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Abstract

Human action classification is a dynamic research topic in computer vision and has applications in video surveillance,
human-computer interaction, and sign-language recognition. This paper aims to present an approach for the catego-
rization of depth video oriented human action. In the approach, the enhanced motion and static history images are
computed and a set of 2D auto-correlation gradient feature vectors is obtained from them to describe an action. Kernel-
based Extreme Learning Machine is used with the extracted features to distinguish the diverse action types promisingly.
The proposed approach is thoroughly assessed for the action datasets namely MSRAction3D, DHA, and UTD-MHAD. The
approach achieves an accuracy of 97.44% for MSRAction3D, 99.13% for DHA, and 88.37% for UTD-MHAD. The experi-
mental results and analysis demonstrate that the classification performance of the proposed method is considerable
and surpasses the state-of-the-art human action classification methods. Besides, from the complexity analysis of the
approach, it is turn out that our method is consistent for the real-time operation with low computational complexity.

Article Highlights

e The work proposes to process depth action videos through 3D Motion Trail Model (3DMTM) to represent the video
as a set of 2D motion and motionless images.

e This work improves the above action representation by configuring all the 2D motion and motionless images as
binary-coded images with the help of the Local Binary Pattern (LBP) algorithm.

o This work evaluates the use of auto-correlation features extracted on binary-coded versions of the 2D action repre-
sentations instead of extracting these features from the non-binary-coded versions of the early action illustration.
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1 Introduction

A large number of researchers have been attracted to
human action classification problem due to its wide range
of real-world applications. The notable implementations
cover visual surveillance [1], smart homes [2], sports [3],
entertainment [4], healthcare monitoring [5], patient mon-
itoring [6], elderly care [7], Virtual-Reality [8], human-com-
puter interaction [9], and so on.

Human actions refer to distinctive sorts of activi-
ties including walking, jumping, waving, etc. However,
the vivid variations in human body sizes, appearances,
postures, motions, clothing, camera motions, viewing
angles, illumination changes make the action recognition
task very challenging. Over few years, a large number of
researchers introduced several action or activity recogni-
tion model by using data sensors like RGB video cameras
[10], depth video cameras [2], and wearable sensors [11].
Among these two video data sources, action recognition
research based on conventional RGB cameras (e.g.[12] has
achieved great progress in the last few decades. However,
utilization of RGB cameras for action recognition raises
significant impediments such as lighting variations and
cluttered background [13]. On the contrary, depth cameras
generate depth images, which are insensitive to lighting
variations and make background subtraction and segmen-
tation easier. In addition, we can obtain body shape and
structure characteristics and the human skeleton informa-
tion from depth images.

Many previous attempts can be listed for efficient rec-
ognition systems such as DMM [14], HON4D [15], Super
Normal Vector [16], Skeletons Lie group [17] and etc.
But, those existing methods still face some crucial chal-
lenges such as depth video processing, appropriate fea-
ture extraction and reliable performance of classification
model. Considering the aforementioned challenges, this
study focuses to build an effective and efficient human
action recognition framework on depth action video
sequences. The main objective of this work is to enhance
the classification accuracy by proposing an efficient rec-
ognition framework, which can overcome the above
challenges more effectively. More specifically, the action
video is illustrated through three 2D motion and three
2D static segments oriented images of the action. In fact,
the dynamic and motionless maps are derived from the
implementation of 3DMTM [18] on a video. However, the
obtained representations are then enhanced with the help
of LBP [19] tool. The tool enriches the action illustration
by encoding the motion and motionless maps into binary
pattern. Eventually, the outputs of the LBP are treated as
input of GLAC [20] to generate the auto-correlation gra-
dient vectors. In fact, there are three feature vectors for
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the action motion segments images and another three
feature vectors for the action static segments images. The
first three vectors are concatenated to construct a motion
information based GLAC vector. Similarly, another single
GLAC vector is gained by incorporating the above men-
tioned last three vectors. For more boosting the proposed
method, the aforementioned two single action representa-
tion vectors are concatenated for building the final action
description. Finally, the action is recognized by passing the
vector to a supervised learning algorithm named Extreme
Learning Machine with Kernel (KELM) [21].
The main contributions of this paper are:

