. The user pushes the 
Start demonstration button and a demo file is exported to 
the disk. The SPlanner is automatically launched to import 
this file. Figures 16 and 17 show an example of demonstra-
tion scene in RoboViz, just before exporting, and in SPlan-
ner just after importing.

The blue and red numbers in the window on the right 
top corner indicate the players chosen to take part of the 
demonstration. Notice these players are loaded in the 
same relative position in the field in the SPlanner (Fig. 17).

When SPlanner import the demo file, the players con-
sidered Teammates will be represented by white t-shirts, 
and the Opponnets use blue t-shirts. From this point on, 
the user will design his setplay using regular SPlanner 
features. When he finishes, he exports the setplays to a 

Fig. 14   Screen launched 
when a new demonstration 
is started. The user should 
inform for which he want to 
create a recommendation, the 
type of setplay (offensive or 
defensive) and the play mode 
where he wants the log to be 
re-positioned

Fig. 15   After log re-posi-
tioning, the teammates are 
chosen. The user just click on 
each player and its number 
is inserted in a list on the site 
of the option Teammates 
selected. The checkbox must be 
selected when all teammates 
where chosen
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file and closes SPlanner. The RoboViz will continue the log 
playing in the same point where the demonstration was 
started. Thus, a user can generate several demonstrations 

while he watches one unique match. the demonstrations 
are independent of each other.

The file exported by RoboViz uses an S-expression syn-
tax that is easy to be parse by any tool. Thus, this file can 
be used by other tools besides SPlanner. The file is very 
simple as can be seen in the Fig. 18.

The file contains very basic information. Two lists of 
players - teammates and opponents—are in the begin 
of the file. Following them, there are the play mode, the 
leader player and the ball holder. The play mode is the one 
chosen by the user when started the demonstration. The 
leader player is always a teammate. In offensive setplays, 
the leader and ball holder is the same player. In defensive 
setplays, the leader is the teammate who is closer to the 
ball. The ball holder is the player who owns the ball pos-
session. He can be a teammate (in offensive setplays) or a 
opponent (in defensive setplays).

The modified tools presented in both this and previous 
sections make it possible for a user to generate demon-
strations of setplays starting from real scenes in games’ 
logs. In next section, the overall process for generating the 
dataset is presented. The schema to organize the dataset 
is also described.

5 � Organizing the dataset

Since the required tools to generate a setplay demonstra-
tion are available, a process to create this dataset must be 
defined. The full process is illustrated in Fig. 19.

An expert can use RoboViz to watch games logs and 
choose some situation to start setplay demonstration. 
The RoboViz exports a demonstration file and launches 
SPlanner. The demonstration file is loaded when SPlanner 
is initiated. The expert can complete the setplay recom-
mendation and export it to a set of setplays. The expert 
will continue watch the game from the point where he 
started his first demonstration and this process will repeat 
while the expert wants to provide new recommendations.

Fig. 16   Demonstration ready to be exported. Players 7, 8, 9 and 11 
from blue team and players 1, 2, 3, 4, 5, 6 and 11 from red team will 
take part of the setplay

Fig. 17   Demonstration imported into SPlanner. The white players 
are the Teammates and blue players are the Opponents

Fig. 18   The demonstration file 
exported by RoboViz uses a 
simple S-expression syntax
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This project uses a crowd-sourcing strategy. So the tools 
will be available for several people from anywhere provide 
recommended setplays. Thus, it is expected to get large 
set of setplays. These setplays must be organized into a 
dataset adequate for using in a reinforcement learning 
strategy. In a previous work, a dataset schema was pre-
sented [22]. The organizer uses this schema to generate 
the dataset ready for training the MAS to use the recom-
mendations. One of the main issues solved by the new 
schema is semantic equivalence.

Definition 1  (Semantic equivalence) Two setplays �p and 
�q are considered semantic equivalents if they represent 
the same play in the domain abstract knowledge level [22].

By domain abstract knowledge, we mean the knowl-
edge that specialists say they have acquired based on 
their experience. It is a kind of common sense between the 
majority of domain experts.

