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Abstract
Daily River Malaba flows recorded from 1999 to 2016 were modelled using seven lumped conceptual rainfall–runoff 
models including AWBM, SACRAMENTO, TANK, IHACRES, SIMHYD, SMAR and HMSV. Optimal parameters of each model 
were obtained using an automatic calibration strategy. Mismatches between observed and modelled flows were assessed 
using a total of nine “goodness-of-fit” metrics. Capacity of the models to reproduce historical hydrological extremes 
was assessed through comparison of amplitude–duration–frequency (ADF) relationships or curves constructed based 
on observed and modelled flow quantiles. Generally, most of the hydrological models performed better for high than 
low flows. ADF curves of both high and low flows for various return periods from 5 to 100 years were well reproduced 
by AWBM, SAC, TANK and HMSV. ADF curves for high and low flows were poorly reproduced by SIMHYD and SMAR, 
respectively. Overall, AWBM performed slightly better than other models if both high and low flows are to be considered 
simultaneously. The deviations of these models were larger for high than low return periods. It was found that the choice 
of a “goodness-of-fit” metric affects how model performance can be judged. Results from this study also show that when 
focusing on hydrological extremes, uncertainty due to the choice of a particular model should be taken into considera-
tion. Insights from this study provide relevant information for planning of risk-based water resources applications.

Keywords Rainfall–runoff model · “Goodness-of-fit” measures · River Malaba sub-catchment · Uganda · Hydrological 
extremes · High flows · Low flows

1 Introduction

Heavy rainfall events have increasingly been experi-
enced in various regions, while other areas of the world 
receive light or no rains as reported by the Intergovern-
mental Panel on Climate Change IPCC [1]. This results 
in floods, landslide, drought, hurricanes, hence, caus-
ing distressing damages and losses to public life and 
property. The study area of the present work (River 
Malaba sub-catchment) is not exceptional to these 

extreme weather events. River Malaba sub-catchment 
in Eastern Uganda has fertile soils which support agri-
culture and livestock grazing. In addition, River Malaba 
provides for other economic activities including fish-
ing and fish farming. The River Malaba sub-catchment 
within the Mpologoma catchment has been affected 
by rainfall-induced landslides in the highland districts 
of Manafwa and Bududa. Within the same area, annu-
ally, disastrous floods have been experienced in the 
low-lying districts of Butaleja and Manafwa [2, 3]. These 
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disasters could be linked to impacts of human factors on 
the sub-catchment hydrology. Besides, the study area 
hydrometeorology could be influenced by climate vari-
ability. Consequently, the possibility of Uganda “Vision 
2040” targets has been compromised as noted by the 
Ministry of Water and Environment, MWE [3, 4]. Some 
of the dramatic events include (1) the floods of Decem-
ber 2019 with at least 4 death and over 2,000 people 
displaced [5]; (2) the October 2018 severe floods and 
landslides in Bududa, displacing 858 people, 51 death 
and a total of 12,000 people affected [6]; (3) the severe 
landslides of March 2010 killed over 400 people, displac-
ing 5,000 people in Bududa district [7], and over 33,000 
households affected in Butaleja [8]. These events tend to 
be punctuated by long dry spells, for instance, after the 
floods and landslide in 2014, there was a long dry spell 
[9]. In May 2012, flooding resulted in bursting of River 
Malaba banks affecting over 200 families in Malaba town 
council and Osukuru sub-county, Tororo district. These 
events destroyed acres of food crops and resulted in at 
least 4 death [10]. Furthermore, the report by Reliefweb 
[11] categorised the Elgon sub-region (where the study 
area is located) as one of the most affected areas by the 
2007 floods that resulted in destruction of several infra-
structure, particularly roads, bridges and buildings, killed 
human beings, and wrecked crops. This event affected 
almost the entire Uganda.

To facilitate predictive planning and operation of risk-
based water resources management within the study 
area, where rain-fed agriculture and livestock grazing 
are major economic activities, there is need to perform 
hydrodynamic modelling. Hydrodynamic modelling of 
weather events such as floods, necessitates understand-
ing the hydrological processes with focus on the extremes. 
Hydrological modelling can be performed using either 
lumped conceptual, semi-distributed or distributed mod-
els. Distributed models consider the spatial distribution 
of rainfall, evapotranspiration and watershed character-
istics at a resolution normally selected by the modeller 
to reflect the spatio-temporal variability of runoff. Some 
of the distributed (physically based) hydrological models 
include the Gridded Surface Subsurface Hydrologic Analy-
sis (GSSHA) [12], Systeme Hydrologique Europeen, “SHE” 
[13], European hydrological system model (MIKE-SHE) [14], 
modular modelling system (MMS) [15]. Some models are 
not physically based but rather semi-distributed, e.g. Soil 
and Water Assessment Tool (SWAT) [16] which is operated 
on hydrological response unit (HRU) and necessitates 
parameter calibration. Whereas the physically based (dis-
tributed) models have better computational capacity and 
are robust, with well-implemented numerical methods, 
their application particularly, in rainfall–runoff simula-
tions is still inadequate. Huge amount of data inputs may 

undesirably result in a more complex model which may 
lead to high prediction uncertainty especially if a model 
has large number of parameters [17].

On the other hand, lumped conceptual models are 
based on average spatial characteristics of the system, 
whose basis is to simulate flow at the outlet of the catch-
ment [18, 19]. Examples of lumped conceptual models 
include the Australian water balance model (AWBM) [20], 
Sacramento (SAC) [21], TANK [22], Identification of Unit 
Hydrographs and Component Flows from Rainfall, Evapo-
ration and Stream-flow data (IHACRES) [23, 24], SIMHYD 
[25], soil moisture accounting and routing (SMAR) [26], 
hydrological model focusing on sub-flows’ variation 
(HMSV) [27], Pitman model [28], hydrological engineering 
centre-hydrological modelling system (HEC-HMS) model 
[29], hydrologiska byråns vattenbalansavdelning (HBV) 
model [30]. The high capacity to simulate runoff with easy 
to use methods, and the minimum data requirement, has 
made the lumped conceptual models prevalent to dis-
tributed models for rainfall–runoff modelling. Lumped 
conceptual models have widely been applied [31]. Rain-
fall–runoff modelling can be done based on event-based 
or continuous approach. Recently, there is a transition 
from event-based continuous hydrological modelling. For 
instance, Grimaldi et al. [32] applied the Continuous Simu-
lation Model for Small Ungauged Basins (COSMO4SUB) to 
ungauged catchment and the results were comparable 
with the event-based approach. Similarly, several studies 
have reported superior performance of Artificial Neural 
Network (ANN) models [31, 33, 34]

Within Uganda (where the study area is located), sev-
eral studies [35–37] have applied lumped conceptual 
hydrological models. However, it was noticeable that 
most studies applied a single hydrological model except 
for Onyutha et al. [36] that compared the performance 
of seven lumped conceptual models in the simulation of 
daily River Kafu flows. However, this study was conducted 
in western Uganda and not in the eastern part of Uganda 
(where the study area is located). Furthermore, most of 
these studies applied either one or very few (maximum of 
3) “goodness-of-fit” measures. The selection and applica-
tion of a particular model and “goodness-of-fit” measure 
from the several can result in a huge bias while concluding 
on the worthiness of the obtained model results [38]. This 
could be attributed to the varying structures and param-
eters amongst different model [39]. In addition, a particu-
lar “goodness-of-fit” measure may not provide information 
on some analyses components such as model residuals, 
making them inadequate in assessing model performance 
[38, 40].

Reliable hydrological modelling results are vital for 
decision makers to avoid profligate expenditures result-
ing from wrongly informed predictive planning. Prior to 
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conducting this research article, studies conducted to 
evaluate several lumped conceptual models’ performance 
based on multiple “goodness-of-fit” statistics to simulate 
hydrological extremes in River Malaba sub-catchment 
were lacking. Therefore, to address the above research 
gap, this study evaluated the performance of seven rain-
fall–runoff models in simulating hydrological extremes of 
River Malaba sub-catchment while assessing model per-
formance using nine “goodness-of-fit” metrics.

2  Study area, data and models

2.1  The study area

The River Malaba sub-catchment (Fig. 1) has a drainage 
area of approximately 3500  km2. The sub-catchment is 
part of the Mpologoma catchment under the Kyoga Water 
Management Zone (KWMZ), stretching between latitudes 
0° 19′ N and 1° 07′ N and longitudes 33° 37′ E and 34° 37′ E. 
The sub-catchment drainage area is transboundary, shared 
between Uganda (about 69% or 2395   km2) and Kenya 
(around 31% or 1100  km2). River Malaba sub-catchment 
is comprised of River Malaba, formed by two tributaries 
of Lwakhakha and Makalisi which are later joined by the 
Lumbaka/Kibimba tributary.

