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Abstract
Studies comparing numerous sorption curve models and different error functions are lacking completely for soil-metal 
adsorption systems. We aimed to fill this gap by studying several isotherm models and error functions on soil-metal 
systems with different sorption curve types. The combination of fifteen sorption curve models and seven error functions 
were studied for Cd, Cu, Pb, and Zn in competitive systems in four soils with different geochemical properties. Statisti-
cal calculations were carried out to compare the results of the minimizing procedures and the fit of the sorption curve 
models. Although different sorption models and error functions may provide some variation in fitting the models to the 
experimental data, these differences are mostly not significant statistically. Several sorption models showed very good 
performances (Brouers-Sotolongo, Sips, Hill, Langmuir-Freundlich) for varying sorption curve types in the studied soil-
metal systems, and further models can be suggested for certain sorption curve types. The ERRSQ error function exhibited 
the lowest error distribution between the experimental data and predicted sorption curves for almost each studied cases. 
Consequently, their combined use could be suggested for the study of metal sorption in the studied soils. Besides test-
ing more than one sorption isotherm model and error function combination, evaluating the shape of the sorption curve 
and excluding non-adsorption processes could be advised for reliable data evaluation in soil-metal sorption system.
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Abbreviations
BB  Baudu isotherm equilibrium constant
BL  Langmuir isotherm constant (L/mmol)
BVS  Vieth-Sladek constant
CBET  Brunauer-Emeret-Teller constant related to the 

energy of surface interaction (L/mmol)
Ce  equilibrium metal concentration (mmol/L)
CS  Brunauer-Emeret-Teller and MacMillan-Teller 

adsorbate monolayer saturation concentration 
(mmol/L)

K  MacMillan-Teller isotherm constant
KBS  Brouers-Sotolongo isotherm constant
KDR  Dubinin-Radushkievich isotherm constant  (mol2/

KJ2)

KF  Freundlich isotherm constant related to the 
adsorption capacity

KH  Hill constant
KJ  Jovanovich equilibrium constant
KLF  Langmuir-Freundlich equilibrium constant for a 

heterogeneous solid
KRP  Radke-Prauschnitz equilibrium constant
KS  Sips equilibrium constant (L/mmol)m

KT  Tóth equilibrium constant
KVS  Vieth-Sladek constant
K1FS  Fritz-Schlunder equilibrium constants (L/mmol)
K2FS  Fritz-Schlunder equilibrium constants (L/mmol)
nF  Freundlich adsorption intensity
mLF  Langmuir-Freundlich heterogeneity parameter
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mRP  Radke-Prauschnitz model exponent
mS  Sips model exponent
mT  Tóth model exponent
m1FS  Fritz-Schlunder model exponents
m2FS  Fritz-Schlunder model exponents
nBS  Brouers-Sotolongo isotherm exponent
nH  Hill cooperativity coefficient of the binding 

interaction
Qe  amount of metals in the soils at equilibrium 

(mmol/kg)
QmB  Baudu maximum adsorption capacity (mmol/kg)
QmBS  Brouers-Sotolongo maximum adsorption capac-

ity (mmol/kg)
QmJ  Jovanovich maximum monolayer capacity 

(mmol/kg)
QmFS  Fritz-Schlunder maximum adsorption capacity 

(mmol/kg)
QmL  Langmuir maximum monolayer capacity (mmol/

kg)
QmLF  Langmuir-Freundlich maximum adsorption 

capacity (mmol/kg)
QmRP  Radke-Prauschnitz maximum adsorption capac-

ity (mmol/kg)
QmS  Sips maximum adsorption capacity (mmol/kg)
QmT  Tóth maximum adsorption capacity (mmol/kg)
QmVS  Vith-Sladek maximum adsorption capacity 

(mmol/kg)
QSBET  Brunauer-Emeret-Teller theoretical isotherm satu-

ration capacity (mmol/kg)
QSDR  Dudbinin-Radushkievich theoretical isotherm 

saturation capacity (mmol/kg)
QSH  Hill maximum uptake saturation (mmol/kg)
QSMT  MacMillan-Teller theoretical isotherm saturation 

capacity (mmol/kg)
x  Baudu isotherm parameter
y  Baudu isotherm parameter
�  Dubinin-Radushkievich isotherm constant, which 

can be calculated as R∙T∙ln(1 + 1/Ce)

1 Introduction

Metal sorption by soils is of particular interest and hav-
ing importance from both agricultural and environmental 
viewpoints. Adsorption is a major process responsible for 
the retention of metals by soils [5]. For the exact charac-
terization of the sorption process, it is crucial to provide 
the most appropriate information on the adsorption equi-
librium. This information is fundamental for the reliable 
prediction of adsorption parameters and comparing the 
adsorbents’ behavior in varying sorption systems quan-
titatively [16]. Adsorption isotherms are generally used 

to describe how adsorbates interact with the adsorbent. 
Their use is crucial for several reasons, like the study of 
adsorption mechanism pathways, surface properties, and 
adsorbents’ capacities [12]. In isotherm studies, the experi-
mental adsorption data are inserted into an equilibrium 
model to achieve the best fit for the sorption system. The 
better the model’s fit to the experimental data, the more 
accurate the calculation can be [10].

For soil-metal systems, the metal sorption capacity is 
one of the most critical parameters that have to be deter-
mined. Besides sorption capacities, equilibrium mod-
els often supply insight into the adsorbent’s affinity, its 
surface properties, and the adsorption mechanism [6]. 
Besides the well-known Langmuir and Freundlich mod-
els, many other isotherm equations can be used to explain 
soil-metal adsorption systems [3].

Traditionally, isotherm parameters are determined 
using the linear least-squares method [13]. Neverthe-
less, a considerable inconvenience related to the lin-
earization of the isotherm models has been identified. 
According to Hong et al. [22], linearization may produce 
several different outcomes, and it may alter the error 
structure strongly. Additionally, it affects both the error 
variance and the normality assumptions of standard 
least-squares disadvantageously, leading to the distor-
tion of the data. As several linearization methods exist, 
their parallel use results in the change of error distribu-
tion differently. That is why non-linearized regression 
analysis became unavoidable as it provides a mathe-
matically rigorous method for determining adsorption 
parameters using the original form of isotherm equa-
tions [18]. Unlike linear regression, it usually involves 
minimizing the error distribution between the experi-
mental data and the predicted isotherm based on its 
convergence criteria [44].

Numerous error analysis methods have been used and 
developed to determine the best-fitting isotherm equa-
tion [48]. The most popular tool for model comparison is 
the use of the coefficient of determination  (R2). Despite 
the apparent simplicity of interpreting  R2, it is not always 
suitable for evaluating the goodness of fit and compar-
ing different models. According to El-Khaiary and Malash 
[13],  R2 is sensitive to extreme data points, influenced by a 
range of the independent variables, and can be artificially 
large by adding more parameters. However, in the case 
of nonlinear methods, previous studies reported that the 
predicted isotherms were varying with different error func-
tions. Consequently, comparing the usefulness of different 
error functions should precede selecting the best fitting 
isotherm [24].