Thus, setplays considered semantic equivalent are 
grouped under a cluster structure. However, the concept 
of semantic equivalence is not precise. A setplay may pre-
sent features to be part of more than one cluster in the 
structure. For this reason, the organizer uses a fuzzy strat-
egy. The Fuzzy C-Means (FCM) algorithm was adapted to 
deal with non-scalar features and group the setplays using 
an hierarchical structure. Some important information 
from setplays (e.g. conditions) are not scalar information. 
In this proposal they were codified as binary trees. This 
required an adaption in the conventional FCM to deal with 
these kind of information

Other issue is that a setplay is not a linear object. For 
instance, it contains a list of steps where each step is a 
complex object with a list of features. The strategy was to 
define the cluster in two levels. In the first level, only the 
information regarding setplays identification were consid-
ered. At this point an initial set of clusters were generated. 
Thus, a second clustering level is executed inside each 
cluster generated in the first level, generating sub-clusters. 
In this second level, only information regarding the steps 
of each setplay is considered.

Table 1 lists the features necessary to represent a set-
play in the dataset. The last feature(stepsList) in this table 
is a list of complex structures composed of several fea-
tures. A secondary dataset schema described in Table 2 
details the stepsList.

We have changed the feature nextStep since our pre-
vious work [22] to support multiflow setplays. In the 
updated version we represent the nextStep as a list of inte-
gers, while in the previous version it was a single integer. 
The addition of the new behavior passToBestPlayer (see 
Sect. 3) requires a full support to multiflow setplays.

Figure 20 illustrates a schematic view of the proposed 
hierarchical dataset schema. The schema is divided into 
two levels. At the first level, there are features that identify 
the setplays. Each instance at this level represents a differ-
ent setplay recommended by demonstrators. The second 
level describes the steps within each setplay. The organizer 
reads the S-expression files and transforms them into the 
structure illustrated in Fig. 20.

The detailed description and validation of this clustering 
strategy was presented earlier [22]. In the next section, we 

Fig. 19   The full process of generating a dataset for learning setplays from demonstration
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describe the new assessment executed with the clustering 
strategy when applied to the new dataset generated with 
the new integrated tools. The organizer generates a dataset 
built in a two-level fuzzy clustering structure. This dataset 
will be used for training the MAS to learn a control policy 
to choose the correct cluster for each situation. When the 
policy is learned, the agents will evaluate each simulation 
episode to decide if they will launch a setplay from one 
of the clusters or continue to act in a reactive mode. If a 
cluster is chosen the agent will use the current Case-Based 
Reasoning (CBR) algorithm present in the FSF to choose 
one of the setplays inside the selected cluster.

6 � Assessment

The dataset schema proposed to organize setplays into 
clusters is based on fuzzy clustering as stated in our pre-
vious work [22]. This section assesses if the schema pre-
sented meets the requirements to organize the full dataset 
of setplays into several groups. The main requirement is 

to split the dataset into clusters containing setplays that 
are semantically equivalents and can be used in the same 
game situation. In this work, we use a dataset containing 
ten times more instances than we did in our previous work. 
The contents of the dataset are also different. The setplays 
in this new dataset include all enhancements described in 
Sect. 3. We use, for the first time, the demonstration mode 
from Roboviz to integrate it to SPlanner. This assessment 
applies to our complete proposal for generating an organ-
ized dataset to support the learning of setplays from dem-
onstration (see Fig. 19).

In Sect. 6.1, we describe our experimental setup. Sec-
tion 6.2 describes Fuzzy Silhouette (FS) and the methods 
we have used to calculate FS as our main metric to assess 
the eligibility of our cluster organization.