The basin has a flow outlet at Budumba with lati-
tude = 0° 49′ N and longitude = 33° 47′ N. The River Mal-
aba sub-catchment extends from Mount Elgon at about 

4320 m above sea level traversing through the districts 
of Bududa, Manafwa, Tororo, Butaleja, and discharg-
ing into River Mpologoma at the shores of Lake Kyoga 
at about 1000 m above sea level. The core land use in 
the sub-catchment is rain-fed subsistence agriculture 
employing approximately 85% of the population. Prac-
tically, the region beyond the Mount Elgon forested area 
consists of agricultural and grassland, fallow land and 
isolated woodlots. Land use changes in the sub-catch-
ment ecosystem have adversely changed the river Mal-
aba hydrological flow regimes [41]. The major soils types 
in the sub-catchment are Petric Plinthosols and Gleysols. 
The other types include Lixic ferralsols, Acric ferrasls 
and Nitisols [42, 43]. The rainfall over the study area 
occurs in two seasons with the first and more intense 
from March to May (MAM), while the second and highly 
variable occurs between October and December (OND). 
The basin receives an average annual rainfall of about 
1375 mm, though the districts of Bududa and Manafwa 
receive slightly higher rains (on average 1800 mm per 
annum). The basin climate is partly affected by the exist-
ence of large water bodies (such as Lake Victoria and 
Lake Kyoga) and the mountain Elgon slope breezes that 
tend to affect the afternoon convection [44]. It is clear 
that the altitude is higher in the highlands of Mount 
Elgon. The sub-catchment wettest and driest periods 
occur from March to April and June to October, respec-
tively, with an average temperature range of 15.8 to 
30.6 °C [45].

Fig. 1  Location of River 
Malaba sub-catchment. 
The background map is the 
Digital Elevation Model (DEM) 
acquired via http:// srtm. csi. 
cgiar. org/ (accessed: 08 Febru-
ary, 2021)

http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
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2.2  Data

2.2.1  Rainfall and potential evapotranspiration data

As noted in the previous study by Mubialiwo et al. [46], 
the study area has poor distribution of meteorological 
stations, with the existing ones having few data available 
in the recent years in addition to uncertain and question-
able quality [47, 48]. Therefore, the daily precipitation, 
minimum (Tmin) and maximum (Tmax) temperature data 
in a gridded (0.25° × 0.25°) form of the Princeton Global 
Forcing (PGF) [49] were obtained from http:// hydro logy. 
princ eton. edu/ data/ pgf/ v3/0. 25deg/ (accessed: 07 Febru-
ary 2021). The PGF data was previously applied by Zhang 
et  al. [50] to evaluate performance of four models in 
streamflow simulation. Like any other reanalysis datasets, 
PGF has a few shortcomings including bias and random 
errors which are attributed to numerous factors such as 
sampling rate, inadequate spreading of sensors and 
uncertainties in the rainfall retrieval algorithms [51–53]. 
Furthermore, the study by Mubialiwo et al. [46] revealed 
that the PGF data overestimated and/or underestimated 
the oscillation highs and lows from observed rainfall 
over the Mpologoma catchment (where the study area is 
located). This evidenced existence of bias in the PGF data. 
Therefore, prior to the use of PGF data, it was thought vital 
to perform bias correction [53], using observed rainfall 
data from the six stations in and around the study area 
(Table 1). For each station, the annual rainfall statistical 
metrics (coefficient of variation (Cv), skewness (Cs), actual 
excess kurtosis (Ck) and annual mean rainfall (AMR)) were 
determined. From Table 1, the values of Cv varied from 0.12 
to 0.28, which represent a modest variability on a year to 
year basis. Under ideal situation, the values of Cs and Ck 
are expected to be equal to zero for a normal distribu-
tion. However, from Table 1, data at the 6 stations are, on 
average, somewhat positively skewed (Cs = 0.54) and plat-
ykurtic (Ck = −0.04). The highest values of Ck and Cs were 
obtained at Sukulu VTRO, while Butaleja prison exhibited 
the smallest values. The AMR varied between 1020.79 and 
1640.66 mm. The highest AMR was observed at Dabani 

catholic while Butaleja prison exhibited the lowest value 
AMR value.

With the exception of station 4 (Tororo), the remaining 
stations have data ending in the 1980s. This is attributed 
to the non-functionality of weather stations subsequent 
to the civil war that started in 1981, resulting in the break-
down of many measuring stations across Uganda accord-
ing to the Japan International Cooperation Agency [54].

The missing values in the observed rainfall data were 
in-filled using the Inverse Distance Weighted (IDW) inter-
polation [55], a technique previously applied by Mubialiwo 
et al. [46]. The bias correction was done using the simple 
multiplicative bias correction method [56]. This method 
was adopted because of the poor distribution of the rain 
gauge networks within the study area. The study by Tian 
et al. [57] compared the two common error models (addi-
tive and multiplicative) and recommended the use of 
multiplicative bias correlation method for bias removal. 
The monthly bias correction factor Bcf was used to adjust 
the daily PGF precipitation data. The Bcf was obtained as 
follows:

where Pobs,i and PPGF,i are station-based and PGF-based 
rainfall data at monthly time scale, respectively.

One bias factor was calculated for each month in a year 
and applied to daily data. The study by Saber and Yilmaz 
[58] applied a similar approach with monthly bias factors 
used to correct hourly data.

The daily bias corrected PGF rainfall was computed as 
follows:

where PPGF_before(x,y),Ti and PPGF_after(x,y),Ti are the PGF prod-
ucts for day Ti at grid (x, y) before and after bias removal, 
respectively.

Monthly bias factors were computed considering the 
station(s) that is(are) located in a particular grid cell or the 
closest station(s). It is noticeable from Table 1 that only the 

(1)Bcf =
Pobs,i

PPGF,i

(2)PPGF_after(x,y),Ti = Bcf × PPGF_before(x,y),Ti

Table 1  Rainfall station, their 
coordinates, data record period 
and statistical metrics

Lat latitude, Long longitude

S/N Station name Coordinate Data record Statistical metric

Lat. [°] Long. [°] From To Ck [-] Cs [-] Cv [-] AMR [mm]

1 Bugiri 0.57 33.75 1948 1975 0.2 0.63 0.26 1389.21
2 Dabani Catholic 0.43 34.05 1948 1983 −0.52 0.66 0.17 1640.66
3 Sukulu VTRO 0.62 34.17 1963 1987 0.29 0.86 0.19 1543.84
4 Tororo 0.68 34.17 1981 2016 0.07 0.34 0.12 1506.39
5 Bugusege Coffee 1.15 34.27 1948 1982 -0.21 0.73 0.17 1533.22
6 Butaleja Prison 0.92 33.97 1948 1982 -0.07 0.04 0.28 1020.79

http://hydrology.princeton.edu/data/pgf/v3/0.25deg/
http://hydrology.princeton.edu/data/pgf/v3/0.25deg/
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Tororo station had data of corresponding period to the PGF-
based rainfall.

The computed bias factor at Tororo station did not exhibit 
noticeable variability for the period before and after 1983. 
Therefore, since all stations were from the same region, they 
were presumed that they exhibit minimal variation in the 
bias factors. Consequently, the available periods of station-
based data (Table 1) were used to compute monthly bias 
correction factors, and applied to daily PGF data from 1999 
to 2016. This approach was previously used by Piani et al. 
[59] on statistical bias correction for daily precipitation in 
regional climate models over Europe. In the study [59], bias 
correction factors were calculated using data from 1961 to 
1970 and applied to data of a different period (from 1991 
to 2000).

In the current study, the catchment-wide rainfall aver-
ages were obtained using the Thiessen polygon [60] (Fig. 1) 
constructed from the 14 grid points. It is noticeable that 
5 grid points fall inside the study area while an additional 
nine are situated outside but very close (on average less than 
10 km from the sub-catchment boundary). All the 14 grids 
were used in obtaining the average rainfall over the sub-
catchment. The sub-catchment daily rainfall time series are 
shown in Fig. 2a.

The sub-catchment PET (mm/day) (Fig. 2b) was computed 
using the Hargreaves formula [61, 62] (Eq. 3). The method 
requires mainly minimum and maximum temperatures as 
the key inputs. The Hargreaves method, was recently applied 
by Mubialiwo et al. [46] in Mpologoma catchment and Onyu-
tha et al. [63] in KWMZ, where the study area is located.

where Ra measures the incoming extra-terrestrial radia-
tion (in W/m2), estimated based on the location’s latitude 

(3)PET = 0.0023
(
Tmean + 17.8

)(
Tmax − Tmin

)0.5
Ra

and the calendar day of the year, Tmean in °C is the mean 
temperature.