Comparison of a large number of isotherm models 
with different error functions was carried out on several 
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single-component natural adsorbent-adsorbate systems 
in the last decade (e.g., [6, 17, 21, 37]. However, such stud-
ies are lacking completely for soil-heavy metal adsorption 
systems. This shortcoming could be primarily due to the 
soil’s substantial heterogeneity that provides several dif-
ferent active mineral and organic surfaces for metal ions. 
Additionally, precipitation of metal ions may occur during 
the equilibrium adsorption experiments, making it chal-
lenging to use isotherm models based on equilibrium 
data [38]. This study aimed to fill the gap in comparing 
adsorption models with different terror functions for the 
soil-metal system. As the metal sorption capacity is the 
most important parameter for soils, we studied whether 
models beyond the widely used Langmuir model support 
more reliable sorption capacity values. The adsorption 
equilibrium isotherms of four widely studied heavy metals 
in four soil samples with different geochemical properties 
were investigated. A trial-and-error method of fifteen two-, 
three-, four-, and five-parameter nonlinear models were 
used altogether to determine the best fitting isotherm. 
Additionally, seven error functions were also used in the 
assessment of the adequacy and goodness-of-fitted mod-
els. We tried to find the most useful isotherm model and 
error function combination(s) to predict metal adsorption 
performance in soils.

2  Materials and methods

2.1  Soil samples

As the most important soil components affecting metals’ 
sorption are pH, organic matter, clay minerals, and Fe-oxides 
[43], these soil properties were considered primarily for the 
sample selection. Two acidic and two alkaline soil samples 
were used from a Luvisol and a Phaeozem profile, respec-
tively. The samples were studied for their pH (in 0.1M  CaCl2), 
total organic carbon content (Tekmar-Dohrman Apollo 
9000N TOC analyzer), BET surface area (Quantochrome 
Autosorb-1-MPV  N2 gas sorption system), cation exchange 
capacity (ISO 23470:007), particle size distribution (Fritsch 

Analysette Microtech A22 laser diffraction instrument), and 
dithionite extractable iron content (after Mehra and Jack-
son [28] using Perkin-Elmer AAnalyst 300 atomic absorption 
spectrometer). As shown in Table 1, the selected samples 
show significant differences in their total organic carbon, 
clay, and dithionite-extractable-iron content.

2.2  Adsorption experiments

Competitive batch adsorption experiments were carried out 
with the metals Cd, Cu, Pb, and Zn. These metals are often 
related both to environmental and agricultural problems. 
For example, Cd and Pb are known for their toxic effects on 
soil biota, whereas Cu and Zn often show a deficiency in soils 
requiring artificial fertilization [2]. These metals also exhibit 
contrasting sorption properties in soils since Cu and Pb are 
retained through inner-sphere complexes, whereas Cd and 
Zn through outer-sphere complexes predominantly [36].

The experiments were carried out in duplicates. 
Soil:solution ratio of 1:30 was used, and the initial concentra-
tion of metals were set to 0.1, 0.2, 0.5, 1, 2, 5 and 10 mmol/L 
in 0.01M Ca(NO3)2 solution. The initial solution’s pH was set 
to 5.5 to avoid metal hydroxide precipitation [47]. Equilibra-
tion was carried out for 24 h at 22 °C. Then the soil and the 
solution were separated by centrifugation at 4000 rpm for 
20 min. Solutions were then filtered, and the concentrations 
of metals were analyzed by atomic absorption spectrometry 
(Perkin-Elmer AAnalyst 300). The relative standard deviations 
of duplicate analyses are below 5% for each metal at equilib-
rium concentrations  (Ce) above 100 mg/L and never reached 
10% even at lower concentrations.

The concentrations of metals adsorbed by the soil sam-
ples were calculated using the following equation:

where Qe is the sorbed metal amount per unit weight of 
the soil (mmol/kg), Ce is the equilibrium metal concen-
tration in the solution (mmol/L), Ci is the initial metal 

Qe =

(

Ci − Ce

)

⋅ V

W

Table 1  Major physicochemical 
properties of the studied soil 
samples

WRB = world reference base, TOC = total organic carbon, BET = Brunauer-Emmett-Teller specific surface 
area, CEC = cation exchange capacity, Fed = dithionite extractable Fe

Soil sample WRB soil type Soil horizon pH TOC BET CEC Clay Fed

(CaCl2) (%) (m2/g) (mmol/kg) (%) (%)

S1 Luvisol A1 4.61 4.99 10 146 9.0 1.14
S2 Luvisol B1 4.28 0.54 33 140 19.2 1.54
C1 Phaeozem A2 7.65 3.69 27 158 14.9 1.84
C2 Phaeozem C1 8.10 0.34 13 123 18.1 1.23
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concentration in the solution (mmol/L), V is the volume 
of the solution (mL), and W is the weight of the air-dried 
soil (g).

2.3  Determining sorption curve parameters 
by nonlinear regression

The sorption curve parameter sets were determined by 
nonlinear regression. Four two-parameter, nine three-
parameter, one four-parameter, and one five-parameter 
model were used to study the metals’ sorption perfor-
mance. Models providing maximum sorption capacity 
parameters were selected primarily for this study (Table 2).

First, seven minimizing methods were used to 
solve the isotherm equations by minimizing the errors 
between the models and the experimental data (Table 3). 
A trial-and-error method was used for the regression 

analysis to reduce the objective function using the solver 
add-in function of the MS Excel 2016

Akaike’s Information Criterion (AIC) was used to com-
pare the results of minimizing procedures and the fit of 
sorption curve models. It is a well-established statisti-
cal method based on information theory and maximum 
likelihood theory. It determines which model is more 
likely to be correct [13]. For a small sample size, AIC is 
calculated for each model from the equation:

where n is the number of data points, SSE is the sum-
of-squared deviations of the points from the regression 
curve, and np is the number of parameters in the model.

AIC = n ⋅ ln

(

SSE

n

)

+ 2np +
2np ⋅

(

np + 1
)

n − np − 1

Table 2  Sorption curve equations used in this study

Two-parameter models

Langmuir Qe =
QmL⋅BL⋅Ce

1+BL⋅Ce

Foo and Hameed [14]

Freundlich Qe = KF ⋅ C
1∕nF
e

Foo and Hameed [14]

Dubinin-Radushkievich
Qe = QSDR ⋅ exp

(

−KDR ⋅
(

R ⋅ T ⋅ ln
(

1 +
1

Ce

))2
)

Foo and Hameed [14]

Jovanovic Qe = QmJ ⋅ (1 − exp
(

KJ ⋅ Ce
)

Panahi et al. [32]

Three-parameter models

Sips Qe =
QmS ⋅KS ⋅C

mS
e

1+KS ⋅C
mS
e

Hamdaoui and Naffrechoux [19]

Langmuir-Freundlich
Qe =

QmLF ⋅(KLF ⋅Ce)
mLF

1+(KLF ⋅Ce)
mLF

Hamdaoui and Naffrechoux [19]

Radke-Prauschnitz Qe =
QmRP ⋅KRP ⋅Ce

1+KRP ⋅C
mRP
e

Hamdaoui and Naffrechoux [19]

Tóth Qe =
QmT ⋅Ce

(

1

KT
+C

mT
e

)1∕mT

Hamdaoui and Naffrechoux [19]

Vieth-Sladek Qe = KVS ⋅ Ce +
QmVS ⋅BVS ⋅Ce

1+BVS ⋅Ce

Ahmad et al. [1]

Brouers-Sotolongo Qe = QmBS ⋅ (1 − exp(−KBS ⋅ C
nBS
e ) Ahmad et al. [1]

Hill Qe =
QSH ⋅C

nH
e

KH+C
nH
e

Foo and Hameed [14]

Brunauer-Emeret-Teller Qe =
QSBET ⋅CBET ⋅Ce

(CS−Ce)⋅
[

1+(CBET−1)⋅
(

Ce
CS

)]