¢ We enhance the auto-correlation features for the opti-
mal description of an action. Besides, to observe the
significance of the feature augmentation, the action
is also presented with the ordinary auto-correlation
features. In fact, our action representation technique
addresses the intra-class variation and inter-class simi-
larity problem significantly.

o We report recognition results on three benchmark
datasets namely; MSRAction3D [22], DHA [23] and UTD-
MHAD [24]. The recognition results are compared with
state-of-the-art handcrafted as well as deep learning
methods.

e We compare the recognition results based on the
enhanced auto-correlation features compared to rec-
ognition results using the auto-correlation features
only. These comparisons are made for the same data
sets to fairly evaluate and elaborate the effectiveness
of enhanced auto-correlation features.

o Finally, we report the computational efficiency in terms
of the running and computational requirements.

Based on three publicly available data sets - MSRAction3D
[22], DHA [23] and UTD-MHAD [24], the proposed method
is compared with handcrafted and deep learning methods
extensively. The computational efficiency assessment indi-
cates that the proposed approach offer feasibility for the
real-time implementation. The working flow of the system
is illustrated in Fig. 1.

This paper is organized as follows: in Sect. 2, we pre-
sent some related literature review. Section 3 describes
research methodology. The results of experimental and
discussions are presented in Sect. 4. Finally, Sect. 5 con-
cludes the work.

2 Related work

Feature extraction is a key step in Computer Vision
research problems like object localization, human gait
recognition, face recognition, action recognition, text
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Fig. 1 Workflow illustration of our method

recognition and etc. As a result, researchers have given
more attention to extract features effectively. For exam-
ple, for object recognition, Ahmed et al. [25] introduced a
Saliency map on RGB-D indoor data which had numerous
applications such as vehicle monitoring system, violence
detection, driverless driving system, etc. Hough voting and
distinct features were used to measure the efficiency of
that work. To explore silhouettes of humans from noisy
backgrounds, Jalal et al. [26] applied embedded HMM for
activity classifications where spatiotemporal body joints
and depth silhouettes were fused to improve accuracy.
In another work, to recognize online human action and
activity, Jalal et al. [27] performed multi-features fusion
along with skeleton joints and shape features of humans.
For feature extractions in activity recognition, Tahir et al.
[28] applied 1-D LBP and 1-D Hadamard wavelet transform
along with Random Forest. On depth video sequences,
Kamal et al. [29] utilized modified HMM to complete
another fusion process of temporal joint features and

spatial depth shape features. On the other hand, to rec-
ognize facial expression Rizwan et al. [30] implemented
local transform features where HOG and LBP were used for
feature extraction. Again, skin joint features by using skin
color and self-organized maps were used for activity rec-
ognition [31]. In another work, Kamal et al. [32] employed
distance parameters features and motion features. Yaacob
etal. [33] introduced a discrete cosine transform, particu-
larly for gait action recognition.

In developing vision based handcrafted action rec-
ognition, researchers have also done struggle in feature
extraction for optimal action representation. The motion
features of an action through the simplified depth motion
maps were extracted by works in DMM [14], DMM-CT-HOG
[34], DLE [35]. The texture features extracted by LBP were
utilized in [36]. Recently, Dhiman et al. [37] introduced
Zernike moments and R-transform to create a powerful
feature vector for abnormal action detection. A genetic
algorithms based system was proposed by Chaaroui et al.
[38] to improve the efficiency of the skeleton joint-based
recognition system by optimizing skeleton-joint subset.
Vemulapalli et al. [17] represented human actions as
curves that contain skeletal action sequences. Gao et al.
[39] proposed a model to recognize 3D actions where they
constructed a difference motion history image for RGB and
depth sequences. Then, they captured motions through
multi-perspective projections. Next, they extracted the
pyramid histogram of oriented gradients. Finally, human
action was identified by combining multi-perspective and
multi-modality discriminated and joint representation. In
the work by Rahmani et al [40], the features obtained from
depth images were combined with skeleton movements
encoded by difference histogram and finally a Random
Decision Forest (RDF) was applied to obtain discriminant
features for action classifications. On the other hand, Luo
et al. [41] represented features by sparse coding-based
temporal pyramid matching approach (ScTPM). They also
proposed a capturing technique for spatio-temporal fea-
tures from RGB videos called Center-Symmetric Motion
Local Ternary Pattern (CS-Mltp). Finally, they explored the
feature-level fusion and classifier-level fusion applying the
above mentioned features to improve recognition accu-
racy. Again, decisive pose features were used by impos-
ing another two distinct transformations called Ridgelet
and Gabor Wavelet Transform to detect human action
[42]. Moreover, Wang et al. [43] studied ten Kinect-based
methods for cross-view and cross-subject action recogni-
tion on six dissimilar datasets and finally concluded that
skeletal-based recognition is superior to other processes
for cross-view.