2.2.2  Observed flow data

Average daily River Malaba flow series measured at 
Budumba gauge station (with station ID 82,217, lati-
tude = 0º49′N and longitude = 33° 47′ E) (Fig. 1) from 1999 
to 2016 was obtained from the Uganda Ministry of Water 
and Environment (MWE). The data was checked for qual-
ity assurance using visual inspection and statistical meth-
ods to ensure only satisfactory and quality data is used in 
the research. Only eighteen (18) years of recent flow data 
(from 1999 to 2016) for River Malaba were used (Fig. 2c). 
Their selection was linked to the anticipated studies of 
flood analysis in the study area (requiring recent informa-
tion) that will be based on output from this study. Never-
theless, the eighteen years of data were considered very 
sufficient because longer calibration data series do not 
certainly yield better model performance [64]. The study 
by Li et al. [64] revealed that only eight years of data are 
adequate to get a stable approximation of model perfor-
mance. Since rainfall–runoff modelling required the same 
period of rainfall, PET and flow data, the period from 1999 
to 2016 is considered here. This is because PGF-based data 
currently ends in 2016.

Similar to the observed rainfall data, statistical metrics 
in the PGF-based rainfall, PET and observed flow were 
computed as shown in Table 2. Rainfall, PET and observed 
flow were negatively skewed (negative Cs values) and plat-
ykurtic (negative Ck values) compared with the normal dis-
tribution, for which it is anticipated that Cs = 0 and Ck = 0. 
However, their Cv values indicated that there is slight vari-
ation on a year to year basis. The average annual rainfall 

Fig. 2  Time series of a daily 
rainfall, b daily PET and c daily 
observed flow used in rainfall–
runoff modelling
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was 1125.25 mm with mean annual PET of 5.57 mm and 
annual mean flow of 10,436.15  m3/s.

3  Methodology

3.1  Rainfall‑runoff modelling

This study used seven lumped conceptual rainfall–runoff 
models. Of the seven models, the six are internationally 
well-known including the Australian Water Balance Model 
AWBM [20], SACRAMENTO [21], TANK [22], Identification 
of Unit Hydrographs and Component Flows from Rain-
fall, Evaporation and Stream (IHACRES) flow data [23, 24], 
SIMHYD [25], and Soil Moisture Accounting and Routing 
SMAR [26]. These six models were obtained from the “eWa-
ter Toolkit” of the Cooperative Research Centre for Catch-
ment Hydrology in Australia via http:// www. toolk it. net. 
au/ (accessed: 08 February 2021). The seventh model or 
Hydrological Model focusing on Sub-flows Variation HMSV 
[27] was accessed freely via https:// sites. google. com/ site/ 
conyu tha/ tools- to- downl oad (accessed: 10 February 
2021). These models were selected because they (1) are 
freely available online and (2) were found to be robust for 
rainfall–runoff modelling under various climatic conditions 
as demonstrated in several recent studies [27, 36, 65–69].

Here is a brief mention of each model’s parameters. 
Detailed description of the models and their parameters 
including sensitivity analyses are included in the Supple-
mentary Material (Sub-Sect. M1.1–M1.7, Table M1 and 
Figs.  M9–M11). AWBM has 8 parameters, but three of 
them (Baseflow index, baseflow recession constant, sur-
face flow recession constant) are considered the major 
ones. SAC model has 17 parameters, with three designed 
for direct runoff simulation, other 3 for water capacity in 
upper zone, 2 for percolation into lower zones, while the 
remaining 9 are designed for water capacity in the lower 
zone. TANK model has 18 parameters categorised under 
7 classes. The model has 3 major parameters (i.e. water 
levels in the tanks, height of outlets at tanks and runoff 
coefficients. IHACRES model has 11 parameters. SIMHYD 
model has 9 parameters, with 4 sensitive ones (i.e. infil-
tration coefficient and shape, interflow coefficient, and 

base flow coefficient). SMAR model has five water bal-
ance parameters and 4 routing parameters. HMSV has 
total of 10 parameters. Four parameters are for baseflow, 
2 for interflow and 4 for overland flow simulation. A com-
bination of the 10 parameters is used to calibrate the full 
model to simulate the total runoff. Higher values of reces-
sion constants imply delayed contributions of different 
components to the total runoff. Higher values of initial 
soil moisture storage indicate faster contribution of runoff 
from the catchment.

Modelling was done using meteorological data (rain-
fall and potential evapotranspiration) as described in 
Sect. 2.2.1. Prior to inputting the data into the models, it 
was converted into formats required by each of the seven 
rainfall–runoff models. The Initial model parameters for 
each model as provided in Podger [70] (for AWBM, TANK, 
SAC, SIMHYD and SMAR), Croke et al. [23] (for IHACRES), 
and Onyutha [27] (for HMSV) were set and the model ran 
to generate outputs. Sensitivity analysis on the model 
parameters was done prior to calibration. This was done to 
establish the contribution of a particular parameter varia-
tion to model output in order to identify which parameters 
have a great or less impact on the model response. This 
study adopted the use of local sensitivity analysis (LSA) 
method because it is simple, fast and can yield results 
similar to the global sensitivity analysis (GSA) [71]. The LSA 
method focuses of the impact on model output caused by 
a single parameter while other parameters are fixed. The 
corresponding Nash–Sutcliffe efficiency (NSE) [72] values 
were obtained and NSE curves plotted for each parameter.

The model parameters were calibrated using the 
observed river flow data (sub-Sect. 2.2.2) from 01/01/1999 
to 31/12/2009, until there was a reasonable match between 
the simulated and observed flow. Model calibration can be 
based on manual or automatic strategy. With manual cali-
bration, there is a trial and error adjustment of parameters 
based on the modellers’ visual inspection of simulated and 
observed values, making it is very difficult to yield hydro-
logically sound results, and the process is tedious, time-
consuming, especially for models with many parameters 
[73]. When comparing models, manual calibration also 
yields subjective results. Thus, in this study, calibration was 
done using the automatic calibration strategy with model 
parameters automatically adjusted following systematic 
search algorithms based on the set objective function. In the 
rainfall–runoff models’ frameworks, Nash–Sutcliffe efficiency 
(NSE) [72] was used as the optimisation objective function, 
while the models’ performance was further assessed based 
on other eight “goodness-of-fit “metrics as described shortly 
next. Five models (AWBM, SACRAMENTO, TANK, SIMHYD and 
SMAR) were calibrated based on shuffled complex algo-
rithm (SCE) [74]. The calibration of IHACRES followed the 
approach described by Croke et al. [23]. Similarly, the HMSV 

Table 2  Statistical metrics in PGF rainfall, PET and observed flow

AMV annual mean value

Data Statistical metric

Ck [−] Cs [−] Cv [−] AMV

PGF rainfall −0.7 −0.42 0.29 1125.25 mm
PET −0.9 −0.65 0.01 5.57 mm
Observed flow −1.04 −0.22 0.34 10,436.15  m3s−1

http://www.toolkit.net.au/
http://www.toolkit.net.au/
https://sites.google.com/site/conyutha/tools-to-download
https://sites.google.com/site/conyutha/tools-to-download
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was automatically calibrated based on the Generalised Like-
lihood Uncertainty Estimation (GLUE) developed by Beven 
and Binley [75]. HMSV framework allows a “step-wise” calibra-
tion strategy, first by calibrating parameters based on each 
of the sub-flows (baseflow, interflow and overland flow). The 
full model run is then performed combining parameters 
from the sub-flow models. This approach allows modelling 
of quick flows focusing on high flows while baseflow con-
siders variation of the low flows. The models were validated 
using the observed river flow data for a record outside the 
calibration period (from 01/01/2010 to 31/12/2016). During 
validation, the same parameters and corresponding values 
used for calibration were maintained.

The models performance were evaluated based on nine 
widely used statistical indicators, including, Nash–Sutcliffe 
efficiency (NSE) [72], model average bias (MAB) (%), Ratio 
of Root Mean squared error to the maximum event (RRM), 
relative efficiency  (Re) [76], index of agreement (Ia) [77], coef-

ficient of determination (R) [78], mean absolute error (MAE), 
coefficient of model accuracy (CMA) [38] and Kling–Gupta 
efficiency (KGE) [79] as shown in Eqs. (4) to (12). For all the 
seven model, NSE was used as the optimisation objective 
function for calibration. Consider Qobs,Qsim,Qobs, and Qsim as 
the observed, modelled, mean of observed and mean mod-
elled flows, respectively. Furthermore, take Qmax, �obs, �sim 
and n , to denote the maximum observed flows, standard 
deviation in observed, standard deviation in modelled 
flows and sample size, respectively. Lastly, consider r as 
the rank-based Spearman correlation coefficient between 
Qobs andQsim . The various “goodness-of-fit” metrics were 
computed using:

(4)NSE = 1 −

∑n

i=1

�
Qsim,i − Qobs,i

�2

∑n

i=1

�
Qobs,i − Qobs

�2

(5)MAB =
1

n

n∑

i=1

(
Qsim,i − Qobs,i

Qobs,i

× 100

)

(6)RRM =
1

Qmax

(
1

n

n∑

i=1

(
Qsim,i − Qobs,i

)2
)0.5

where fp is the power factor.
NSE demonstrates how fit the simulation mimics the 

observation, and it varies between –∞ and 1.0, with the 
value of 1.0 denoting a perfect match. A value greater 
than 0.5 for NSE is considered acceptable [80]. MAB 
and MAE denote the bias and mean error magnitude 
between modelled and observed values. The value of 
MAB and MAE equal to 0 signifies an unbiased model 
[81]. RRM was considered in this study instead of the 
root mean squared error because it is unitless and has 
a small value, making it suitable to compare with MAB. 
The values of Re and Ia range between 0 and 1. A value 
of 1 designates perfect match between simulated and 
observed, while 0 implies total divergence. Ia is known 
for its insensitivity to systematic model overestimation 
and underestimations [77]. In this study, the values of 
fp = 1 were used to balance between high flows and low 
flows [76, 81]. However, the value of fp can be greater 
than 1 if the model evaluation is focused on high flows. 
R quantifies how much the observed dispersion is 
explained by the simulation. R ranges between 0 and 1. 