Foo and Hameed [14]

MacMillan-Teller
Qe = QSMT ⋅

(

k

ln
(

CS
Ce

)

)1∕3 Foo and Hameed [14]

Four-parameter model

Baudu
Qe =

QmB ⋅BB ⋅C
(1+x+y)
e

1+BB ⋅C
(1+x)
e

Hamdaoui and Naffrechoux [19]

Five-parameter model

Fritz-Schlunder Qe =
QmFS ⋅K1FS ⋅C

m1FS
e

1+K2FS ⋅C
m2FS
e

Hamdaoui and Naffrechoux [19]
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2.4  Statistical analyses

Statistical calculations were carried out to show whether 
both different error functions and sorption curve models 
provide significantly different AIC values. In all cases, the 
values of asymmetry (skewness) and kurtosis between 
−2 and 2 were verified to assume normality when the 
D’Agostino-Pearson test was significant. The results 
showed that data sets based on the AIC values of the stud-
ied error functions do not exhibit a normal distribution. 
When the data sets were studied separately according to 
the sorption curve types, data of subtype-1 and subtype-2 
showed still non-normal distribution, whereas data of sub-
type-mx showed normal distribution. On the contrary, the 
AIC values of the studied sorption curve models exhibited 
normal distribution mostly, except the data of Dubinin-
Radushkievich and Brunauer-Emmett-Teller models for the 
whole data set, and the data of Sips, Langmuir-Freundlich, 
and Hill models for the data of subtype-1 curves. Homo-
geneity of variances was tested through Levene’s test and 
verified for nearly all cases, except when the data sets were 
studied separately for the sorption curve subtypes. As the 
ERRSQ error function generally provided the lowest error 
between the predicted and experimental data, its data set 
was also studied separately with statistical analyses. This 
data set showed the normal distribution in each case with 
homogeneous variance. The one-way analysis of variance 
(ANOVA) was used for data sets with normal distribution 
and homogeneous variance. This test shows if there is a 
significant difference between the AIC values provided by 
different error functions or models. To discover between 
which datasets the significance can be found, the Tukey-
test was used as a post-hoc analysis. For data sets with 
non-normal distribution and/or non-homogeneous 

variance, the Kruskal-Wallis-test was used combined with 
the Mann-Whitney-test as a post-hoc test. The significance 
level of each test was set to � = 0.05. The statistical anal-
yses were carried out using the StatistiXL add-in of the 
Microsoft Office Excel 2016 software.

3  Results and discussion

3.1  The shape of the sorption curves

The shape of the sorption curves is generally evaluated to 
predict specific immobilization processes. Different sorp-
tion models may be able to describe sorption curves dif-
fering in their shapes [4]. Hence, it is essential to specify 
the sorption curves of the metals before model fitting. 
The classification of the curves was carried out according 
to Giles and Smith [15]. We found that the L1-type curve 
is the most common in acidic samples (Fig. 1). This curve 
type was found for Cd in the acidic samples, for Pb in the 
S1 sample, and for Cu and Zn in the S2 sample. Copper in 
the S1 and Pb in the S2 samples exhibited L2-type curves, 
whereas an Lmx-type curve was found for Zn in the S1 
sample. Contrarily, an H1-type curve was observed for Pb 
in both alkaline samples, whereas Cu exhibited H2-type 
curves in these samples, and this was the case for Cd in the 
C1 sample. Zinc showed Hmx-type curves in both alkaline 
samples similarly to Cd in the sample C2.

Sorption curves of metals in the acidic samples belong 
to the main class "L". In contrast, those in the alkaline 
ones belong to the "H" class, which refers to Langmuir-
type and high-affinity classes, respectively. A decreasing 
slope is characteristic of the L-type isotherm as concen-
tration increases since vacant adsorption sites decrease 

Table 3  Statistical goodness-
of-fit measures used in 
this study. Qe,exp and Qe,calc 
show the experimental and 
calculated values; n is the 
number of observations in the 
experimental data

Coefficient of determination  (R2)
R2 =

∑n

i=1

�

Qe,calc−Qe,exp

�2

i

∑n

i=1

∑n

i=1

�

Qe,calc−Qe,exp

�2

i
+
∑n

i=1 (Qe,calc−Qe,exp)
2

i

Ho [20]

Sum of the squares of the errors 
(ERRSQ) ERRSQ =

n
∑

i=1

�

Qe,exp − Qe,calc

�2

i

Hadi et al. [18]

Hybrid fractional error function 
(HYBRID) HYBRID =

n
∑

i=1

�

(Qe,exp−Qe,calc)
2

Qe,exp

�

i

Xue et al. [50]

Derivative of Marquardt’s Percent 
Standard Deviation (MPSD) MPSD =

n
∑

i=1

�

Qe,exp−Qe,calc

Qe,exp

�2

i

McKay et al. [29]

The Average Relative Error (ARE)
ARE =

n
∑

i=1

�

�

�

�

Qe,exp−Qe,calc

Qe,exp

�

�

�

�i

Piccin et al. [33]

Sum of the Absolute Errors EABS)
EABS =

n
∑

i=1

�

�

�

Qe,exp − Qe,calc
�

�

�i

Dotto et al. [11]

The chi-square statistic ( X2)
X2

=

n
∑

i=1

(Qe,exp−Qe,calc)
2

Qe,calc

McKay et al. [29]
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as the adsorbent becomes covered. The adsorbate’s high 
affinity could explain such adsorption behavior for the 
adsorbent at low concentrations, which then decreases 
as concentration increases. For the H-type curves, the 
adsorbate shows (almost) complete immobilization by 
the adsorbent suggesting especially high adsorbate-
substrate affinity. Nevertheless, both L- and H-type 
curves are produced when strong attractive forces exist 
between the adsorbate and adsorbent, but very weak 
forces between the adsorbates themselves [42]. Curves 
in subtype-1 represent systems in which the adsorbate 
monolayer has not been completed, probably because 
of experimental difficulties. This rather characteristic in 
the acidic samples and for Pb in the alkaline samples. The 
phenomenon can generally be due to the well-known 
concentration effect [49] on the one hand. It can also 
suggest the adsorbents’ precipitation, primarily when 
the curve exhibits extremely high slope even at high ini-
tial concentrations, respectively [39]. In the subtype-2, a 
plateau can be identified, representing the completion 
of the first monolayer. This subtype was characteristic 
both in the acidic and alkaline samples and generally 
enabled the correct estimation of the adsorbate’s maxi-
mum adsorption on the adsorbent [25]. In the subtype-
mx, the sorption curve has a maximum, which suggests 
desorption from the surface, and this is also often related 
to the adsorbent concentration effect.

3.2  Comparison of the error functions

The best-fitting isotherm is generally selected based on 
the error function(s) that produce minimum error distribu-
tion between the predicted and experimental isotherms. 
Several studies reported that the predicted isotherms were 
varying with the error function when nonlinear methods 
were used (Kumar and Porkodi 2014). Thus, to analyze the 
impact of various error functions on the predicted iso-
therms, seven different error functions were optimized. 
They are among the most widely used ones, and they 
have been often developed for adsorption studies [3]. 
Each error function supports an objective function for the 
minimum error distribution between experimental and 
predicted isotherms.