6.1 � Experimental setup

One of the goals when using FCM is to define the best 
number of clusters to adequately represent the system of 
interest. A widely known and simple scheme for defining 

Table 1   Dataset features representing setplays extracted from SPlanner

Feature Description Data type

ourPlayersNumber Number of BahiaRT players participating in the setplay Integer
theirPlayersNumber Number of opponent players participating in the setplay Integer
abortCondition Boolean expression representing the condition to abort the 

setplay
Binary tree representing the parsed Boolean expression

Steps Total number of steps composing the setplay Integer
stepsList List of steps composing the setplay Vector of Step. Each step is a composed structure 

presented in Table 2

Table 2   Features that composes one step

Feature Description Data type

ourPlayersInStep Number of BahiaRT players participating in this step. This 
number must be smaller than or equal to ourPlayersNumber

Integer

theirPlayersInStep Number of opponent participating in this step. This number 
must be smaller than or equal to theirPlayersNumber

Integer

waitTime Minimum time to wait before a transition from a current step 
to another can be conducted

Double

abortTime Maximum time to finish the current step Double
ourPlayersList List of BahiaRT players participating in this step Vector of Player PB . Each Player pB ∈ PB is represented 

by a Cartesian coordinates pair (xpB , ypB )
theirPlayersList List of opponent players participating in this step Vector of Player PO . Each Player pO ∈ PO is represented 

by a Cartesian coordinates pair (xpO , ypO )
nextStep Identification of the possible next steps after a transition 

condition is met
list of Integer

condition Boolean expression determining the transition condition from 
the previous to the current step

Binary tree representing the parsed Boolean expression

behaviorsList List of behaviors executed by each player pB ∈ PB Vector of strings
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the number of clusters consists of executing the fuzzy 
clustering algorithm several times for different numbers 
of clusters and then selecting the particular number of 
clusters that provide the best result according to a spe-
cific criterion [2, 12].

Many Cluster Validation Indexs (CVIs) were proposed 
and analyzed in recent works [8, 9]. These CVIs are used to 
assess the quality of data organization into clusters. CVIs 
are popular measures to assess the number of clusters 
used in a particular data organization. We use FS to verify 
if our proposed data schema can provide a good organi-
zation for setplays and represent the concept of semantic 
equivalence in an adequate number of clusters. FS non-
monotonic bias, good scalability to large datasets, and low 
computation costs are the main reasons for our choice [5].

For the assessment, we used the FCM algorithm to 
split a sample dataset into clusters. The dataset was gen-
erated using Roboviz demonstration mode and SPlanner. 
The dataset was composed of 181 setplays. To provide 
diversity, the setplays were created in six different play-
modes: play on, goal kick, kick in, kick-off, free kick and 
corner kick. For all play-modes, we generated both offen-
sive and defensive setplays. At least four different set-
plays were created for each play-mode. Hence, the data-
set is composed both of simple and complex setplays.

We adapted the standard FCM implementation [3] to use 
the norms defined in our previous work [22]. The algorithm 
was also developed to split the clustering process into two 
stages as described. At the first stage, the feature stepsList of 
the setplays objects is ignored. When the centroids of each 
cluster are defined, the abortCond feature is assigned the 

Fig. 20   Schematic representa-
tion of the dataset schema. The 
first level contains the features 
that identify the setplays. The 
second level contains the fea-
tures that describe the steps of 
each setplay
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binary tree from the abortCond property of the instance with 
a higher membership value in the fuzzy partition matrix.

We populated our dataset with setplays created from 
real game situations extracted from Roboviz. We thus con-
sidered C(1) =

√

N∕2,… , 2 ×
√

N ; where N is the number of 
instances in the dataset; to run the FCM and to find different 
organizations for the dataset. FS were used to assess each 
setup with different values of c. For each value of c, we ran 
10 instances of the FCM algorithm initializing with a random 
prototype of clustering. The higher value of FS among the 10 
instances was considered the representative value for that c 
particular instance.

After running the experiment for the first stage we found 
the optimal value C(1)∗ for C(1) . We used a cluster instance for 
C(1) = C(1)∗ to start the second stage.

To define the membership of dataset instances for 
each of the C(1)∗ clusters, consider ��i =

(

max�i,j

)

− � ; 
j = 1,… ,N;i = 1,… ,C(1)∗ ; where � ∈ [0, 1] is a constant 
used to define how flexible the membership condition was. 
Greater values of � tend to give more flexibility to the mem-
bership condition, i.e., instance of setplays with membership 
degrees far from the best-valued instance were also consid-
ered as a member of that particular cluster. When � tends to 
1, all the instances of setplays in the dataset were considered 
members of the ith cluster. When � tended to 0 only the best-
valued instance was considered a member of the ith cluster. 
The clustering setup degenerated to a set of singletons, i.e., 
groups with only one instance.