(7)Re = 1 −
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A value of 1 means perfect prediction of the modelled 
dispersion to the observed, and 0 indicates no correla-
tion. This indicator has a weakness, as it only measures 
the dispersion, hence it is not recommended to be used 
solely [76]. The values of CMA range from 0 to 1 with 
CMA equal to 1 signifying a perfect model, while CMA 
equal to 0 indicates that the model simulations do not 
match the observations [38]. Similar to NSE, a value of 
KGE equal to one denotes a perfect agreement between 
observations and simulation [82].

3.1.1  Comparison of the model performance based 
on the “nine goodness‑of‑fit” measures

For the three periods of calibration (01/01/1999 to 
31/12/2009), validation (01/01/2010 to 31/12/2016), and 
entire data period (01/01/1999 to 31/12/2016), models 
were ranked from 1 to 7 denoting the best and worst per-
formance, respectively. Ranking was initially done based 
on individual “goodness-of-fit” statistic. For instance, a 
model with the highest (lowest) KGE was allocated rank 1 
(7), indicating best (worst) model. This was done for all the 
nine metrics. The summation of ranks for the three periods 
(calibration, validation and entire period) were obtained 
for the nine metrics (NSE, MAB, MAE, RRM, Re, Ia, R, CMA, 
and KGE). The model with the smallest (largest) sum of 
ranks for each individual metric was considered the best 
(worst).

3.2  Amplitude–duration frequency analyses

To facilitate planning, design and operation of various 
water management projects against weather events (such 
as floods, drought) and/or to reduce human and eco-
nomic losses, there is need to understand the hydrological 
extremes and their frequency at selected temporal scales 
[83, 84]. This can be through extreme value analysis on the 
hydrological time series for different aggregation levels, 
which generates Amplitude–Duration–Frequency (ADF) 
relationships. ADF for discharge and rainfall are called 
Flow–Duration Frequency (FDF) and Intensity–Duration 
Frequency (IDF), respectively. In this study, only the FDF 
are developed for both observed and modelled flow for 
each of the seven hydrological models. Aggregation sim-
ply converts fine resolution data into coarser time units, 
e.g. from daily to monthly, which hydrologically implies 
representing a delayed response of a watershed [85]. Here, 
aggregated hydrological time series were obtained by use 
of n-day moving window. Aggregation levels are selected 
with the consideration of appropriate water resources 
management aspects such as floods and drought in agri-
culture and domestic water supply. The considered aggre-
gation levels ranged from 1 day to 3 months (1, 3, 5, 7, 10, 

30, 60, 90 days) for high flows and 1 day to 1 year (1, 10, 
30, 90, 150, 180, 240, 365 days) for low flows. The adopted 
aggregation levels were applied and/or recommended in 
previous studies [81, 86, 87].

While analyses of high flows were based on aggregation 
of original flow series (X ) , for low flows, the original flows 
were transformed as (1∕X ) . The transformed flow series 
now follows exponential or Generalised Pareto Distribu-
tion (GDP) [88] as an alternative of the Weibull or Fréchet 
distribution. Besides, the transformation makes it possible 
to perform extreme value analyses on both high and low 
flows following the same approach. Taking xt, � and � as 
the threshold, scale and shape parameters, respectively, 
and considering 1∕X  as H , calibration of the exponential 
extreme value distribution, above the defined threshold 
ht , follows the following expressions as clearly described 
by Onyutha [85].

Assuming xt = 1∕ht , Eq. (13) becomes:

Considering the values lower than xt , Eq. (15) matches 
the Fréchet distribution G(x) = exp (−x−�∕�)where � = 1.

The subsequent step after aggregation of the time 
series was the extraction of independent hydrological 
extreme events. This was done for each aggregation level, 
for both high and low flows. Two main approaches exist for 
extracting extreme hydrological events and these include 
the Peak-Over-Threshold (POT) and the Annual Maxima 
Method (AMM) techniques [89, 90]. While the AMM is sim-
ple and generates extreme events that have high inde-
pendence, the number of events can be few particularly 
for the short data record length as they generate only one 
event per year. On the other hand, the POT technique gen-
erates a satisfactory number of extreme events above the 
set threshold [91]. Nevertheless, closely successive flood 
peaks could actually be a one flood, because the dam-
age results from the highest and the related peaks may 
only have indirect contribution effects [90]. In this study, 
both the AMM and POT approaches were used. The AMM-
generated independent events were used to compare the 
model performance in reproducing annual maxima and 
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minima flows, while the POT-generated independent 
events were used for frequency analysis of hydrological 
extremes (in construction of FDF curves).

Several tools for extracting POT values exist including the 
WETSPRO: Water Engineering Time Series Processing tool 
[92], and Frequency Analyses considering Non-Stationarity 
(FAN-Stat) [93]. The study by Mubialiwo et al. [46] revealed 
the presence of trends and shifts in the rainfall and poten-
tial evapotranspiration over the study area. Since the same 
meteorological datasets (rainfall and potential evapotran-
spiration) were used in this study as inputs in the hydrologi-
cal models, the generated flows were presumed to exhibit 
non-stationarity. Therefore, the FAN-Stat tool that considers 
non-stationarity was adopted to obtain the independent 
POT value. The FAN-Stat tool was downloaded freely online 
via https:// sites. google. com/ site/ conyu tha/ tools- to- downl 
oad (accessed: 10 February 2021). Using the extracted POT 
events, the extreme value distribution (EVD) was fitted to the 
independent extreme high and low flow events. According 
to Segers [94], in extreme value theory, a conditional prob-
ability distribution of independent extreme events follows 
a Generalised Pareto Distribution (GPD), if only values above 
an appropriately high threshold xt are used such that:

and

for values of � = 0 , the generated shape of the distribution 
tail is “normal” but when 𝜆 > 0 or 𝜆 < 0 , the tail is heavy or 
light, respectively. For normal tail (� = 0) , the GPD matches 
the exponential distribution.

Following the above concept, the distribution tail analysis 
in River Malaba sub-catchment is done for the high and low 
extreme river flow events. The weighted linear regression 
method recently applied by Baig et al. [95] was used to deter-
mine the EVD parameters. To compute the EVD parameters 
in Eq. (16), exponential quantile plot with − ln [1 − G(x)] in 
the abscissa and x in the ordinate is adopted. The distribu-
tion assumes a straight line with a slope equal to � that can 
be computed using Eq. (18) by implementing the weighting 
factors suggested in Hill [96].

where t  denotes the number of POT events above the 
selected threshold xt.

(16)G(x) = 1 − exp

{
−

(
x − xt

)

�

}
for � = 0

(17)G(x) = 1 −

{
1 + �

(
x − xt

)

�

}−1
∕�

for � ≠ 0

(18)�t =
1

t − 1

[
t−1∑

i=1

(
xt
)
]
− xt

On the other hand, for parameters of a GPD as in Eq. (17), 
the plot with − ln [1 − G(x)] in the abscissa and x in the 
ordinate is used. The GPD appears as a line and the slope 
approximated to �.The slope value of � in the GPD expres-
sion (Eq. 17) can be computed using Eq. (19), and the shape 
parameter � can be estimated by the least square weighted 
linear regression assuming the weights suggested in Hill [96] 
as shown in Eq. (20).

The finest value of xt is selected from the exponential 
Q–Q plot at the point with minimum mean squared error 
(MSE). The MSE of the respective weighted linear regres-
sions in EVD and GPD can be obtained from Eqs. (21, 22), 
respectively.