First, we have ranked the error functions from the best 
to worst based on their AIC values. Rank 1 refers to the 
lowest AIC value (e.g., showing the lowest error distribu-
tion between the predicted and experimental curves), 
whereas rank 7 refers to the highest one (Fig. 2). ERRSQ 
provided the lowest error distribution for most of the mod-
els for each soil-metal pairs, as it was ranked in category 1 
at 96% of the cases. If ERRSQ was ranked in another class, 
it still resulted in similarly low error distribution to the error 
functions ranked in category 1. We have not found any 
relationship between the lower ranking of ERRSQ function 
and the type of the metal, the soil, the sorption curve, or 

Fig. 1  Sorption curves of the studied soils as classified according to Giles and Smith [15]. Ce = equilibrium metal concentration in the solu-
tion (mmol/L), Qe = adsorbed metal concentration in the soil (mmol/kg)
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the sorption model. In the ranking, ERRSQ was followed 
by  R2 (generally ranked in category 2), MPSD, and HYBRID 
(ranked mostly in categories 3 and 4, respectively). Contra-
rily, EABS provided the highest error distribution, as shown 
by its ranking in category 7 at 52% of the cases. Similarly, 
high error distribution was shown by the ARE function, 
which was ranked mostly in categories 6 and 7. The X2 
error function showed a uniform distribution among the 
ranks between 2 and 6 with frequency ratios from 18 to 
22%.

The ranking was carried out separately also for the 
groups of soil-metal pairs with different sorption curve 
subtypes. In this case, sorption curves belonging to sub-
type-1 and -2 showed similar results to those presented 
above (Fig. 2b, c). Slight differences were found for  R2, 
which exhibited higher frequencies in the rank 2 for 

both subtype-1 and -2 curves. The HYBRID function was 
ranked in category 5 for the soil-metal pairs with adsorp-
tion curves belonging to subtype-2, and the ARE function 
showed higher frequencies in the ranks 6 and 7 there. On 
the contrary, soil-metal pairs with sorption curves belong-
ing to subtype-mx exhibited significantly different ranking 
characteristics for the error functions (Fig. 2d). Although 
the ERSSQ function could be ranked in category 1 at 98% 
of the cases, it was followed by the MPSD and X2 func-
tions, both often ranked in category 2. The HYBRID func-
tion still showed similar characteristics to those presented 
above, and it was ranked mostly in category 4. However,  R2 
resulted in much lower fits in this case, and it was ranked 
in category 6 mostly. The error functions ARE and EABS 
showed similar characteristics again to those found for the 
other sorption curve subtypes.

Fig. 2  Percentage frequency of error functions among the ranks from 1 to 7 for all the studied cases (a), for sorption curves in subtype-1 (b), 
for sorption curves in subtype-2 (c), and sorption curves in subtype-mx.



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:387 | https://doi.org/10.1007/s42452-021-04383-0

The above data showed that ERRSQ provided the lowest 
error distribution between the experimental and predicted 
sorption curves for almost every case. Shahmohammadi-
Kalalagh and Babazadeh [37] also found that this error 
function was the best to minimize the error distribution 
between the experimental data and predicted two-param-
eter models (Freundlich and Langmuir) for the Zn-kaolinite 
and Cu-kaolinite sorption systems. However, ranking pro-
vides only a relative comparison of the studied error func-
tions, and it does not inform us whether the differences 
are statistically significant between them. That is why we 
used statistical analyses (ANOVA and Kruskal-Wallis-tests) 
to compare the statistical parameters of the AIC values 
calculated for each error function. These analyses showed 
that there is a significant difference between the AIC val-
ues of the studied error functions. Such analyses were 
also carried out separately for the different sorption curve 
types. It was found that there is a significant difference 
within the AIC values of the error functions for subtype-1 
and subtype-2 curves but not for subtype-mx curves. How-
ever, ANOVA and Kruskal-Wallis-tests are not able to tell 
between which datasets the significance can be found. So, 
Tukey and Mann-Whitney-tests were carried out, respec-
tively, as post-hoc analyses between the AIC values of each 
two error functions both for the whole data set and for the 
sorption curve subtypes 1 and 2 separately. For the entire 
data set, significant differences were observed between 
the AIC values of the EABS error function and those of all 
other error functions. Additionally, significant differences 
were found between the AIC values of ERRSQ,  R2, and the 
ARE error functions. For the subtype-1 sorption curves, sig-
nificant differences were observed between the AIC values 
of the EABS error function and those of almost all other 
error functions, except the ARE error function. However, 
for the subtype-2 sorption curves, significant differences 
were found only between the AIC values of the EABS error 
function and those of the ERRSQ,  R2, and MPSD error func-
tions, and between the AIC values of the ARE and ERRSQ 
and  R2 functions. Consequently, besides the ERRSQ func-
tion, even  R2, HYBRID, MPSD, and X2 provided similarly low 
error distribution between the experimental and predicted 
sorption curves for all of the studied cases. However, the 
EABS error function mostly provided a significantly higher 
error distribution than the other error functions. Addition-
ally, this was the case for the ARE error function compared 
to the ERRSQ (and  R2), which generally provided the lowest 
error distribution.

Some studies found that different error functions have 
to be used to minimize the error distribution between 
the experimental and predicted data for sorption mod-
els with a different number of parameters [37]. Typically, 
if the number of model parameters increases, the fitting 
error decreases because a better fit can be obtained. 

Simultaneously, the generalization bias is expected to 
increase due to the more considerable model variabil-
ity [35]. However, smaller models may tend to do better 
for the same data set. Thus, when models with different 
parameters are fitted on the same set of data points, the 
model with a sufficient number of data points in excess 
will provide the best conformity [30].

3.3  Comparison of the sorption curve models

The adsorption curve is an invaluable curve that describes 
a substance’s retention from the aqueous media to a solid 
phase. Together with the underlying thermodynamic 
assumptions, its physicochemical parameters provide an 
insight into the adsorption mechanism, surface properties, 
and the degree of affinity of the adsorbents [9]. Several 
equilibrium adsorption models have been developed in 
the last century regarding the fundamental approaches, 
such as kinetic considerations, thermodynamics, and 
potential theory [27]. Recently, the isotherm modeling 
trend is the derivation in more than one approach, thus 
directing towards the difference in the physical interpreta-
tion of the model parameters [14].

Sorption curve models were also ranked based on 
the AIC values similar to the error functions. Their rank-
ing was carried out based on the AIC values provided by 
the ERRSQ function, as this function provided the lowest 
error function generally. The results of the ranking are 
shown in Table 4. The sorption curve models could be 
categorized into six groups based on their ranking char-
acteristics. Fritz-Schlunder, Baudu, and MacMillan-Teller 
models exhibit very low ranking generally. The Brunauer-
Emmett-Teller and Vieth-Sladek sorption models could be 
characterized by a relatively low ranking in most of the 
cases. On the contrary, the Hill and Langmuir-Freundlich 
models showed a rather high ranking in most of the cases, 
whereas the Brouers-Sotolongo and Sips models exhibited 
the highest rankings generally. The Jovanovich, Langmuir, 
and Dubinin-Radushkievich models showed very high 
rankings for sorption curves belonging to the subtype-
mx. However, they presented rather low rankings for all 
other sorption curve types. Finally, the Freundlich, Radke-
Prauschnitz, and Tóth models have not shown any specific 
characteristics in their rankings.

