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Abstract
Polyimides, high-performance polymers with superior properties such as high temperature stability, resistance to solvents 
and high strength, can be used in high-tech applications of the aerospace and aviation, medical or electronics industry 
in different forms (film, fiber, nanofiber, membrane, foam, adhesive or coating). Among these applications, coating has 
a special place and is used to develop advanced structures having high temperature resistance, flame retardancy and 
etc. for high tech industries via an economical and feasible way. Therefore, in this review, we aimed to report the broad 
application status of polyimide coatings by reviewing publications, patents and commercial products. Thus, this study 
can assist in selecting suitable polyimide types and production methods for polyimide coating applications and in 
understanding their applicability for future products.

Keywords  Polyimide · Poly(amic acid) · Coating · Optical fiber · High temperature resistant · Electrical insulation · 
Anticorrosion

1  Introduction

Polyimide (PI) is a high performance polymer that has 
superior properties such as temperature stability, resist-
ance to solvents and mechanical strength. Due to their 
superior properties, PIs are used in different forms such as 
film, fiber, nanofiber, membrane, foam, adhesive or coat-
ing in high technology applications such as aerospace 
industry, medical and electronic devices, sensors [1–3]. PI 
films are used as thermal control coatings and also a pro-
tective layer for electronic devices and space applications 
thanks to remarkable optical properties (transparency and 
low solar absorption and infrared emission), high thermal 
stability and wide service temperature (− 300– + 300 °C), 
radiation resistance, enhanced electrical insulation (dielec-
tric constant 3.4- 3.5), low density, toughness, flexibility, 
and high mechanical stability [4–11].

PI thin films are preferable for coating applications 
due to adhesion and transparency properties [12]. Espe-
cially coating applications are important because this is 

an economical way to obtain functional material, since 
the cost of the material decreases by using low amount 
of polymer. On the other hand, it is possible to provide 
high–value added material by an easy and economical 
process.

In the literature, there are numerous studies about 
different forms of PIs [13]. PI coating applications have 
attracted attention by researchers and manufacturers from 
past to present. Although there have been many reviews 
about PI chemistry [1, 14–19] or applications of PI materi-
als [4, 20–24], no studies focusing on coating applications 
of PIs have been found. Readers can easily find informa-
tion on PI coatings in this review and the cited sources. In 
this paper, by reviewing the studies in the literature on PI 
coatings and the patents reported on commercial prod-
ucts, the properties of the polyimides are explained in the 
first part, then the coating methods are explained and the 
application areas are given in detail in the last section.
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2 � Properties of polyimides

High temperature resistance, mechanical and chemical 
stability, high glass-transition temperature (Tg), optical 
transmittance, low dielectric constant properties are 
characteristic for PI materials [18]. All of the mentioned 
properties of PIs can vary depending on chemical struc-
ture and macromolecular conditions such as molecular 
weight (MW), crystallinity or intermolecular forces [1, 
25].

Thermal resistance is one of the most important prop-
erty of the PIs. Highly rigid aromatic units provide ther-
mal resistance to the polymer due to high Tg (> 300 °C) 
and decomposition temperature (500–600  °C) [8, 15, 
26, 27]. Thermal oxidation resistance and high limit-
ing oxygen index (LOI: 37–45) value of PIs originated 
from already oxidized structure of imide and ether link-
ages, moreover, increasing MW increases the oxidation 
resistance of polymers [1, 8]. Besides, PIs have high 
char amount (appr. 60%) and low heat conductivity 
(0.12 W/m.K) [26].

Besides rigid aromatic structure, dipole–dipole inter-
actions between carbonyl bonds in the imide structure 
of macromolecules and charge transfer increases the Tg, 
mechanical and chemical stability of PIs. Amorphous 
morphology, flexible linkages in the macromolecule 
(such as ether) gives the elongation property to the PIs 
[1]. Highly aromatic structure and strong intermolecu-
lar interactions result low solubility and non-melting 
structure [16]. Adhesion of PIs on different substrates 
have been attributed to polar and non-polar functional 
groups in the structure [12, 13, 28, 29]. Since the synthe-
sis of new types of PIs (low-melt PI, soluble PI, thermo-
plastic PI, colorless PI etc.) and the development of new 
coating methods, disadvantages of PIs are overcome by 
the researchers, the application area of PI coatings is 
expanding day by day.