After calibration of the distribution and establishing the 
parameters, flow quantiles were computed. By taking n to 
be the data record length in years (in this case 18 years) 
and r as the rank of the generated POT extreme events 
(with 1 allocated to the highest POT values), the theoretical 
return period T  based on the calibrated distribution was 
computed (Eq. 23). Similarly, the empirical return period 
(Eq. 24) was determined.

where XT is the flow value corresponding to T  obtained 
from Eq. (24). t  was previously defined as the rank of the 
threshold values. [1 − G(x)] is the fitted EVD.

To carry out an extrapolation of the flow quantiles, 
Eqs. (25) and (26) can be used for exponential distribution 
and generalise Pareto Distribution, respectively.
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The flow quantiles were extrapolated to a particular 
return period (e.g. 25, 50, 100 years) for various purposes 
of water resources engineering applications such as deter-
mining the return period of an historical flow event. It is 
worth noting that in this study, extrapolation of quantiles 
is based on data of 18 years (1999 to 2016). However, 
the study by Schulz K, Bernhardt M [97] discovered that 
extrapolations of quantiles for higher return periods (say 
100 years) based on series of short-term can bring about 
large uncertainties. To minimise the possible uncertainties 
resulting from a small sample size, extrapolation of quan-
tiles should not be for a return period greater than three 
times the record length (in years) of the data being used 
for analysis [87]. Using the calibrated distribution param-
eters, the FDF relationships comprising of the accumu-
lated values of flow for all the aggregation levels at three 
return periods (25, 50 and 100 years) were developed for 
both high and low flows. Lastly, the average model biases 
in replicating the observed high and low-flow quantiles 
at different aggregation levels were computed based on 
Eq. (5).

4  Results and discussion

4.1  Model performance for the calibration, 
validation and entire data period

Figure 3 shows the graphical comparison of observed 
and simulated river flow time series from the seven rain-
fall–runoff models. The set of parameters used to attain 
results in Fig. 3 are included in Supplementary Material 
M2 (see Table M1). It is noticeable from Table M1 that opti-
mised parameters were all with in the allowable ranges 
for each model. There is noticeable underestimation of 
the peaks especially by TANK, IHACRES, SMAR and HMSV 
(Fig. 3c–d, f–g). There was an underestimation of low flows 
by IHACRES, SIMHYD and SMAR (Fig. 3d–f ).

It is worth noting that calibration of a model based on 
total catchment water balance allocates more value to the 
high flows than low flows [81]. Nonetheless, generally all 
the models well reproduced the pattern in the observed 
flow.

Figure  4 shows ranking of the model performance 
based on NSE (Fig. 4a) and KGE (Fig. 4b) “goodness-of-
fit” statistics. Additional information of model ranking 
(based on the remaining seven metrics (MAB, RRM, Re, Ia, 
R, MAE, CMA)) can be obtained in Supplementary Mate-
rial M2 Fig. M8a–g. Generally, AWBM had the smallest 
rank (1) hence, exhibiting the best performance (Fig. 4a,b 

(26)XT = exp
(
ln
(
xt
)
+ �

{
ln (T ) − ln

(
n

t

)})
for � ≠ 0.

and Supplementary Material Fig. M8a–f )). However, when 
based on CMA (Supplementary Material M2 Fig.  M8g, 
AWBM ranked third after SAC and Tank. In several past 
studies [36, 81], AWBM exhibited superlative perfor-
mances. On the other hand, SMAR exhibited unsatisfactory 
performance with NSE of 0.46, 0.28 and 0.44 for calibra-
tion, validation and entire period, respectively (Fig. 4 and 
Table 3). All models had NSE values above 0.50 (except 
SMAR).

The nine “goodness-of-fit” measures used for the cali-
bration, validation and entire periods of the seven models 
are shown in Table 3. All models (except SMAR) exhibited 
laudable performance in simulating flows in the catch-
ment. The values of NSE varied between 0.46 to 0.83, 0.28 
to 0.81 and 0.44 to 0.84 for calibration, validation and 
entire period, respectively. The best performance was 
obtained with the entire period, followed by the calibra-
tion period. Statistically, the best model performance 
would be shown by MAB of 0%. However, in this study, 
the MAB values varied amongst the models with some 
exhibiting negative, while others showed positive. This 
discrepancy in the MAB value amongst the models could 
be attributed to the varying model structures used to con-
vert rainfall into runoff. The values of RRM ranged between 
0.048–0.085 and 0.069–0.133, for calibration and valida-
tion, respectively. Of the seven models, AWBM had the 
smallest value, while SMAR exhibited the largest values of 
RRM (Table 3). Based on Re and Ia, the best performance of 
a model would be indicated by a value of 1. Nevertheless, 
highest Re and Ia values of 0.595 and 0.798, respectively, 
were obtained by the AWBM. The lowest Re and Ia values of 
0.242 and 0.635, respectively, were realised by the SMAR. 
This further attests the unsatisfactory performance of 
SMAR. The values of R ranged between 0.712–0.917 and 
0.552–0.901, respectively, for calibration and validation 
periods. This indicates that for all the models, the mod-
elled dispersion to the observed was generally well pre-
dicted. The MAE values did not vary much amongst the 
models, except for SIMHYD and SMAR that slightly varied 
from other models. The values were within the ranges of 
5.0–9.6  m3s−1 and 6.6–14.2  m3s−1, respectively, for the cali-
bration and validation periods.

By using the CMA, the best model performance would 
be shown by the value of 1. In this study, SAC had the high-
est value (0.791) followed by HMSV (0.725) for the calibra-
tion period (Table 3). Considering the validation period, 
SAC still had the highest value (0.807) followed by TANK 
(0.745). For both calibration and validation period, SMAR 
had the smallest values of 0.466 and 0.293, respectively. 
Considering the KGE metric, AWBM performed best fol-
lowed by SAC and TANK while SMAR performed last for 
all the periods. Generally, it can be concluded that the 
SMAR model performed worst, while AWBM performed 
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finest based on the nine considered statistical indicators. 
However, in some studies, e.g. Onyutha et al. [36], SMAR 
generally performed better than SAC and TANK models. 
This could be attributed to the varying spatial resolution 
of catchments such as the size, climate, geology, landscape 
and hydrological data [70, 81]. In some cases, the lumped 
conceptual models have been found to perform better 
than physically based models. For instance in the study 
by Jaiswal et al. [98], for calibration, AWBM and TANK yield 
NSE values of 0.76 and 0.84, respectively, while SWAT had 
NSE of 0.75. However, in other areas, some rainfall–runoff 

models can exhibit unsatisfactory performances. For 
instance, the study by Pérez-Sánchez et al. [68], that com-
pared six hydrological balance models (Témez, ABCD, 
GR2M, AWBM, GUO-5p and Thornthwaite-Mather) in sev-
eral basins within Spain, AWBM model did not perform 
well.

Figure 5 shows the performance of models based on 
compiled values of ranking from all the nine “goodness-
of-fit” measures constrained to the catchment total 
water balance. This followed a procedure described 
in Sect.  3.1.1. Production of Fig.  5 considered the 

Fig. 3  Observed discharge and 
simulated flows using a AWBM, 
b SAC, c TANK, d IHACRES, e 
SIMHYD, f SMAR, g HMSV
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performance of models during calibration, validation 
and entire period (Table 3). It is noticeable from Fig. 5 
that AWBM performed best followed by SAC, while SMAR 
performance last. It should be noted that performance 
of these models can vary based on the catchment of 
application. For instance, while TANK was amongst the 
best 3 models in this study, the study by Onyutha et al. 
[36], that compared the performance of several lumped 
conceptual models in the simulation of daily River Kafu 
flows, TANK did not perform better. In the same study 
[36], SMAR generally performed well.

4.2  Comparison of model performance 
in simulating annual maxima and annual 
minima flow events

Figures 6 and 7, respectively, show the performance of 
models to simulate annual maxima and minima flow 
events in each year. For a superlative model, all the 
observed and simulated scatter points would be plotted 
along the 45° line.

It is observed that all the hydrological models simulated 
high flows (Fig. 6), better than low flows (Fig. 7). AWBM 
model performed better in simulating annual maxima 
flow events (Fig. 6a), followed by SACRAMENTO (Fig. 6b), 
while IHACRES performed last (Fig. 6d). The annual max-
ima observed flow events beyond 100  ms−1 were slighted 
underestimated by HMSV and TANK models (Fig. 6c,g). It 
is evident that the annual minima flow events in each year 
were largely overestimated by AWBM, SMAR and HMSV 
(Fig. 7a,f and g). However, SAC, IHACRES, SIMHYD mod-
els underestimated the low flow events (Fig. 7b,d,e). It is 
only TANK model exhibited a somewhat realistic balanced 

over- and underestimation with scatter points falling on 
both sides of the 45° line (Fig. 7c). Generally, HMSV model 
exhibited the best performance (Fig. 7g), while the SMAR 
performed last (Fig. 7f ) in simulating annual minima.