Considerable variation was found among the different 
sorption curve types fitted by different sorption models. 
However, their ranking based on their AIC values allowed 
us to specify which models provide a good fit for most 
cases and which ones do not. The ANOVA and Kruskal-
Wallis-tests were used again to study whether the stud-
ied sorption models provide significantly different fits to 
the experimental data based on their AIC values. They 
showed that there is a significant difference between the 
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AIC values of the different sorption curve models. The dif-
ference was observed both for the entire data set and for 
the data of varying sorption curve types. Therefore, we 
used post-hoc tests (Tukey and Mann-Whitney-tests) to 
find between which two data sets can be the significance 
found. The post-hoc tests showed that the MacMillan-
Teller, Baudu, and Fritz-Schlunder models provided sig-
nificantly different AIC values than the other sorption 
models for the whole data set. Additionally, the Dubinin-
Radushkievich and the Brunaur-Emmett-Teller models 
also showed significantly different AIC values to those of 
Langmuir, Sips, Langmuir-Freundlich, Tóth, Brouers-Soto-
longo, and Hill models. For the sorption curves belonging 
to the subtype-1, the Mac-Millan-Teller and Fritz-Schlunder 
models exhibited significantly different AIC values to the 
other models, and so did the Baudu, Dubinin-Radushki-
evich, and Jovanovich models mostly. On the contrary, 
the Freundlich, Sips, Langmuir-Freundlich, Tóth, Brouers-
Sotolongo, and Hill models have not provided significantly 
different AIC values to each other. For the sorption curves 
in the subtype-2 group, the Mac-Millan-Teller, Baudu, and 

Fritz-Schlunder models provided significantly different 
AIC values than all other models. On the other hand, the 
Dubinin-Radushkievich, Brouers-Sotolongo, Langmuir, 
Sips, Tóth, Hill, and Langmuir-Freundlich models exhibited 
similar AIC values, which are significantly different from 
those of the other models in most cases. For the sorp-
tion curves belonging to the subtype-mx, besides the 
MacMillan-Teller, Baudu, and Fritz-Schlunder models, the 
Langmuir, Dubinin-Radushkievich, and Jovanovich models 
exhibited significantly different AIC values from all other 
sorption models. This comparison is in good harmony with 
the ranking of AIC values of the sorption models. Models 
with very low ranking (MacMillan-Teller, Baudu, and Fritz-
Schlunder) provided significantly different AIC values to 
other models almost in each case. The Sips, Langmuir-
Freundlich, Brouers-Sotolongo, and Hill models exhibited 
high rankings generally, and they provided similar AIC val-
ues. Additionally, they can complement the Tóth and Fre-
undlich models in some cases (e.g., for subtype-1 curves). 
The Langmuir, Dubinin-Radushkievich, and Jovanovich 
models exhibited high ranking only for sorption curves 

Table 4  Sorption curve models 
ranked from the best to worst 
based on their AIC values 
calculated using the ERRSQ 
error function. Green and red 
background colors represent 
the best and worst fitting 
performances, respectively. 
The orange background color 
shows models exhibiting 
very good performances 
for type-mx sorption curves 
primarily.

subtype-1 curves subtype-2 curves subtype-mx curves

Rank S1 

Cd

S2 

Cd

S2 

Cu

S1 

Pb

S2 

Zn

C1 

Pb

C2 

Pb

S1 

Cu

S2 

Pb

C1 

Cd

C1 

Cu

C2 

Cu

S1 

Zn

C2 

Cd

C1 

zn

C2 

Zn

1. F BT BS BS L F F BS BS DR T DR L L DR J

2. BS VS S S BT H H S S BS DR RP J DR L L

3. S RP LF LF VS S RP LF LF L S L DR J J DR

4. LF T H H RP BS BS H H LF H T BS BS BS F

5. H F T T T LF S T T S LF S F LF H BS

6. T S RP RP H RP LF L L H BS H S H LF H

7. RP LF L F LF T T RP RP T RP LF LF S S S

8. L H F L S B VS F VS J L VS H T T LF

9. VS BS VS VS J BT BT DR BT RP J BS T VS VS BT

10. BT L BT BT BS DR L VS J VS F BT VS BT RP VS

11. J B J J F L J J F BT VS J RP RP BT RP

12. B J B DR DR J DR BT DR F BT F BT F F T

13. DR DR DR B B VS MT B B B B B MT MT MT MT

14. MT MT MT MT MT MT B MT MT MT MT MT B B B B

15. FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS FS

L = Langmuir, F = Freundlich, DR = Dubinin-Radushkievich, J = Jovanovich, S = Sips, LF = Langmuir-
Freundlich, RP = Radke-Prauschnitz, T = Tóth, VS = Vieth-Sladek, BS = Brouers-Sotolongo, H = Hill, BT = 
Brunauer-Emmett-Teller, B = Baudu, MT = MacMillan-Teller, FS = Fritz-Schlunder models
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of the subtype-mx. However, they provided significantly 
different AIC values to all other models in this case too. 
Consequently, there can be at least 4-7 models providing 
significantly not different fit to different sorption curve 
types.

The maximum sorption capacity  (Qmax) is one of the 
most important parameters when studying metals’ sorp-
tion performance in soils. Therefore, we also compared 
these parameters calculated by the different sorption 
models. The Kruskal-Wallis-test showed that the  Qmax val-
ues exhibited no significant difference when calculating 
them based on the different error functions with similar 
performance in minimizing the error. Therefore, the  Qmax 
values calculated using the ERRSQ error functions will be 
compared below. The averages and ranges of the  Qmax 
values are shown in Fig. 3. The coefficient of variation (CV) 
of the  Qmax values was generally low (below 0.4) in most 
cases. Exceptions are the Cd sorption by the samples S1 
and S2, where extraordinarily high  Qmax values were cal-
culated using the Tóth model. If these values are not taken 
into account, the CV values of the  Qmax values are below 
0.6. Additional exceptions are the sorption of Pb on the C1 
and C2 samples. In these cases, several models, like Tóth, 
Sips, Hill, Langmuir-Freundlich, and Brouers-Sotolongo, 
supported unrealistic high Qmax values, probably due 
to the almost complete retention of Pb in these samples. 
The mineralogical study of these samples showed that Pb 

precipitated as cerussite  (PbCO3) during the experiment. 
The precipitation of Pb resulted in a unique sorption curve 
shape [40]. However, the other models provided quite 
similar  Qmax values with relatively low variance (with CV < 
0.3). Generally, the Tóth model resulted in the highest  Qmax 
values, often resulting in outlier values. The  Qmax values 
calculated through the Tóth model was usually higher than 
the upper quartile of all the  Qmax values. This phenomenon 
was also observed for the Sips, Langmuir-Freundlich, and 
Hill models. On the contrary, the lowest  Qmax values were 
calculated using the Baudu sorption model. In more than 
60% of the cases, the  Qmax values calculated by this model 
were lower than the lower quartile of all these values. Simi-
lar characteristics were found for the Radke-Prauschnitz 
model. As expected, the Freundlich model also suggested 
lower sorption capacities. However, the Freundlich  KF value 
is only equal to the maximum adsorption capacity when 
n approaches infinity [26]. Although  KF is not defined as 
the maximum adsorption capacity,  KF values should be of 
the same order as  Qmax values [45]. This phenomenon was 
also found in this study. On the contrary, the Langmuir, 
Dubinin-Radushkievich, Jovanovich, Brouers-Sotolongo, 
Brunauer-Emmett-Teller, and Fritz-Schlunder models pro-
vide  Qmax values falling in the interquartile range mostly. 
We have not found any relationship between the variation 
of  Qmax values and the sorption curve types.