Deep learning models usually learn features automati-
cally from raw depth sequences, which are then useful
to compute high level semantic representations. For
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example, 2D-CNN and 3D-CNN were employed by Yang
and Yang to address the deep learning based depth action
classification [44]. Wang et al. [45] used to improve the
action representation, unlike DMM, Wang et al. proposed
Weighted Hierarchical Depth Motion Maps (WHDMM). The
WHDMM was fed into CNN along three CNN streams to
recognize actions. In another concept, before passing to
CNN, the depth video was described by Dynamic Depth
Images (DDI), Dynamic Depth Normal Images (DDNI) and
Dynamic Depth Motion Normal Images (DDMNI) [46]. In
[47], a novel notion in action classification is introduced by
using the RGB domain features as depth domain features
by domain adaptation. Motion History Images (MHI) from
RGB videos and DMM of depth videos are utilized together
to generate a four-stream CNN architectures [48]. By using
inertial sensor data and depth data, Ahmad et al. [11]
expressed a multimodal M? fusion process with the help
of CNN and multi-class SVM. Very recently, Dhiman et al.
[49] have merged shape and motion temporal dynamics
by proposing a deep view-invariant human action system.
To detect the human gesture and 3D action, Weng et al.
[50] proposed pose traversal convolution Network which
applied joint pattern features from the human body. They
also represented human gesture and action as a sequence
of 3D poses. A self-supervised alignment method was used
for unsupervised domain adaptation (UDA) [51] to recog-
nize human action. Busto et al. [52] expressed another
concept for action recognition and image classification
called open set domain adaptation which works for unsu-
pervised and semi-supervised domain adaptation model.

3 Proposed system

Our proposed framework consists of feature extraction,
action representation and action classification. In this
section, we discuss the three parts respectively. Figure 2
shows the pipeline of the system.

3.1 Feature extraction

For each action video, three motion and three static
information images are firstly computed by applying
the 3DMTM [18] on the video. The 3DMTM yields the set
MHlyoy, MHIly o7, MHIy o, of motion images and the set
SHlyoy. SHlyoz, SHIy o, Of static images by simultaneously
stacking all the moving and stationary body parts (along
the front, side and top projection views) of an actor in a
depth map sequence.

Now, the MHIs and SHIs are converted to the binary
coded form by the LBP [19]. In fact, the later versions are
more enhanced than the earlier version of those images.
Figure 3 shows an MHI and the corresponding BC — MHl is
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represented by Fig. 4. It is clear that the motion informa-
tion of the action is improved in the BC — MHI.

The binary coded motion images (BC — MHIs)
are referred to as BC — MHlyy,, BC — MHI,,, and
BC — MHIy,; on three Euclidean faces whereas the
binary coded static images on those faces are denoted
as BC — SHly,y, BC — SHIy5, and BC — SHly,,. The binary
coded images thus obtained, are fed into the GLAC [20]
descriptor to extract spatial and orientational auto-corre-
lations for illustrating action. This paper extracts the Oth
order and 1st order auto-correlation features to describe
an action. In fact, the auto-correlation features are used
to describe an action through the rich texture informa-
tion from images. The texture information includes the
image gradients and curvatures simultaneously. Overall,
the auto-correlation features are more dominant over the
standard histogram oriented features. Thus, we consider
the auto-correlation features in our approach. For a spon-
taneous discussion of the GLAC utilization on BC — MHIs
/BC — SHis, let I be a binary coded motion/static image (i.e.,
BC — MHI/BC — SHI). For each pixel of /, we use image gra-
dient operators to obtain a gradient vector. The magnitude
and the orientation of the gradient vector are computed
as follows:

2 2 .
(£°+2%), if1=1xy)
m =4 (%2"‘%2)' if 1 =1(y,2) , (M
a2 | a2 e
(& e ), if | =1(x,2)
arctan(%,g—; . ifl=1xy)
o= arctan(j—;,g), ifl=Iy,2) , 2)
arctan(%, %), if 1 =1(x,2)

The above orientation 8 can be coded into D orientation
bins by voting weights to the nearest bins to form a sparse
gradient orientation vector g € RP.