The performance of hydrological models based on 
compiled values of ranking from all the nine “goodness-
of-fit” measures considering the annual maxima and 
minima flows in each year is shown in Figs. 8 and 9. Like 
in Fig. 5, Figs. 8 and 9 are obtained based on the proce-
dure explained in Sect. 3.1.1. Similar to the observations 
in Table 3 and Figs. 3, 4 and 5, AWBM model performed 
better than other models in simulating the annual maxima 
series, except when based on the MAB statistical indicator 
(Fig. 8). Similarly, SAC model performed second best. While 
Fig. 5 shows that SIMHYD and SMAR performed last, these 
two models exhibited commendable performance in sim-
ulating annual maxima flows. Instead, IHACRES, TANK and 
HMSV portrayed the worst performances. By considering 
the annual minima series, largely HMSV had the best per-
formance, followed by AWBM and TANK (Fig. 9). Similar to 
the observations in Fig. 5, SMAR, SIMHYD and IHACRES 
performed last in simulating annual minima flow events 
(Fig. 9).

4.3  Amplitude–duration frequency analyses

In this study, the extreme value distribution tail analysis at 
all aggregation levels showed a normal tail for the expo-
nential quantile–quantile (Q–Q) plot for both high and low 
flow events. For instance, results of the calibrated expo-
nential distribution obtained at 1-day aggregation level for 
high and low flows are shown in Figs. 10 and 11, respec-
tively. In the same figures, empirical and extrapolated 

Fig. 4  Model performance in 
terms on ranking based on a 
Nash–Sutcliffe Efficiency (NSE), 
b Kling–Gupta efficiency (KGE). 
Ranks 1 and 7 denote best 
and worst performing model, 
respectively
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quantiles are shown. In all cases, linearity behaviour in 
the quantiles was realised towards the tail of the distribu-
tions. While the exponential plot was adopted to obtain 
the linear behaviour of the quantiles, log-transformation 
was applied to the return period T on the x-axis. Towards 
the tail of the distribution, the mismatch between the 
empirical and modelled quantiles gest systematically 
larger than those for small return periods. This tends to 
result from the influence of flooding on flow measurement 
stemming from the bias in rating curve extrapolation or 
the difference between the river discharge and the catch-
ment rainfall–runoff discharge [87]. Censoring out outliers 
prevents underestimation of flow which could result from 
assuming a light instead of normal tail. Assuming a light 
tail may result in underestimation of design quantiles for 
sizing water infrastructures such as bridges. In the Supple-
mentary Material M3 Figs. M12 to M17, exponential Q–Q 
plots obtained at different aggregation levels for both high 
(5, 30 and 90 days) and low flows (30, 180 and 365 days) 
are provided.

Considering the high flows (Fig.  10), the frequency 
curve for SIMHYD and SMAR showed substantial devia-
tions from the observed curve for the estimated flows 
especially at higher return periods, while AWBM, SAC, 
TANK, IHACRES and HMSV frequency curves did not dis-
play substantial deviations. From Fig. 10, the return period 

Table 3  Statistical performance evaluation of the models

S/N Model Calibration Validation Entire period

Nash–Sutcliffe efficiency (NSE)
1 AWBM 0.828 0.808 0.837
2 Sacramento (SAC) 0.808 0.795 0.822
3 TANK 0.799 0.791 0.816
4 IHACRES 0.741 0.700 0.749
5 SIMHYD 0.630 0.502 0.612
6 SMAR 0.458 0.281 0.436
7 HMSV 0.778 0.787 0.804
Model average bias (MAB, %)
1 AWBM −3.121 4.910 0.186
2 Sacramento (SAC) 11.478 -4.935 4.721
3 TANK 3.555 9.625 6.053
4 IHACRES −23.452 -6.020 -16.274
5 SIMHYD −24.060 -10.563 -18.502
6 SMAR −2.433 25.300 8.986
7 HMSV 12.010 -3.065 5.802
Ratio of root mean squared error to maximum event (RRM)
1 AWBM 0.048 0.069 0.053
2 Sacramento (SAC) 0.051 0.071 0.055
3 TANK 0.052 0.072 0.056
4 IHACRES 0.059 0.086 0.065
5 SIMHYD 0.070 0.111 0.081
6 SMAR 0.085 0.133 0.098
7 HMSV 0.055 0.072 0.058
Relative efficiency (Re)
1 AWBM 0.595 0.594 0.627
2 Sacramento (SAC) 0.569 0.580 0.608
3 TANK 0.547 0.567 0.692
4 IHACRES 0.477 0.460 0.510
5 SIMHYD 0.338 0.310 0.377
6 SMAR 0.242 0.130 0.250
7 HMSV 0.547 0.570 0.590
Index of agreement (Ia)
1 AWBM 0.798 0.782 0.809
2 Sacramento (SAC) 0.783 0.795 0.803
3 TANK 0.774 0.774 0.794
4 IHACRES 0.758 0.756 0.776
5 SIMHYD 0.706 0.679 0.714
6 SMAR 0.635 0.479 0.615
7 HMSV 0.765 0.783 0.791
Coefficient of determination (R)
1 AWBM 0.917 0.901 0.918
2 Sacramento (SAC) 0.901 0.902 0.909
3 TANK 0.896 0.892 0.903
4 IHACRES 0.895 0.881 0.895
5 SIMHYD 0.856 0.797 0.843
6 SMAR 0.712 0.552 0.685
7 HMSV 0.882 0.893 0.898
Mean absolute error (MAE) (m3s−1)
1 AWBM 5.079 6.609 5.709

Table 3  (continued)

S/N Model Calibration Validation Entire period

2 Sacramento (SAC) 5.411 6.842 6.000
3 TANK 5.688 7.040 6.245
4 IHACRES 6.571 8.764 7.474
5 SIMHYD 8.316 11.299 9.544
6 SMAR 9.510 14.160 11.425
7 HMSV 5.689 6.962 6.213
Coefficient of model accuracy (CMA)
1 AWBM 0.707 0.730 0.761
2 Sacramento (SAC) 0.791 0.807 0.839
3 TANK 0.705 0.745 0.834
4 IHACRES 0.560 0.726 0.688
5 SIMHYD 0.519 0.548 0.573
6 SMAR 0.466 0.293 0.554
7 HMSV 0.725 0.719 0.737
Kling–Gupta efficiency (KGE)
1 AWBM 0.888 0.890 0.900
2 Sacramento (SAC) 0.854 0.843 0.883
3 TANK 0.873 0.826 0.879
4 IHACRES 0.779 0.804 0.837
5 SIMHYD 0.756 0.745 0.772
6 SMAR 0.669 0.459 0.653
7 HMSV 0.821 0.847 0.841
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Fig. 5  Assessment of model 
performance based on com-
piled values of ranking from 
all the nine “goodness-of-fit” 
considering the overall water 
balance. The best performing 
model is ranked 1 while the 
worst takes rank 7 0

2

4

6

8

AWBM SAC TANK IHACRES SIMHYD SMAR HMSV

R
an

k

Hydrological model

NSE MAB RRM Re Ia R MAE CMA KGE

Fig. 6  Model performance assessment based on comparison of observed and simulated annual maxima flows in each year for a AWBM, b 
SAC, c TANK, d IHACRES, e SIMHYD, f SMAR, g HMSV, Sim. stands for simulated, while Obs. means observed

Fig. 7  Model performance assessment based on comparison of observed and simulated annual minima flows in each year for a AWBM, b 
SAC, c TANK, d IHACRES, e SIMHYD, f SMAR, g HMSV; Sim. stands for simulated, while Obs. means observed
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for an average 1-day flood of 150  m3s−1 is 24 years based 
on the observed flow curve, while the same event has a 
return period of 17 years for an evaluation based on AWBM 
model. However, when considering the HMSV model, the 
same event will have a return period of 30 years, while for 
the SIMHYD model, the return period is 10 years.

It is noticeable that for low flows (Fig. 11), the actual 
quantiles were attained after back transformation of the 
(1/X). In view of the low flows (Fig. 11), SMAR, SIMHYD 
and IHACRES flow curves exhibited large deviations from 
the observed quantile even at return periods less than 

1 year. The AWBM, SAC, TANK and HMSV flow curves have 
close agreement with the observed quantiles through-
out all the return periods (despite slight deviations on 
the extrapolated quantiles). The extrapolated quantiles 
for high flows can be relevant for vigilant flood analysis 
which can guide the planning and designing of risk-
based water engineering structures such as bridges 
and slipways. Similarly, the extrapolated quantiles for 
low flows can be relevant for cautious drought analysis 
which is key in water resources management aspects 

Fig. 8  Assessment of model 
performance based on com-
piled values of ranking from all 
the nine “goodness-of-fit” con-
sidering the annual maxima 
flows. The best performing 
model is ranked 1 while the 
worst takes rank 7 0
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Fig. 9  Assessment of model 
performance based on com-
piled values of ranking from 
all the nine “goodness-of-fit” 
considering the annual minima 
flows. The best performing 
model is ranked 1 while the 
worst takes rank 7 0
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Fig. 10  Comparison of expo-
nential quantile–quantile plot 
for the high flow POT events 
considering 1-day aggregation 
level. The markers represent 
the empirical, solid lines signify 
theoretical (calibrated distribu-
tion), while dashed lines repre-
sent extrapolated quantiles
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such as determining irrigation water for agriculture and 
domestic water supply.