Fig. 3  Box-plot of the  Qmax values (in mmol/kg) calculated by the different sorption curve models. Upper case letters indicate outlier values. 
T = Tóth, S = Sips, H = Hill, LF = Langmuir-Freundlich, BS = Brouers-Sotolongo
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Our results showed that different sorption models 
might provide some variation in their fit to the experi-
mental data. On the one hand, several models generally 
offer a very similar estimation for the soils’ maximum 
sorption capacity. On the other hand, some models often 
overestimate or underestimate the maximum sorption 
capacities systematically, like the Tóth and Baudu mod-
els, respectively. Moreover, several sorption models may 
estimate unrealistic high maximum sorption capacity for 
metals with sorption curves lacking developed plateau at 
least partially. If a process other than adsorption results in 
this sorption curve, sorption models can not be used to 
calculate  Qmax values. If such processes can be excluded, 
experimental conditions have to be re-designed [12]. For 
the studied soils, the Brouers-Sotolongo model was found 
to be the most useful one. This model was always among 
the models showing the best fit to the experimental data 
for each sorption curve type. Besides this model, other 
ones like the Sips, Hill, and Langmuir-Freundlich models 
also exhibited good performances. Other models can also 
be useful for certain sorption curve types. A further advan-
tage for the Brouers-Sotolongo model is it provided realis-
tic maximum sorption capacities for the studied soil-metal 
pairs. This model is a combined form of the Freundlich 
and Langmuir expressions. It is deduced for predicting 
the heterogeneous and microporous adsorption systems. 
Additionally, it can measure the width of the adsorption 
energy distribution and energy heterogeneity of the sorb-
ent surface (Brouers and Sotolongo 2005). This model has 
not been widely used for the study of soil-metal interac-
tion yet. However, several recent results suggest that the 
Brouers-Sotolongo model describes the metal sorption 
on several types of heterogeneous surfaces, like those 
that can also be found in soils. Examples are the adsorp-
tion of Pb on algae [7] that of As on activated carbon and 
 MnFe2O4 composite [34], that of Pb, Cd, Zn, Ni, and Cu on 
goethite-humic-acid-modified kaolinite [46], and that of 
Hg and Cr onto  Fe2O3-SiO2 composites [41].

4  Conclusions

Our results showed that the ERRSQ error function gen-
erally provided the lowest error distribution between 
the experimental and predicted sorption curves for the 
studied soil-metal pairs with varying sorption curve 
types and geochemical characteristics. Additionally, 
the  R2, HYBRID, MPSD, and X2 error functions also pro-
vided statistically similar error distribution in most cases. 
However, the EABS and ARE error functions provided sig-
nificantly higher error distribution than the other error 
functions. So these latter error functions could not be 
suggested for fitting sorption curves in our case.

Using the ERRSQ error function, the Sips, Langmuir-
Freundlich, Brouers-Sotolongo, and Hill models showed 
mostly very good fits for the studied soil-metal pairs with 
varying sorption curve types and geochemical character-
istics. On the other hand, the Fritz-Schlunder, MacMillan-
Teller, Brunauer-Emmett-Teller, Baudu, and Vieth-Sladek 
models generally showed worse fit. That is why they can 
not be suggested for the evaluation of metal sorption in 
the studied soils.

Based on the evaluation of the provided  Qmax values, 
the combined use of the Brouers-Sotolongo model with 
the ERRSQ error function could be suggested to char-
acterize metal sorption in the studied soils. This model 
was always among the models showing the best fit to 
the experimental data for each sorption curve type. 
Besides this model, other ones like the Sips, Hill, and 
Langmuir-Freundlich models can also be suggested with 
the ERRSQ function, and further models can be useful for 
certain sorption curve types.

The results showed that several isotherm models and 
error function combinations could be found, which pro-
vide statistically similar estimation for the given soil’s 
maximum sorption capacity. Besides testing more than 
one sorption isotherm model and error function combi-
nation, evaluating the shape of the sorption curve and 
excluding non-adsorption processes are advised for reli-
able data evaluation. Additionally, the goodness of fit of 
the models and the provided physicochemical param-
eters should be evaluated when selecting the optimum 
adsorption model.

Funding This work was financially supported by the National 
Research, Development and Innovation Office (Project No. NKFIH 
K105009).

Data Availability The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reason-
able request.

Compliance with ethical standards 

Conflict of interest The author declares that he has no known com-
peting financial interests or personal relationships that could have 
appeared to influence the work reported in this paper

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 



Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:387 | https://doi.org/10.1007/s42452-021-04383-0

holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.

References

 1. Ahmad MA, Ahmad N, Bello OS (2015) Modified durian seed 
as adsorbent for the removal of methyl red dye from aqueous 
solutions. Appl Water Sci 5:407–423. https ://doi.org/10.1007/
s1320 1-014-0208-4

 2. Alloway BJ (2013) Sources of heavy metals and metalloids in 
soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and 
metalloids in soils and their bioavailability. Springer Science 
& Business Media, Dordrecht, pp 11–50

 3. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and inter-
pretation of adsorption isotherms. J Chem (Hindawi). https ://
doi.org/10.1155/2017/30398 17

 4. Barrow NJ (2008) The description of sorption curves. 
Eur  J  Soi l  Sci  59:900–910.  https : //doi .org/10.111
1/j.1365-2389.2008.01041 .x

 5. Bradl HB (2004) Adsorption of heavy metal ions on soils and 
soils constituents. J Colloid Interf Sci 277:1–18. https ://doi.
org/10.1016/j.jcis.2004.04.005

 6. Brdar M, Sciban M, Takaci A, Dosenovic T (2012) Compari-
son of two and three parameters adsorption isotherm for 
Cr(VI) onto Kraft lignin. Chem Eng J 183:108–111. https ://doi.
org/10.1016/j.cej.2011.12.036

 7. Brouers F, Al-Musawi TJ (2015) On the optimal use of isotherm 
models for the characterization of biosorption of lead onto 
algae. J Mol Liq 212:46–51. https ://doi.org/10.1016/j.molli 
q.2015.08.054

 8. Brouers F, Sotolongo O, Marquez F, Pirard JP (2005) Micropo-
rous and heterogeneous surface adsorption isotherms aris-
ing from Levy distributions. Phys A 349:271–282. https ://doi.
org/10.1016/j.physa .2004.10.032

 9. Bulut E, Ozacar M, Sengil IA (2008) Adsorption of malachite 
green onto bentonite: equilibrium and kinetic studies and 
process design. Micropor Mesopor Mater 115:234–246. https 
://doi.org/10.1016/j.micro meso.2008.01.039

 10. Chan LS, Cheung WH, Allen SJ, McKay G (2012) Error analysis 
of adsorption isotherm models for acid dyes onto bamboo 
derived activated carbon. Chin J Chem Eng 20:535–542. https 
://doi.org/10.1016/S1004 -9541(11)60216 -4

 11. Dotto GL, Moura JM, Cadaval TRS, Pinto LAA (2013) Applica-
tion of chitosan films for the removal of food dyes from aque-
ous solutions by adsorption. Chem Eng J 214:8–16. https ://doi.
org/10.1016/j.cej.2012.10.027

 12. El-Khaiary MI (2008) Least-squares regression of adsorption 
equilibrium data: comparing the options. J Hazard Mater 
158:73–87. https ://doi.org/10.1016/j.jhazm at.2008.01.052

 13. El-Khaiary MI, Malash GF (2011) Common data analysis errors 
in batch adsorption studies. Hydrometallurgy 105:314–320. 
https ://doi.org/10.1016/j.hydro met.2010.11.005