Through the gradient orientation vector g and the gra-
dient magnitude m, the Kth order auto-correlation func-
tion of local gradients can be written as

F(dy, ..., dg, by, ..., by)
:/w[(m(r),m(r+b1),...,m(r+b,()]gdo(r)gd1 3)
(r+by)--gg (r+by)dr,

whereb,, b,, ..., by are the shifting vectors from the posi-
tion vector r (indicates the position of each pixel in image
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Fig.2 Architecture visualization of our proposed framework

Fig. 3 Motion history image of two hand wave action

Fig.4 Enhanced motion history image of two hand wave action

Enhanced Auto-Correlation Static
Features (EASF)

Predicted Actions

l). g4 indicates the dth element of g and w(.) is a weight-
ing function of m functions. Indeed, the function w(.) is
used as the auto-correlation’s weights. All the shifting
vectors are restricted to local neighbours since the local
neighbouring gradients might be immensely correlated.
However, two types of correlations among gradients are
obtained from Eq. (3): spatial gradient correlations gained
with the vectors b; and orientational gradient correlations
attained through the multiplications of the values g,. By
changing the values of K, b;, and the weight w; Eq. (3) may
take various forms. The lower values of K assists to capture
lower order auto-correlation features, which are rich geo-
metric characteristics together with the shifting vectors
b;. Because of image isotropic characteristic, the shifting
intervals are kept identical along the horizontal and verti-
cal directions. For w(.), the min is accepted for suppressing
the impact of isolated noise around auto-correlations.

According to the suggestion by [20], K € {0,1},
biyy € {£Ar,0} and w(.) = min(.) are considered in this
paper. The Ar is the displacement interval in both hori-
zontal and vertical directions. The interval is same for both
directions due to the isotropic property of the image. Now,
from Eq. (3), for K € {0, 1} the Oth order (F,) and the 1st
order (F,) GLAC features are as follows:
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Fig.5 Mask patterns for the Oth and 1st order auto-correlation

o ¢ Fro (dy) = ) m(r)gy, (r) @

rel

F, : Fx_,(dy d;, by)
= Z min [m(r), m(r + b;)] g (Ngy, (r + b;) 5

rel

A single mask pattern can be used for Eq. (4), and there are
four independent mask patterns for Eq. (5) for computing
the auto-correlations. The mask/spatial auto-correlation
patterns of (r,r + b,) are depicted with Fig. 5). Since there
is a single mask pattern for F, and four mask patterns for
F, then the dimensionality of the above GLAC features
(Fy and F,)is D + 4D? Although the dimensionality of the
GLAC features is high, the computational cost is low due to
the sparseness of g. It is worth noting that the computa-
tional cost is invariant to the number of bins, D, since the
sparseness of g does not depend on D.

Figure 7 shows an example of Oth and 1st order
GLAC features with 8 orientation bins ( bins are
shown in Fig. 6). Based on texture features, an action
with motion images can be described as a vec-
tor EAMF = [EAMF,y, EAMFy0y, EAMF,o;], where
EAMFyqy, EAMFy o, and EAMF,,, are vectors, which are
obtained by conveying the set of binary coded motion
information images to the 2D GLAC. In order to repre-
sent the static image action based on texture features,
the vector EASF = [EASFyqy, EASFyoz, EASFyoz]is obtained
by linking the enhanced auto-correlation feature vec-
tors extracted on multi-view static images. The EAMF is
complementary to the EASF, therefore we fuse these two
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Fig. 6 Example of orientation bins in auto-correlation computation
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Fig. 7 Example of Oth and 1th order GLAC features

vectors in to a single vector to get optimal representation
of an action. In our work (for all experiments), the dimen-
sion of the single feature vector is of 4752. It is flexible to
compute the feature vector due to the sparse vector g. The
work in [20] provides more detail on GLAC (Fig. 7).