First aromatic PI was synthesized by Marston Bogert 
in 1908 [30].Then at 1965, first commercial PI film was 
produced by DuPont named as Kapton [13]. Gener-
ally, aromatic PI is produced by two step method: First 
step is polyamic acid (PAA) synthesis from dianhydride 
and diamine monomers through exothermic polycon-
densation reaction in a dipolar solvent (N, N dimethyl 
acetamide (DMAC), N, N dimethyl formamide (DMF), 
N-methylpyrollidone (NMP) etc.) and second step is imi-
dization reaction which is applied after solvent elimina-
tion from PAA as seen in Fig. 1. [18, 31, 32]. Commonly 
used dianhydrides are pyromellitic dianhydride (PMDA), 
benzophenone-3,3′,4,4′-tetracarboxylic dianhydride 
(BTDA) and 1,2,4,5-benzenetetracarboxylic dianhydride 
due to their high electron affinities (Ea, PMDA = 1.90 eV, 

Ea, BTDA = 1.55 eV. On the other hand, phenylene diamine 
and 4,4′-oxydianiline (ODA) structures with high basicity 
(pKa = 6.08) are preferred because of their high reactivity. 
Since PAA was synthesized with an equilibrium reaction, 
purity of the monomers is crucial to obtain high molecu-
lar weight PAA. Besides, while PAA forms amorphous ran-
dom coils, rigid rod-like chain structures can be obtained 
with poly (amic ester) synthesized with diester diacid 
chloride and diamine. By mixing these two polymers, a 
polyimide fiber with high mechanical strength (462 MPa) 
and modulus (125 GPa) can be obtained. Moreover, it is 
possible to increase the solubility of polyimide precursor 
polymer in the non-polar solvents by synthesizing poly 
(amic silylester) with N,N’-bis(trialkylsilyl)diamines and 
aromatic dianhydrides at room temperature. During imi-
dization reaction; while the ring closure reaction of the 
amic acid structures between 150 °C–400 °C, proceeds, 
the solubility and the Tg of polyimide increases [18, 31]. 
Two types of imidization treatment are applied as ther-
mal and chemical imidization reactions. Gradual heating 
from 150 °C to 400 °C for a certain time is necessary to 
complete thermal imidization reaction [1, 13, 31, 33].

Chemical imidization is obtained by cyclodihydration 
reaction of PAA with acid anhydrides in dipolar aprotic sol-
vents or tertiary diamine catalysts. In addition to the two-
stage production method, there are many polymerization 
methods [13] for producing PIs such as;

1.	 One step method (solution polymerization and melt 
polymerization).

2.	 Diesters of tetracarboxylic acids (polyetherimide syn-
thesis, PMR-15.)

3.	 Polyisoimides (lower Tg, more soluble and lower melt 
viscosity).

4.	 Ester derivatives of poly (amic acids) (storage stability, 
solubility).

5.	 Nucleophilic substitution reaction (poly (ether imides), 
lower Tg (200–280 °C), injection moldable, ULTEM 100 
Thermoplastic Resin).

6.	 Exchange reaction (imidization without water mol-
ecule elimination).

7.	 Polymerization of dianhydrides and diisocyanates.
8.	 Cycloaddition reaction (Diels-Alders reaction of bisma-

leimides).
9.	 C–C coupling reaction.

In today’s world where science and technology are rap-
idly developing, focusing on all the important features of 
polyimide instead of its limited characteristic properties 
can open up new perspectives and enable the develop-
ment of new products. In this scope, polyamideimides and 
fluorinated PIs are other types of PIs that are developed to 
obtain the required properties for advanced. Commonly 
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used polyamideimide is thermoplastic PIs with enhanced 
mechanical strength, thermal and oxidative stability. Fluor-
inated PIs are developed for optoelectronics and solar cells 
requiring transparency or controllable light transmittance 
[13, 34, 35]. There are many other types of functional PIs 
varying according to used monomer such as photo-sen-
sitive PI [36, 37], electrochromic PI [38], shape memory PI 
[39] or soluble PI [40, 41], thermoset or thermoplastic PI 
[42–45] and etc. The PI types, structures, properties, and 
uses were reviewed in Table 1. 