 14. Foo KY, Hameed BH (2010) Insights into the modeling of 
adsorption isotherm systems. Chem Eng J 156:2–10. https ://
doi.org/10.1016/j.cej.2009.09.013

 15. Giles CH, Smith D (1974) A general treatment and classifica-
tion of the solute adsorption isotherm I. Theor J Colloid Interf 
Sci 47:755–765. https ://doi.org/10.1016/0021-9797(74)90252 
-5

 16. Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G (2008) 
Adsorption isotherm models for dye removal by cationized 
starch-based material in a single component system: error 
analysis. J Hazard Mater 157:34–46. https ://doi.org/10.1016/j.
jhazm at.2007.12.072

 17. Günay A, Arslankaya E, Tosun I (2007) Lead removal from aque-
ous solution by natural and pretreated clinoptilolite: adsorp-
tion equilibrium and kinetics. J Hazard Mater 146:362–371. 
https ://doi.org/10.1016/j.jhazm at.2006.12.034

 18. Hadi M, McKay G, Samarghandi MR, Maleki A, Solaimany Amin-
abad M (2012) Prediction of optimum adsorption isotherm: 
comparison of chi-square and Log-likelihood statistics. Desali-
nation Water Treat 49:81–94. https ://doi.org/10.1080/19443 
994.2012.70820 2

 19. Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption 
isotherms of phenol and chlorophenols onto granular acti-
vated carbon Part II. Models with more than two parameters. 
J Hazard Mater 147:401–411. https ://doi.org/10.1016/j.jhazm 
at.2007.01.023

 20. Ho YS (2004) Selection of optimum sorption isotherm. Carbon 
42:2113–2130. https ://doi.org/10.1016/j.carbo n.2004.03.019

 21. Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for 
the sorption of divalent metal ions onto peat: copper, nickel and 
lead single component systems. Water Air Soil Poll 141:1–33. 
https ://doi.org/10.1023/A:10213 04828 010

 22. Hong S, Wen C, He J, Gan FX, Ho YS (2009) Adsorption thermo-
dynamics of methylene blue onto bentonite. J Hazard Mater 
167:630–633. https ://doi.org/10.1016/j.jhazm at.2009.01.014

 23. Kumar KV, Porkodi K (2007) Mass transfer, kinetics and equi-
librium studies for the biosorption of methylene blue using 
Paspalum notatum. J Hazard Mater 146:214–226. https ://doi.
org/10.1016/j.jhazm at.2006.12.010

 24. Kumar KV, Porkodi K, Rocha F (2008) Isotherms and thermody-
namics by linear and nonlinear regression analysis for the sorp-
tion of methylene blue onto activated carbon: comparison of 
various error functions. J Hazard Mater 151:794–804. https ://doi.
org/10.1016/j.jhazm at.2007.06.056

 25. Kumar PR, Swathanthra PA, Basava Rao VV, Mohan Rao SR (2014) 
Adsorption of cadmium and zinc ions from aqueous solution 
using low cost adsorbents. J App Sci 14:1372–1378. https ://doi.
org/10.3923/jas.2014.1372.1378

 26. Lu X (2008) Comment on “Thermodynamic and isotherm studies 
of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush 
(Atriplex canescens).” J Chem Thermodyn 40:739–740. https ://
doi.org/10.1016/j.jct.2007.11.014

 27. Malek A, Farooq S (1996) Comparison of isotherm models for 
hydrocarbon adsorption on activated carbon. AIChE J 42:3191–
3201. https ://doi.org/10.1002/aic.69042 1120

 28. Mehra OP, Jackson ML (1960) Iron oxide removal from soils and 
clays by a dithionite-citrate system buffered with sodium car-
bonate. Clay Clay Miner 7:317–327. https ://doi.org/10.1016/
B978-0-08-00923 5-5.50026 -7

 29. McKay G, Hadi M, Samadi MT, Rahmani AR, Aminabad MS, 
Nazemi F (2011) Adsorption of reactive dye from aqueous solu-
tions by compost. Desalination Water Treat 28:164–173. https ://
doi.org/10.5004/dwt.2011.2216

 30. McKay G, Mesdaghinia A, Nasseri S, Hadi M, Aminabad MS 
(2014) Optimum isotherms of dyes sorption by activated car-
bon: fractional theoretical capacity & error analysis. Chem Eng 
J 251:236–247. https ://doi.org/10.1016/j.cej.2014.04.054

 31. Ncibi MC (2008) Applicability of some statistical tools to pre-
dict optimum adsorption isotherm after linear and nonlinear 
regression analysis. J Hazard Mater 153:207–212. https ://doi.
org/10.1016/j.jhazm at.2007.08.038

 32. Panahi R, Vasheghani-Farahani E, Shojosadati SA (2008) Deter-
mination of adsorption isotherm for L-lysine imprinted polymer. 
Ind J Chem Eng 5:49–55

 33. Piccin JS, Gomes CS, Feris LA, Guterres M (2012) Kinetics and iso-
therms of leather dye adsorption by tannery solid waste. Chem 
Eng J 183:30–38. https ://doi.org/10.1016/j.cej.2011.12.013

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s13201-014-0208-4
https://doi.org/10.1007/s13201-014-0208-4
https://doi.org/10.1155/2017/3039817
https://doi.org/10.1155/2017/3039817
https://doi.org/10.1111/j.1365-2389.2008.01041.x
https://doi.org/10.1111/j.1365-2389.2008.01041.x
https://doi.org/10.1016/j.jcis.2004.04.005
https://doi.org/10.1016/j.jcis.2004.04.005
https://doi.org/10.1016/j.cej.2011.12.036
https://doi.org/10.1016/j.cej.2011.12.036
https://doi.org/10.1016/j.molliq.2015.08.054
https://doi.org/10.1016/j.molliq.2015.08.054
https://doi.org/10.1016/j.physa.2004.10.032
https://doi.org/10.1016/j.physa.2004.10.032
https://doi.org/10.1016/j.micromeso.2008.01.039
https://doi.org/10.1016/j.micromeso.2008.01.039
https://doi.org/10.1016/S1004-9541(11)60216-4
https://doi.org/10.1016/S1004-9541(11)60216-4
https://doi.org/10.1016/j.cej.2012.10.027
https://doi.org/10.1016/j.cej.2012.10.027
https://doi.org/10.1016/j.jhazmat.2008.01.052
https://doi.org/10.1016/j.hydromet.2010.11.005
https://doi.org/10.1016/j.cej.2009.09.013
https://doi.org/10.1016/j.cej.2009.09.013
https://doi.org/10.1016/0021-9797(74)90252-5
https://doi.org/10.1016/0021-9797(74)90252-5
https://doi.org/10.1016/j.jhazmat.2007.12.072
https://doi.org/10.1016/j.jhazmat.2007.12.072
https://doi.org/10.1016/j.jhazmat.2006.12.034
https://doi.org/10.1080/19443994.2012.708202
https://doi.org/10.1080/19443994.2012.708202
https://doi.org/10.1016/j.jhazmat.2007.01.023
https://doi.org/10.1016/j.jhazmat.2007.01.023
https://doi.org/10.1016/j.carbon.2004.03.019
https://doi.org/10.1023/A:1021304828010
https://doi.org/10.1016/j.jhazmat.2009.01.014
https://doi.org/10.1016/j.jhazmat.2006.12.010
https://doi.org/10.1016/j.jhazmat.2006.12.010
https://doi.org/10.1016/j.jhazmat.2007.06.056
https://doi.org/10.1016/j.jhazmat.2007.06.056
https://doi.org/10.3923/jas.2014.1372.1378
https://doi.org/10.3923/jas.2014.1372.1378
https://doi.org/10.1016/j.jct.2007.11.014
https://doi.org/10.1016/j.jct.2007.11.014
https://doi.org/10.1002/aic.690421120
https://doi.org/10.1016/B978-0-08-009235-5.50026-7
https://doi.org/10.1016/B978-0-08-009235-5.50026-7
https://doi.org/10.5004/dwt.2011.2216
https://doi.org/10.5004/dwt.2011.2216
https://doi.org/10.1016/j.cej.2014.04.054
https://doi.org/10.1016/j.jhazmat.2007.08.038
https://doi.org/10.1016/j.jhazmat.2007.08.038
https://doi.org/10.1016/j.cej.2011.12.013