3.2 Action classification

To gain the promising classification outcome, the fused
version of EAMF and EASF is passed to Kernel based
Extreme Learning Machine (KELM). The classification algo-
rithm is discussed in detail in this section. The KELM [21]
is an enhancement of Extreme Learning Machine (ELM)
classifier [53]. By associating a suitable kernel with ELM,
the KELM is derived to improve the discriminatory power
of the classification algorithm. The Radial Basis Function
(RBF) kernel is employed in our work. For an intuitive illus-
tration, the classifier is described as a single algorithm in
Algorithm 1.



SN Applied Sciences (2021) 3:535 | https://doi.org/10.1007/s42452-021-04528-1

Research Article

Algorithm 1 Algorithm of Kernel-based Extreme Learning
Machine

Input: The training feature set {z;,y;}7";, (m is a number
of training samples, y; € {0,1} are class labels with
ie{l1,2,---,C}, x; € RP, y; € RY), and a test sample c.

Steps:
1. Construct a Feed-forward Neural Network (FFNN) as

h () = Ypy o f(wi.m; + ex) = y;

2. Write Step-1 in compact form as Fa =Y,

where « = [ef,. .., al]T € RV*C,

Y = T, ... yL]T € Rm*C and
f(wl.ml +61) f('w]v.:lll +€N)

F= : ~

f(w1~$;n +e1) f(wN~m;n +en)

3. Solve « with regularization coefficient (p > 0) as
a=F'(L+FF')7Y,

4. Update Step-1 as:
hw(z;) = f(z;)a = £(z;) FT (L + FFT)7'Y.

5. Update Step-4 by replacing FFT with a kernel matrix
Qerym : Qery;, = fx;) f(xs) = K(x;,x,) as
T
K(mjy $1) 1
hy(z;) = : (% + QELM) Y.
K(xj;, )

Output: The class label of ¢ : the index of the output nodes
hn(z;) with the largest value.

4 Experimental results and discussion

We evaluate the proposed framework on MSRAction3D
[22], DHA [23] and UTD-MHAD [24] datasets. Example
depth images of each dataset are illustrated in Fig. 8. From
the figure, it is clear that these datasets are ready for direct
use without any segmentation process. Like other meth-
ods in [22-24], we straightforward input the depth map
sequences in the proposed system without employing a
preprocessing algorithm on the sequences.

4.1 Experiments on MSRAction3D dataset

MSRAction3D dataset [22] consists of 20 actions deliv-
ered by 10 diverse actors. The dataset includes inter-class
similarity in different types of actions. The action exam-
ples generated by odd label oriented actors are utilized
for model training and even label oriented samples are
employed for the model testing [22]. The KELM uses

MSRAction3D

Fig.8 Action snaps of MSRAction3D, DHA and UTD-MHAD dataset

DHA

UTD-MHAD

C =10%*and y = 0.03 for training the classification model
as optimal parameter values which are determined by
5-fold cross validation.

Table 1 reports a notable accuracy of 97.44% of our
approach.The table indicates that the proposed approach
is able to achieve better classification accuracy over other
existing methods considerably. It can be seen that our
method overwhelms deep learning system described in
[44] by 6.34% and by 11.34% (see Table 1). To clarify the
effectiveness of the feature enhancement, the system
based on only the auto-correlation features is also evalu-
ated on this dataset. The enhanced auto-correlation fea-
ture based system improves the recognition accuracy by
5.5% over the system without feature enhancement on
the same setup and parameters. Figure 9 shows the confu-
sion matrix corresponding to the accurate and incorrect
classification rates. Through Table 2, the failure cases of
the approach are listed. The table shows that the “hori-
zontal wave”is confused with “hammer” by 8.3%; “draw x”
is confusion with “high wave” by 7.14% and “draw circle”
by 21.43%. Also action named “draw tick”is confused with
“draw x" by 16.67%. Overall, among 20 actions, 17 actions
are classified correctly (i.e., 100% classification accuracy)
and rest 3 actions are classified incorrectly being confused
with other actions.