The ADF relationships considering all the aggregation 
levels are shown in Figs. 12 and 13 for high and low flows, 
respectively. These were generated from the quantiles pro-
jected based on the EVD. For high flows, it is shown that 
SMAR (Fig. 12f ) overestimated the high-flow quantiles for 
the aggregation level of one day. However, for aggregation 
levels higher than 3 days, SMAR underestimated the high-
flow quantiles, except at 60 and 90 days. For all aggregation 
levels, SIMHYD (Fig. 12e) overestimated the high-flow quan-
tiles particularly for the return periods of 25 and 100 years. 
For all aggregation levels, considering the AWBM, SAC, TANK, 
HMSV (Fig. 12a–c, g), the observed and simulated high-flow 
quantiles were generally in close agreement. The underes-
timation of high-flow quantiles at higher aggregation levels 
by SMAR could be attributed to the model inadequacy in 
capturing higher quantiles in the extreme value distribution 
tail. Similarly, the overestimation or underestimation of flow 
quantiles at one-day aggregation level could be linked to 
the high noise in flow time series at low aggregation levels, 
resulting in uncertainties in calibration of the extreme value 
distribution.

Considering the low flows, IHACRES, SIMHYD and 
SMAR (Fig. 13d–f) underestimated the low-flow quantiles. 
However, for AWBM, SAC, TANK, HMSV (Fig. 13a–c, d), the 
quantiles from the observed and simulated low flows were 
comparable, except at aggregation level of one day with 
noticeable overestimation.

The model biases in reproducing high and low quantiles 
at different aggregation levels are shown in Tables 4 and 5, 
reactively. From Table 4, SIMHYD exhibited positive biases at 
all aggregation level indicating an over estimation of high-
flow quantiles. Except for the one-day aggregation level, 
SMAR showed an underestimation of high-flow quantiles. 
For low flows (Table 5), IHACRES, SIMHYD and SMAR showed 
large negative biases at all aggregation levels signifying an 
underestimation of low-flow quantiles. HMSV showed posi-
tive biases throughout (except for 150 days aggregation 
level), and on average it exhibited the smallest biases com-
pared to other models.

4.4  Explanation of the differences in performance 
of the various models

As earlier noted, all the seven rainfall–runoff models 
(AWBM, SAC, TANK, IHACRES, SIMHYD, SMAR and HMSV) 
simulated the high flows better than the low flows. The 
study Staudinger et al. [99], that assessed the impact of 
model structure on low flow simulation, established that 
most rainfall–runoff models poorly reproduce low flows 
because their structures are largely designed to mimic 
high flows. Li et al. [100] also stressed that the structure of 
a model may influence its performance. However, in this 
study, the variability in model performance could not evi-
dently be attributed to the differences in model structures. 
This is because various models performed either better 
under the consideration of total water balance and/or 

Fig. 11  Comparison of expo-
nential quantile–quantile plot 
for the low flow POT events 
considering 1-day aggregation 
level. The markers represent 
the empirical, solid lines signify 
theoretical (calibrated distribu-
tion), while dashed lines repre-
sent extrapolated quantiles
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extreme hydrological conditions. Generally, four models 
(AWBM, SAC, TANK and HMSV) performed well regarding 
simulating flows in the catchment. Considering the total 
water balance, AWBM had the highest NSE values of 0.828 
and 0.808 for calibration and validation periods, respec-
tively. In addition, AWBM had the lowest MAB value of 
0.186% for the entire period (1999–2016). Equally, AWBM 
performed better than other models in simulating the 
annual maxima flows. However, the model came second 
after HMSV in simulating the annual minima flows.

Model performance in simulating flows could as well 
be associated with model parameters [101]. For instance, 
the influence of low flows in most squared residual-
based objective functions is low. Models’ parameters 
exhibited varying sensitivity. In supplementary mate-
rial M2 Figs. M9–M11, a sample of parameter sensitivity 
analyses for AWBM, SACRAMENTO, SMAR can be found. 
AWBM was highly sensitive to higher values (close to 1.0) 
of base flow recession constant and also relatively sensi-
tive to surface flow recession constant, storage capac-
ity of third store and fraction of catchment area for the 

Fig. 12  The FDF plots for 
high extreme observed and 
simulated flows obtained at 
different aggregation levels 
(1–90 days) for a AWBM, b SAC, 
c TANK, d IHACRES, e SIMHYD, 
f SMAR, g HMSV obtained at 
25-, 50- and 100-year return 
periods. In the legend, dashed 
lines denote simulated flow, 
while the markers signify 
observed flow
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Fig. 13  The FDF plots for 
low extreme observed and 
simulated flows obtained at 
different aggregation levels 
(1–365 days) for a AWBM, b 
SAC, c TANK, d IHACRES, e SIM-
HYD, f SMAR, g HMSV obtained 
at 25-, 50- and 100-year return 
periods. In the legend, dashed 
lines denote simulated flow, 
while the markers signify 
observed flow

Table 4  Model biases (%) in 
simulating high-flow quantiles

Model Aggregation level [day]

1 3 5 7 10 30 60 90

AWBM 7.99 1.96 −1.26 −0.52 −2.44 −0.83 2.26 2.68
SAC 1.37  − 2.52  − 3.36  − 2.35  − 3.14 0.37 2.04 5.39
TANK  − 3.79  − 5.47  − 5.02  − 2.02  − 2.03  − 1.62  − 0.38 2.10
IHACRES  − 4.50  − 3.29  − 3.01 0.09 2.75 6.06 13.58 21.72
SIMHYD 18.11 8.00 4.25 5.83 3.41 9.79 21.26 20.35
SMAR 13.11  − 9.27  − 21.93  − 23.96  − 26.58  − 22.74  − 12.58  − 1.31
HMSV  − 2.98  − 5.96  − 8.80  − 8.23  − 8.72  − 6.24 0.41 5.23



Vol.:(0123456789)

SN Applied Sciences (2021) 3:515 | https://doi.org/10.1007/s42452-021-04514-7 Research Article

first store. However, fraction of catchment area for the 
second store and storage capacity of second store were 
almost insensitive parameters with minimal variation in 
the NSE values (supplementary material Fig. M9). The 
baseflow index, baseflow and surface runoff recession 
constant parameters in AWBM could justify the lauda-
ble performance of the model in reproducing both high 
and low flows. Previous studies [36, 81, 102] revealed 
good performance of AWBM. However, in some cases, 
the AWBM may not yield better results. For instance, in 
the study by Pérez-Sánchez et al. [68], that compared 
six hydrological models including the AWBM, revealed 
poor performance of the AWBM. Conclusively, it can be 
stated that the AWBM structure is tailored towards better 
capturing high flows than low flows.

Similarly, the SACRAMENTO model with a set of sev-
enteen parameters had the second-best performance 
in simulating flows during calibration and validation 
and mimicking of the annual maxima flows. Some of the 
SACRAMENTO parameters exhibited high sensitivity only 
at small values (e.g. additional fraction of pervious area, 
exponential percolation rate) while other had high sen-
sitivity at higher values (e.g. fraction of base flow which 
is groundwater flow, lower zone free water primary 
maximum). Other parameters were almost insensitive 
(e.g. upper zone Free water maximum, fraction of water 
unavailable for transpiration) (supplementary material 
Fig. M10).

The performance of SIMHYD model with nine param-
eters was not adequately better for both low and high flow 
simulation. The study by Li et al. [100], that compared three 
hydrological models (HBV, SIMHYD and XAJ), revealed 
lower efficiency of the SIMHYD model. While SMAR model 
generally had well-identified parameters, three param-
eters (unit hydrograph linear routing, unit hydrograph 
linear routing component, infiltration rate) exhibited low 
sensitivity (supplementary material Fig. M11). This might 
have resulted in the lower performance of the model. In 
some studies (e.g. Bashar [103]), SMAR model yielded suf-
ficiently better results. The performance of a model may 
not be associated with the number of parameters it has 

[104]. This is because, SACRAMENTO model that could be 
regarded as being over-parameterised with 17 parameters, 
performed better than other models with relatively fewer 
parameters, e.g. SIMHYD (9 parameters), IHACRES (11 
parameters), SMAR (9 parameters) and HMSV (10 param-
eters). Besides, AWBM model with the smallest number 
of parameters (eight), performed best overall. Although 
the calibration of HMSV was based on the “step-wise” (sub-
flow variation) strategy (calibration baseflow, interflow and 
overland flows separately), the model did not perform well 
in simulating annual maxima, despite it performing best in 
simulating annual minima flows. The commendable per-
formance of HMSV model in simulating low flows could 
be attributed to the base flow parameter and baseflow 
recession constant. The credible ranking of HMSV in repro-
ducing annual maxima flow could also be linked to the 
overland and interflow parameters in the model.