Vol.:(0123456789)

SN Applied Sciences (2021) 3:387 | https://doi.org/10.1007/s42452-021-04383-0 Research Article

 34. Podder MS, Majmuder CB (2016) Studies on the removal of As(III) 
and As(V) through their adsorption onto granular activated 
carbon/MnFe2O4 composite: isotherm studies and error analy-
sis. Comp Interf 23:327–372. https ://doi.org/10.1080/09276 
440.2016.11377 15

 35. Porter J, McKay G, Choy K (1999) The prediction of sorption from 
a binary mixture of acidic dyes using single-and mixed-isotherm 
variants of the ideal adsorbed solute theory. Chem Eng Sci 
54:5863–5885. https ://doi.org/10.1016/S0009 -2509(99)00178 -5

 36. Rafaey Y, Jansen B, Parsons JR, de Voogt P, Bagnis S, Markus A, 
El-Shater AH, El-Haddad AA, Kalbitz K (2017) Effects of clay min-
erals, hydroxides, and timing of dissolved organic matter addi-
tion on the competitive sorption of copper, nickel, and zinc: a 
column experiment. J Environ Manag 187:273–285. https ://doi.
org/10.1016/j.jenvm an.2016.11.056

 37. Shahmohammadi-Kalalagh S, Babazadeh H (2014) Isotherms for 
the sorption of zinc and copper onto kaolinite: comparison of 
various error functions. Int J Environ Sci Technol 11:111–118. 
https ://doi.org/10.1007/s1376 2-013-0260-x

 38. Sipos P, Kovács Kis V, Balázs R, Tóth A, Kovács I, Németh T (2018) 
Contribution of individual pure or mixed-phase mineral parti-
cles to metal sorption in soils. Geoderma 324:1–8. https ://doi.
org/10.1016/j.geode rma.2018.03.008

 39. Sipos P, Balázs R, Németh T (2018) Sorption properties of Cd, 
Cu, Pb and Zn in soils with smectitic clay mineralogy. Carp J Env 
Earth Sci 13:175–186

 40. Sipos P, Tóth A, Kovács Kis V, Balázs R, Kovács I, Németh T (2019) 
Partition of Cd, Cu, Pb and Zn among mineral particles during 
their sorption in soils. J Soil Sedim 19:1775–1787. https ://doi.
org/10.1007/s1136 8-018-2184-z

 41. Sobhanardakani S, Jafari A, Zandipak R, Meidanchi A (2018) 
Removal of heavy metal (Hg(II) and Cr(VI)) ions from aque-
ous solutions using  Fe2O3@SiO2 thin films as a novel adsor-
bent. Proc Saf Environ 120:348–357. https ://doi.org/10.1016/j.
psep.2018.10.002

 42. Sparks DL (2003) Sorption phenomena on soils. In: Sparks DL 
(ed) Environmental soil chemistry. Academic Press, New York, 
pp 133–186

 43. Stumm W (1992) Chemistry of the Solid-water interface. John 
Wiley and Sons, New York

 44. Theivarasu C, Mylsamy S (2011) Removal of malachite green 
from aqueous solution by activated carbon developed from 
cocoa (Theobroma Cacao) shell - A kinetic and equilibrium 
study. E-J Chem 8:363–371. https ://doi.org/10.1155/2011/71480 
8

 45. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mis-
takes and inconsistencies regarding adsorption of contaminants 
from aqueous solutions: a critical review. Water Res 120:88–116. 
https ://doi.org/10.1016/j.watre s.2017.04.014

 46. Unuabonah EI, Olu-Owabi BI, Adebowale KO (2016) Competitive 
adsorption of metal ions onto goethite–humic acid-modified 
kaolinite clay. Int J Env Sci Technol 13:1043–1054. https ://doi.
org/10.1007/s1376 2-016-0938-y

 47. Vidal M, Santos MJ, Abrao T, Rodríguez J, Rigol A (2009) Model-
ling competitive sorption in a mineral soil. Geoderma 149:189–
198. https ://doi.org/10.1016/j.geode rma.2008.11.040

 48. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption 
of acid dyes on chitosan - equilibrium isotherm analyses. 
Process Biochem 39:695–704. https ://doi.org/10.1016/S0032 
-9592(03)00152 -3

 49. Wu X, Zhou H, Zhao F, Zhao C (2009) Adsorption of  Zn2+ and 
 Cd2+ ions on vermiculite in buffered and unbuffered aque-
ous solutions. Ads Sci Technol 27:907–919. https ://doi.
org/10.1260/0263-6174.27.10.907

 50. Xue Y, Hou H, Zhu S (2009) Adsorption removal of reactive dyes 
from aqueous solution by modified basic oxygen furnace slag: 
isotherm and kinetic study. Chem Eng J 147:272–279. https ://
doi.org/10.1016/j.cej.2008.07.017

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/09276440.2016.1137715
https://doi.org/10.1080/09276440.2016.1137715
https://doi.org/10.1016/S0009-2509(99)00178-5
https://doi.org/10.1016/j.jenvman.2016.11.056
https://doi.org/10.1016/j.jenvman.2016.11.056
https://doi.org/10.1007/s13762-013-0260-x
https://doi.org/10.1016/j.geoderma.2018.03.008
https://doi.org/10.1016/j.geoderma.2018.03.008
https://doi.org/10.1007/s11368-018-2184-z
https://doi.org/10.1007/s11368-018-2184-z
https://doi.org/10.1016/j.psep.2018.10.002
https://doi.org/10.1016/j.psep.2018.10.002
https://doi.org/10.1155/2011/714808
https://doi.org/10.1155/2011/714808
https://doi.org/10.1016/j.watres.2017.04.014
https://doi.org/10.1007/s13762-016-0938-y
https://doi.org/10.1007/s13762-016-0938-y
https://doi.org/10.1016/j.geoderma.2008.11.040
https://doi.org/10.1016/S0032-9592(03)00152-3
https://doi.org/10.1016/S0032-9592(03)00152-3
https://doi.org/10.1260/0263-6174.27.10.907
https://doi.org/10.1260/0263-6174.27.10.907
https://doi.org/10.1016/j.cej.2008.07.017
https://doi.org/10.1016/j.cej.2008.07.017

	Searching for optimum adsorption curve for metal sorption on soils: comparison of various isotherm models fitted by different error functions
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Soil samples
	2.2 Adsorption experiments
	2.3 Determining sorption curve parameters by nonlinear regression
	2.4 Statistical analyses

	3 Results and discussion
	3.1 The shape of the sorption curves
	3.2 Comparison of the error functions
	3.3 Comparison of the sorption curve models

	4 Conclusions
	References