4.2 Experiments on DHA dataset
DHA dataset proposed by Lin et al. [23] with 23 action cat-

egories captured by 21 individuals. Due to having inter-
class similarity of different types of action categories, such
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Table 1 Performance of our method compared to the existing sys-
tems in terms of the MSRAction3D dataset

as golf-swing and rod-swing the dataset looks complex. The
training and the test instances are separated according to
the technique as discussed in the previous dataset [23].
The classification parameters C = 10* and y = 0.06 are
decided through the 5-fold cross validation technique.

Our approach gains a significant classification accuracy
of %99.13 on this dataset. It can be seen from Table 3, our
approach outperforms [23] by 12.33%, [55] by 7.83%, [71]
by 3.69%, [58] by 2.44%, [39] by 6.73% and [39] by 4.13%.
For this dataset, the enhanced auto-correlation method
overcomes the auto-correlation method by an accuracy
of 2.17%. The confusion matrix of the dataset is shown
in Fig. 10. Furthermore a table is figured out to show the
class based confusion information. Table 4 clarifies that
the “skip” and “side-clap” are misclassified with low confu-
sion rates and other 21 actions are classified with 100%
accuracy. The wrong classification occurs when “skip” is
confused with “jump” by 9.09% and “side-clap”is confused
with “side-box” by 9.09%.

4.3 Experiments on UTD-MHAD dataset

The UTD-MHAD [24] is an action database constructed by
a Microsoft Kinect camera and a wearable inertial sen-
sor. In this dataset, 27 different actions are included and
each action is performed four times by four females and
four males. There are 861 depth sequences after remov-
ing 3 corrupted sequences. The 1st to 21st actions are
obtained by positioning inertial sensor on the right wrist
of performer, and the remaining actions are captured
by inertial sensor placed on the subject’s right thigh. A
comprehensive set of human actions is contained in the
dataset, such as sport actions, daily activities, and training
exercises. more detail on the dataset can be found in [24].
The entire database is split into training and test databases
following the manner as in the last two databases [24]. The
classification parameters C and y are set to (10* and 0.06
for promising recognition outcomes.

Accuracy: 97.44%

Approach Classification
accuracy (%)
DCSF [54] 89.3
HONA4D [15] 88.9
Super Normal Vector [16] 93.1
Skeletons Lie group [17] 89.5
DMM-LBP-DF [55] 93.0
2D-CNN on DMM-Pyramid [44] 91.1
3D-CNN on DMM-Cube [44] 86.1
HOG3D + LLC [56] 90.9
Hierarchical 3D Kernel [57] 92.7
GLAC on DMM [13] 89.4
DMM-GLAC-STACOG [13] 94.8
3DHoT + MBC [58] 95.2
Subspace encoding [59] 94.06
LSTM + trust gates [60] 94.8
Extended SNV [61] 935
Trust Gates [62] 94.8
ST-NBNN [63] 94.8
SSTKDes [64] 95.6
3D-CNN + DHI + relief + SVM [65] 92.8
WDMM + HOG [66] 91.9
WDMM + LBP [66] 91.6
WDMM + CNN [66] 90.0
Deep activations [67] 923
Deep activations + attributes [67] 934
Hierarchical Gaussian [68] 95.6
GMHI + GSHI + CRC [69] 94.5
MHF + SHF + KELM [36] 95.97
Spatiotemporal + HMM [70] 924
Only auto-correlation features 91.94
Proposed method (enhanced auto-correlation  97.44
features)
Fig. 9 Confusion matrix _
obtained for the MSRAction3D horizangh wave
dataset hammer
hand catch
forward punch
highdthrow
z dravzatvivc)lz ’
o draw circle
= hand clap
© two hand wave
2 side boxin
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Table 2 Class oriented confusion on MSRAction3D dataset

Action Confusion (%)

Horizontal wave Hammer (8.3)

Draw x High wave (7.14),
draw circle
(21.43)

Draw tick Draw x (16.67)

Table 3 Performance of our method compared to the existing sys-
tems in terms of the DHA dataset

Approach Classification
accuracy (%)

D-STV/AS [23] 86.8

D-DMHI-PHOG [39] 92.4

DMPP-PHOG [39] 95.0

DMM-LBP-DF [55] 91.3

Multi-temporal DMM [71] 95.44

3DHoT + MBC [58] 96.69

Hierarchical Gaussian [68] 97.96

MHF + SHF + MSVM [36] 96.09

MHF + SHF + KELM [36] 98.26

Only auto-correlation features 96.96

Proposed method (enhanced auto-correlation  99.13

features)