We defined that the jth instance was a member of the 
ith cluster if ui,j > 𝛥𝜇i . In this work, we used � = 0.5 for all 
the experiments.

6.2 � Fuzzy Silhouette (FS)

Consider the fuzzy partition matrix P =
[

�i,j

]

CxN
 ; where C 

is the number of clusters used in the FCM algorithm, N is 
the number of objects to be organized into clusters, �i,j is 
the membership degree of object j to cluster i, i = 1,… ,C , 
j = 1,… ,N . The FS is defined by [5]:

where �p,j and �q,j are the first and second largest elements 
of the jth column of the fuzzy partition matrix, respectively, 
and � is a user-defined weighting coefficient. sj is the sil-
houette of object j defined as follows:

where ap,j is the average distance of object j to all other 
objects belonging to cluster p. The distance is calculated 

(1)FS =

∑N

j=1

�

�p,j − �q,j

��
sj

∑N

j=1

�

�p,j − �q,j

��
,

(2)sj =
bp,j − ap,j

max
(

ap,j , bp,j
) ,

using the norms defined in our previous work [22]. 
Belonging to cluster p means that the membership of the 
jth object to the pth fuzzy cluster, �p,j , is higher than the 
membership of this object to any other fuzzy cluster, i.e., 
𝜇p,j > 𝜇q,j∀q ∈ {1,… , c}, q ≠ p . Let dq,j be the average dis-
tance object j to all objects belonging to another cluster q, 
q ≠ p . bp,j is the minimum dq,j computed over q = 1,… , c , 
q ≠ p . Exponent � is an optional user-defined param-
eter ( � = 1 , by default). When � approaches zero, the FS 
measure defined in (1) approaches the Crisp Silhouette 
(CS) measure which serves as a basis to define FS [5]. CS 
is the crisp counterpart of FS and is used for crisp cluster-
ing algorithms applied to hard datasets whereby no over-
lap between clusters is present. Conversely, increasing � 
moves FS away from CS by diminishing the relative impor-
tance of data objects in overlapping areas. Accordingly, 
increasing � tends to stress the effect of revealing smaller 
regions with higher data densities (sub-clusters), if they 
exist. Such an effect can be particularly useful, for example, 
when dealing with data sets contaminated by noise. Bear-
ing this in mind, exponent � can be seen as an additional 
tool for exploratory data analysis, as is the case with fuzzi-
fier exponent (m) of the FCM algorithm. From another per-
spective, the FS with exponent � can be seen as a family 
of parameterized CVIs, rather than a single measure with 
a coefficient that must be adjusted to a specific problem 
in hand. We here used (m = 2, � = 2) , since it proved to 
be the parameters which better explore the overlapping 
feature between clusters in our dataset [22].

FS is a maximization CVI. Hence, the higher the value of 
FS for a particular value of c, the better this specific clus-
tering is. The goal when using FS to evaluate the clusters 
setup generated by FCM is to find the value of c that maxi-
mizes FS.

6.3 � Results

Our first experiment consists in running the FCM algorithm 
to organize the first level of our dataset. The goal of this 
experiment is to define the appropriate number of clusters 
(C) we should use for this dataset in its first level. Figure 21 
shows the results.

The best value for FS was found when C(1) = 27 . We 
can observe that after C(1) = 27 the value of FS tends do 
decrease. We can choose C(1)∗ = 27 as the number of clus-
ters we use to organize our dataset in the first level. We 
can also check the number of instances per cluster when 
we consider C(1) = 27 . For all clusters c(1) = 1,… ,C(1) , the 
number of setplays on each cluster is shown in Fig. 22.

We can see the most of the clusters contains between 
4 and 6 setplays. The largest group is the cluster c(1) = 11 
with 10 instances. There are only 5 singletons (cluster with 
a single instance).
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This result is appropriate because the existing selec-
tion method in the FSF uses a CBR strategy. This solution 
has proved to generate good results for small groups of 
setplays.