Interestingly, the performance of a model may as well 
be attributed to the selected “goodness-of-fit” measures 
[38, 81]. For instance, it is noticeable that for annual min-
ima flows, HMSV generally performed better than TANK 
model. However, when based on the MAB “goodness-of-
fit” metric, TANK model displayed better performance 
than HMSV. Similarly, for annual maxima flows, AWBM 
performed far better than other models. However, when 
based on the MAB, SAC and SMAR models performed 
better than AWBM. Besides, under the consideration of 
total water balance, using the CMA and KGE statistical 
indicators, SAC and TANK model performed better than 
the AWBM, despite AWBM displaying overall superlative 
performance. Hence, to strongly conclude on the efficacy 
of a particular rainfall–runoff model, it is vital to assess its 
performance using various “goodness-of-fit” statistics as 
implemented in this study.

5  Conclusion

Previous studies conducted to evaluate several conceptual 
rainfall–runoff models (AWBM, SACRAMENTO, TANK, IHA-
CRES, SIMHYD, SMAR and HMSV) performances based on 

Table 5  Model biases (%) in 
simulating low-flow quantiles

Model Aggregation level [day]

1 10 30 90 150 180 240 365

AWBM 22.35 3.21  − 0.06  − 0.69  − 3.76  − 3.45  − 1.64 6.42
SAC 6.38  − 3.26  − 2.06 2.32 6.13 6.96 5.95 18.33
TANK 26.67  − 4.84  − 6.73  − 1.63  − 3.68 0.98 4.67 2.76
IHACRES  − 60.73  − 67.99  − 62.82  − 56.64  − 55.70  − 55.43  − 55.63  − 58.62
SIMHYD  − 64.89  − 70.35  − 70.65  − 65.77  − 63.29  − 65.35  − 67.36  − 61.28
SMAR  − 74.72  − 48.89  − 44.85  − 37.26  − 40.54  − 42.99  − 44.93  − 45.38
HMSV 22.70 1.65 0.00 3.30  − 1.45 0.80 1.90 5.20
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multiple “goodness-of-fit” metrics in simulating hydrologi-
cal extremes in River Malaba sub-catchment are lacking. 
This study analysed seven lumped conceptual rainfall–run-
off models based on nine “goodness-of-fit” measures in 
simulating hydrological extreme of River Malaba sub-
catchment. Because of the poor distribution of meteoro-
logical stations, with the existing ones having few data 
available in the recent years, in addition to the uncertain 
and questionable quality, this study was based on PGF 
meteorological dataset recorded from 1999 to 2016. Bias 
correction in the PGF data was performed using the simple 
multiplicative bias correction method. Daily River Malaba 
observed flow time series at Budumba station were used 
in model calibration and validation. Considering the total 
water balance, largely the models (except SMAR) well 
reproduced the observed flow pattern. All the models 
(except AWBM, TANK and HMSV), largely underestimated 
the base flow. Generally, AWBM performed better than 
other models with NSE of 0.83 for calibration, while SMAR 
performed last with NSE of 0.46.

The seven rainfall–runoff models simulated the high 
flows better than the low flows. This could be attributed 
to the structure of most rainfall–runoff models tailored 
at reproducing high flows better than the low flows. By 
designing hydrological model structures flexible in cap-
turing both high and flow flows could avert the situation. 
The AWBM model performed better than other models in 
simulating annual maxima flow events. The annual minima 
flow events in each year were largely overestimated by 
AWBM, SMAR and HMSV, but underestimated by the SAC, 
IHACRES, SIMHYD models. Largely HMSV ranked number 
one, followed by the AWBM and TANK in simulating annual 
minima flow events. SMAR, SIMHYD and IHACRES did not 
exhibit satisfactory performance in simulating annual 
minima flows.

Flow–Duration Frequency (FDF) analyses yielded a 
normal tail of the exponential Q–Q plot at the selected 
aggregation levels for both low and high flows. The fre-
quency curves for SIMHYD and SMAR showed large devia-
tions from the observed curve especially at higher return 
periods, while AWBM, SAC, TANK, IHACRES and HMSV 
frequency curves did not display substantial deviations. 
For the same flood event, different models yielded vary-
ing return periods. For instance, the return period for an 
average 1-day flow of 150  m3s−1 is 24 years based on the 
observed flow curve, while the same event has a return 
period of 17  years for an evaluation based on AWBM 
model. However, using the HMSV model, the same event 
will have a return period of 30 years, while for the SIM-
HYD model, the return period is 10 years. The discrepancy 
in mimicking the observed frequency curves by differ-
ent models demonstrates how implicit determination 
of the return period for a particular flow event can vary 

depending on the considered hydrological model. For the 
low flows, SMAR, SIMHYD and IHACRES flow curves exhib-
ited large deviations from the observed curve even at 
return periods less than 1 year. The AWBM, SAC, TANK and 
HMSV flow curves had close agreement with the observed 
curves throughout all the return periods.

The simulated high-flow quantiles from AWBM, SAC, 
TANK, HMSV and the observed were generally in close 
agreement. However, SMAR and SIMHYD underestimated 
and overestimated high-flow quantiles, respectively. IHA-
CRES, SIMHYD and SMAR underestimated the low-flow 
quantiles. With AWBM, SAC, TANK, HMSV, the quantiles 
from the observed and simulated low flows were compa-
rable. All models exhibited varying biases (positive and/
or negative) in reproducing the extreme flow quantiles. 
The differences in biases designate the influence of model 
selection for hydrological extreme analysis. The biases 
could be attributed to errors in model inputs (in this case, 
rainfall and PET) or in the observed flows used for model 
calibration and validation. Errors in observed flow could 
be due to flooding influence or due to wrong extrapola-
tion made by the rating curve [105]. Flooding influence 
results in down bending of the rating curve to lower water 
levels hence leading to underestimation for higher flows. 
Besides, the errors in estimating the EVD parameters 
especially the slope parameter � might have contributed 
to the biases. However, in spite of accurate estimation of 
parameters, an extrapolation outside the calibration and 
validation periods of a distribution can be very erroneous.

By simultaneously considering the overall assessment 
of high and low flows, AWBM slightly performed better 
than other models in simulating hydrological extreme 
in River Malaba sub-catchment, while SMAR ranked last. 
A few limitations to this study and recommendations 
for future research studies are worth stating. The study 
adopted the computation of bias correction factors for 
PGF data without distinguishing between seasons but 
rather monthly values were used. It is likely that omit-
ting seasonal difference in the analysis might yield biased 
results due to blind temporal relationship. To even out the 
possible uncertainties in the computed bias factors, it is 
recommended that future research studies consider sea-
sons and temporal changes. Besides, the uncertainties in 
the use of uncalibrated empirical Hargreaves method for 
PET estimation should be quantified in future research. 
Future research studies may also evaluate the hydrological 
models’ performance without bias correction of PGF data. 
The study by Mubialiwo et al. [46] revealed the presence 
of trends and shifts in the rainfall and potential evapo-
transpiration over the study area. Since the same meteoro-
logical datasets (rainfall and potential evapotranspiration) 
were used in this study as the inputs in the hydrological 
models, the generated flow is presumed to contain trends 
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and sub-trends, which could indicate possible surge of 
flooding events and/or severity of hydrological droughts. 
However, this was not analysed in this study and is rec-
ommended for investigation in the future research stud-
ies. Furthermore, the impact of human factors (e.g. land 
use) and climate variability on water resources in the River 
Malaba sub-catchment should be investigated by future 
research.

Even with the above-mentioned limitations (which 
may be addressed by the suggested future research 
studies), this study provides relevant information for 
planning of risk-based water resources applications. The 
flow data from the best hydrological model (AWBM) can 
be used for many applications in water resources man-
agement. For instance, the FDF relationships can be used 
to construct rainfall–runoff design hydrographs as inputs 
in the hydrodynamic flood model to simulate discharge 
at different locations along the river. The simulated dis-
charge can then be applied in the design of flood protec-
tion systems and calculation of flood maps for different 
return periods in the study area. Besides, FDF relation-
ships can be adopted to estimate the return periods 
of historical flow events. Worth noting is that for the 
same catchment, even models of the same family (e.g. 
the “e-Water Toolkit” RRLs) can produce varying results 
and their performance can differ based on the selected 
“goodness-of-fit” measures. Therefore, it is necessary 
to compare results from various models prior to selec-
tion of a particular model to support decision regarding 
water resources management application, e.g. simulat-
ing flows that can support floods or drought analysis.
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