Experimental evaluation of our approach on UTD-
MHAD dataset is represented by Table 5. The approach is
able to acquire 88.37% overall classification accuracy on
the dataset. The comparison of our method with other
existing methods is also shown in the table. Our method
outperforms [24] (Kinect) by 22.27%, [24] (Kinect+Inertial)
by 9.27%, [58] by 3.97%, [72] by 2.57% and [68] by 6.87%.
The enhanced auto-correlation system overwhelms the
auto-correlation system by 0.93%. The confusion matrix

Fig. 10 Confusion matrix

Table 4 Class oriented

, Action Confusion (%)
confusion on DHA dataset
Skip Jump (9.09)
Side-clap Side-box (9.09)

is shown by Fig. 11. The figure describes, the approach
has misclassified action classes although the overall clas-
sification rate for this dataset is of 88.37%. Due to inter-
class similarity, 16 action classes show confusion among
27 action classes. Table 6 is extracted from the confusion
matrix to furthermore analyze the experimental results.
The table mentions that the action swipe-right is con-
fused with the action “swipe-left”, and the confusion/
misclassification rate is 15.79%. For the “wave” action this
rate is 20.0% for having confusion with the action “draw-
circle-CW”. Similarly, the confusion rate for the action class
“clap”and“wave”is of 20.0% and for “wave” and “clap”is of
15.79%. Also, all the samples of the action classes “basket-
ball shoot”, “draw-x", “draw-circle-CW”, “draw-circle-CCW”"
“draw-triangle”, “baseball-swing”, “pus’, “knock”, “catch’,
“jog", “stand2sit” and “lunge” are not classified perfectly.
Those misclassified samples are confused with samples
of similar body postures of subjects.

4.4 System competency

The computational time and the complexity of key factors
are considered to examine the system’s efficiency .

4.4.1 Computational time

The system is evaluated on a Desktop whose configura-
tion includes an Intel i5-7500 Quad-core processor of 3.41
GHz frequency and a 16 GB RAM. There are six major com-
ponents in the system-i.e., MHI/SHI construction, binary
coded MHI generation, binary coded SHI generation, EAMF
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Table 5 Performance of our method compared to the existing sys-
tems in terms of the UTD-MHAD dataset

Approach Classification
accuracy (%)

Microsoft kinect [24] 66.1

Wearable inertial [24] 67.2

Microsoft kinect + wearble inertial [24] 79.1

3DHoT + MBC [58] 844

Joint trajectory + CNN [72] 85.8

Hierarchical Gaussian [68] 81.5

MHF + SHF + MSVM [36] 83.26

Only auto-correlation features 87.44

Proposed method (enhanced auto-correlation  88.37

features)

generation, EASF generation, and KELM classification. The
operation time of those components are figured out to
measure the time competency of the recognition system.
The computational time (in millisecond) per action sample
(with 40 depth frames on average) for all the components
is represented in Table 7. Note that the system needs less
than one second (i.e., 731.43 + 48.83 ms) to process 40
depth frames. Consequently, it can be claimed that our
recognition method can be utilized as real-time recogni-
tion system.

4.4.2 Computational complexity

In fact, the PCA and the KELM are the key components
in the computational complexity calculation of the intro-
duced system. The PCA has complexity of O(m?* + m?r)
[14] and and the KELM has complextity of O(r®) [73]. As
a result, the complexity of the system can be revealed as
O(m3 4+ m?r) + O(r?). Table 8 represents the calculated

Fig. 11 Confusion matrix

Table 6 Class oriented confusion on UTD-MHAD dataset

Action Confusion (%)
Swipe-right Swipe-lift (15.79)
Wave Draw-circle-CW (20.00)
Clap Wave (20.00)

Throw Clap (15.79)

Basketball-shoot
Draw-x
Draw-circle-CW
Draw-circle-CCW
Draw-triangle
Baseball-swing
Push

Knock

Catch

Jog

Stand2sit

Lunge

Wave (6.25), arm-cross(6.25)