In the second experiment we run the FCM algorithm 
over each of the 27 clusters found in level 1 organization. 
We consider that singletons are not eligible for a subdivi-
sion in level 2. The cluster where 2 ×

√

(Nc(1) ) ≤
√

(Nc(1) )∕2 
can not also be subdivided in level 2.

In Fig. 23, we see the results of FS for the subdivision 
of eligible clusters from level 1. In all cases, the best val-
ues of FS emerge when C(2) = 2 . Only in two cases, the 
value of FS for C(2) = 3 is similar to the value obtained 
for C(2) = 2 . These results show that most of the eligible 
clusters from level 1 can be successfully split into two 
sub-clusters in level 2.

6.4 � Discussion

We demonstrated that it is possible to split a large data-
set into clusters containing a small number of setplays. 
For those groups with not so few setplays, we can run the 
second level of clustering to get sub-groups of instances. 
The main reason why we need to work with small groups 
is that the simulation is a soft real-time application. Robots 
are required to take new decisions on each 20 ms. If we use 
a large dataset with no clustering, the selection method, 
using CBR, would spend too much computational time 
and make agents lose the simulation cycle.

Our results demonstrate that it is feasible to find a 
fuzzy clustering organization that reduces the number of 
instances on each cluster. This way, we can consider using 
larger datasets to feed the reinforcement learning engine 
described in our future work. Our results confirm that we 
can use the new features added to RoboViz and SPlanner 
(see Sects. 3, 4 ) to generate the instances for the dataset. 
The new data could be organized and provide an eligible 
dataset for the last stage of the LfD approach we use in 
this project.

As far as we know, there is no previous work that pre-
sented a strategy to generate a large dataset from soccer 
domain experts and organize it so that a robotic soccer 
team can use it in real-time to learn coordinated strategies 
adapting these plans to the skills of each robot. Hence, we 
can consider our results as a novel contribution o state the 
art in this field.

7 � Conclusion and future work

This paper presented the complete process of generat-
ing a dataset for learning setplays from demonstration 
in a SSIM3D team. The process uses some tools such as 
RoboViz, SPlanner, and FSF. The final step is an organizer 
which uses the FCM algorithm in two levels to organize 
the dataset.

Some enhancements were introduced to SPlanner, 
adapting it to the SSIM3D teams’ needs to attend to the 
requirements of this process. The proposed improve-
ments in SPlanner allow setplay’s designers to create more 
sophisticated plays using passes. The passToBestPlayer, 
for instance, enables the creation of multi-flow setplays, 
which delegate to the team’s behavior implementation 
to decide which teammate is the best player to receive 
the pass. Using a multi-flow setplay, the designer can fore-
see all possible flows of the play, considering each player 
selected to act as a pass receiver by the team’s algorithm. 
The updated intercept action allows sending the target 
region coordinates to the intercept command, making it 
easier for the teams’ developers to implement this action. 

Fig. 21   Results of Fuzzy Silhouette for level 1 of the dataset. C(1) 
varies from 6 to 30

Fig. 22   Number of instance on each cluster after level 1 organiza-
tion considering C(1)∗ = 27
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When performing the intercept behavior, the player who 
receives the pass can start moving to the target region 
even before his teammate can complete the pass. Another 
essential behavior proposed here was the offensive marker 
behavior. After all, in humanoid robots soccer, the kick 
is not an instantaneous action because robots need to 
move lots of joints to perform a complete movement. In 
this sense, the teams must consider the time to prepare 
and execute a pass before an opponent can intercept it. 
The new offensive marker can block the opponent player 
in advance and stop its movement towards the teammate 
who is performing a pass. This behavior allowed the use of 
the strategic plan to enable the execution of more passes. 
All these scenarios were validated using BahiaRT as a case 
study.

To complete the set of strategic plans for a soccer team, 
offensive and defensive setplays were also included. These 
options are now enabled in SPlanner through the new pro-
posed behaviors: defensive marker and become owner. The 
defensive marker allows the designer to define actions for 
the team’s players to mark the opponents blocking their 
dribbling and passing actions and preventing them from 
receiving passes. The become owner is used when one of 
the team’s players is closer enough to the opponent with 
ball possession to regain it.