Swipe-lift (5.26), basketball-shoot (10.53)
Wave (11.11)

Draw-circle-CW (40.00)

Wave (8.00), clap (4.00), draw-circle-CCW (24.00)
Tennis-swing (20.00)

Wave(5.88)

Draw-circle-CCW (7.14)

Knock (15.79)

Pickup-throw (5.88)

Sit2stand (30.43)

Pickup-throw (5.88)

Table 7 Computational time (mean + std) of the key factors of the

system

Key factors

Computational time (ms)/
action sample (40 frames)

3DMTM based MHI/SHI generation 606.2 +40.2
Binary coded MHI 504 +2.9
Binary coded SHI 50.8 £2.7
GLAC on binary coded MHI 12214
GLAC binary coded SHI 10.7+0.8
KELM ensemble 1.1£0.38
Total running time 731.4+48.8

Accuracy: 88.37%
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Table 8 Computational complexity comparison of the proposed approach with other existing approaches

Method Components

Complexity Total complexity

DMM [14] Principal component analysis (PCA),
12-regularized collaborative representa-

tion classifier (1,-CRC)

DMM-LBP-DF [55] Principal component analysis (PCA),
kernel based extreme learning machine

(KELM)

Principal component analysis (PCA),
kernel based extreme learning machine
(KELM)

Principal component analysis (PCA),
12-regularized collaborative representa-
tion classifier

MHF + SHF + KELM [36]

GMSHI + GSHI + CRC [69]

Proposed method Principal component analysis (PCA),
kernel based extreme learning machine

(KELM) ensemble

O(m?+ m?r), O(n, xr)

m= feature vector dimension,

r = training instance number, n = class
number

o(m?+m?r), O(r®)

m= feature vector dimension,

r = training instance number

o(m? + m?r), O(r®)

m= feature vector dimension,

r = training instance number

O(m?+ m?r), O(n, xr)

m= feature vector dimension,

r = training instance number, n = class
number

o(m? + m?r), O(r®)

m= feature vector dimension,

r = training instance number

O(m®+m?r) + 0(n_x r)

O(m®+m?r) +3 % 0(r?)

O(m? +m?r) +2%0(r?)

O(m®+m?r) + O(n, xr)

o(m*+m?r) +0(r?)

complexity and compares with complexities of other exist-
ing methods. It can be seen that our method has lower
computational complexity than other methods listed in
the table. our method is also superior over them from the
recognition perspective. Thus, our approach is superior in
terms of recognition accuracy as well as computational
efficiency.

5 Conclusion

This paper has introduced an efficacious and efficient
human action framework based on enhanced auto-corre-
lation features. The system uses the 3DMTM to derive three
motion information images and three motionless informa-
tion images from an action video. Those motion and static
information-oriented maps are improved by engaging the
LBP algorithm on them. The outputs of the LBP are fed
into GLAC descriptor to get an action description vector.
With the obtained feature vectors from GLAC, the action
classes are distinguished through the KELM classification
model. The approach is extensively assessed in terms of
the MSRAction3D, DHA, and UTD-MHAD datasets. Because
of our action representation strategy, the proposed algo-
rithm exhibits considerable performance over the exist-
ing handcrafted as well as deep learning methods. It is
also obvious that the enhanced auto-correlation features-
based method overwhelms the simple auto-correlation
features-based method successfully. Thus, the improve-
ment of the features is significant to enhance the system.
Furthermore, the computational efficiency of the method
specifies its suitability for real-time operation.

It is worth mentioning, some misclassifications are
observed in our method. Note that the proposed method
did not remove noise to improve the performance. The
system only employed the LBP as preprocessing method
for edge enhancing. Besides the LBP, a noise removing
algorithm can be utilized to address the miss-classifica-
tion issues of the proposed approach and thus for further
improvement of the overall recognition accuracy. The
descriptor can be more improved to increase the discrimi-
natory power of the approach.

In our future work, we aim to build a deep model using
the obtained 2D motion and static images. Besides, the
current approach is not evaluated on large and complex
RGB datasets like UCF101 and HMBD51. With a proper
modification, the approach would be tested on these data-
sets in the future. Furthermore, we have a plan to build a
new recognition framework using the GLAC descriptor on
RGB and depth datasets jointly..
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