Another contribution of this work is the design of more 
realistic setplays using SPlanner. SPlanner is now more suit-
able for use in humanoid soccer games, easing the use of 
this toolkit for the SSIM3D competition and other human-
oid robotic soccer leagues. From a practical viewpoint, it 

is essential to turn these tools closer to experts’ strategies, 
considering the demonstrations made both by humans 
and robotic soccer experts.

Some changes in RoboViz were also necessary. A new 
demonstration mode was introduced, enabling users to 
capture a specific game situation to be used by SPlanner to 
start a recent demonstration. This integration is essential 
to turn the complete toolkit usable by domain experts.

The results presented here make the SPlanner a more 
suitable tool for the design of more realistic moves closer 
to human soccer. The tool produced in this work provides 
a familiar interface for soccer specialists. By including both 
soccer specialists and robotic soccer specialists among the 
advisors, the possibility of generalizing specialized knowl-
edge through the LfD engine is expanded. The main idea is 
to use the modified SSIM3D viewer (RoboViz) and the new 
version of SPlanner to allow lots of soccer domain experts 
to populate a dataset with demonstrations of setplays. 
This dataset could be used in situations they have seen in 
previous games’ logs. This paper’s contributions turn the 
soccer strategies closer to real soccer situations and allow 
a more significant number of experts to contribute to our 
LfD project.

The last tool presented in this work is the dataset organ-
izer. It uses a 2-level clustering engine to split the data set 
into groups of setplays. The membership is defined in a 
fuzzy fashion. This way, we can see some overlap between 
clusters. This situation reflects the data’s nature that com-
poses the setplays, once it is not easy to classify the set-
plays using crisp criteria.

Fig. 23   Fuzzy Silhouette for 
level 2 sub-clusters for each 
cluster c(1)
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Future work includes populating the dataset, gathering 
demonstrations from many soccer experts, and test our 
LfD engine to prove the efficacy of this approach to cre-
ate high-level strategies for MAS. Finally, we intend to run 
a new set of tests of setplays with further improvements 
in the BahiaRT.

As an undergoing initiative, we are working in a single 
environment integrating OpenAI GYM [4], RoboCup Soccer 
Server3D Simulator, and RoboViz (Fig.24). A proxy inter-
mediates communications between the Soccer Server, 
OpenAI Gym, and Training Agents modules to avoid 
modifying the agent’s effectors. OpenAI Gym is a toolkit 
for developing and comparing reinforcement learning 
algorithms. The latest developments by other 3D soccer 
simulation teams have used the OpenAI Gym. It enables 
us to create a wide custom environment shared with the 
soccer 3D community in the future. The Gym Env mod-
ule will be the bridge between Machine Learning Algo-
rithms and Training Agents modules, allowing the Training 
Agents module to receive input from the OpenAI GYM to 
optimize the team’s tactics player’s behaviors. The Agent 
Message Parser is responsible for collecting and parse all 
the simulator’s perceptions to agents’ sensors and feed 
the Gym Env World Model. This World Model contains all 
information collected from the simulator. This informa-
tion is the basis of the learning model. The Monitor Agent 
Parser collects noiseless information from the simulator. 
The Soccer Server sends the same information it sends 
to a viewer (e.g., RoboViz) to the Monitor Agent Parser. 
The Monitor Agent Parser also can send some commands 
as a Trainer, so the training episodes situation can be set 
up and repeated as many times as the learning strategy 
defines.

The MAS developers can use this training environ-
ment to allow the MAS to learn a policy to select an 
appropriate cluster of setplays to be used in a given 

game situation. Both cluster selection and the choice of 
setplay within the selected cluster can be fast to enable 
agents to take decisions limited to the simulation cycle 
of 20 ms.

Other future works include assessing this proposal 
in other domains than robotic soccer. We plan to adapt 
SPlanner and the other tools to a domain of oil platforms 
inspection with a MAS composed by Unmanned Aerial 
Vehicles (UAVs). The main idea is to demonstrate that our 
proposal can be applied to any MAS where the domain 
expert’s intuitive knowledge must be extracted and trans-
ferred to the agents.
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