3 � Polyimide coating

PIs are suitable for coating applications due to adhesion 
to the several substrates such as metals, polymers, carbon, 
silica based materials (glass fiber, carbon fiber) etc. Solu-
ble PAA precursor solutions or soluble PIs are suitable for 

several easy and cost-effective coating methods. It is possi-
ble to incorporate the superior properties that mentioned 
upper section of the PIs to the desired materials by coating 
method. Therefore, there are many applications related to 
PI coatings in both the literature and the industry. Sensors, 
spacecraft, electrical devices (batteries, displays, wires), 
medical devices, capillary tubes, separation membranes 
are some of these. Generally, aromatic PI-coated by two 
step method: First step is coating of polyamic acid solution 
on the substrate and second step is thermal or chemical 
imidization. [1, 13, 33]. There are several coating methods 
such as solution-coating, dip-coating [55], spin-coating 
[56, 57] or vapor deposition [58, 59], chemical deposition 
polymerization [47], and etc. Also new methods have been 
developed for PI coating on different substrates such as 
glow discharge vapour deposition polymerization, liquid 
flame spray method and etc. [60]. The coating process 
includes 4 steps (Fig. 2):

Fig. 1   Synthesis mechanism of Kapton [32]
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Table 1   Polyimide types, structure, properties and uses

Type Structure Properties and Uses Ref

Thermoset Polyimide 
(PI)

KAPTON® (PMDA + ODA) Orange/yellow color
No melting
Non-soluble
Thermal stability
Chemical resistance
Mechanical strength

[46]

UPILEX® (BTDA + ODA)

Thermoplastic Poly-
imide (TPI)

ULTEM® Polyetherimide
(diacid anhydride + m-phenylene 

diamine)

Low temperature Tg
Melting temperature
Processable
(molding, extrusion, and injec-

tion molding)
Toughness,
Damage tolerance,
Repairable

[17, 47–49]

TORLON® Polyamideimide (trimellitic 
anhydride chloride + ODA)

Avimid® N Fluorinated Polyimide
n 2,2-bis(3,4-dicarboxy phenyl) 

hexafluoropropane dianhydride 
(6-FDA) + meta-phenylene diamine 
(m-PDA)

AURUM® (PMDA + 4,4- bis (3-ami-
nophenoxy)biphenyl)

LaRC-IA® ( 4,4 -oxy-diphthalic 
anhydride (ODPA) + 3, 
4ʹ-oxybisbenzenamine (3, 4ʹ-ODA))

Photo-Sensitive PI 4,4′-(4,4′-isopropylidenediphe-
noxy)bis(phthalic anhydride) 
(BPADA) + 2,2-bis (3-amino-
4-hydroxyphenyl)-hexafluoropro-
pane (APAF)

Patternable via photo litho-
graphic technique,

Optical transmittance (> 85% 
in the visible light region),

Packaging, insulating in micro-
electronics

[19, 50–52]

Colorless PI Cyclobutane tetracarboxylic dianhy-
dride (CBDA) + ODA

6FDA + 4‐(4′‐Aminophenoxy)‐3,5‐
bis(trifluoromethyl)aniline

Soluble PI 2-Trifluoromethyl-4,4 ‘-diaminodi-
phenyl Ether + dianhydride (PMDA, 
BPDA, BTDA, and ODPA)

Soluble in organic or ionic 
solvents,

Flexible displays, space appli-
cations

[40, 53, 54]

Poly(imide siloxane)

EXTEM® Poly(ether imide sulphone)
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1.	 Substrate preparation which is elimination of impuri-
ties on the substrate surface,

2.	 PAA solution deposition on the substrate by men-
tioned methods,

3.	 Drying process which is removing of the solvent 
(> 150 °C),

4.	 Curing step which is completion of imidization reac-
tion (150–400 °C) [13, 31].

The quality of the coating depends on production 
parameters and conditions, such as coating methods, dry-
ing rate and temperature, heating rate and temperature of 
the imidization step. The coating method and thickness 
affect the molecular orientation and residual stress that 
causes crack damages. For example, since the thickness of 
PI coating layer which was produced with solution casting 
method is higher than that of coated with spin-coating 
method, the residual stress of solution casted PI is lower 
than that of spin coated [61]. Moreover, fast evaporation of 
the solvent causes the thermal shrinkage. Also, the heat-
ing rate for initial and final temperatures affect the mor-
phology of the final coating. It is possible to decrease the 
thermal stress by controlled and gradual heating during 
the imidization step [13].

4 � Applications of polyimide coatings

PI coating onto the different substrates (metal, polimer, 
carbon, glass fiber etc.) provides vast opportunity to 
be used in wide range of applications such as sensors, 
electronic devices, medical analysis devices, industrial 
machines or buildings etc. In this section, common appli-
cations of PI coatings were reviewed.

4.1 � Sensor applications

Optical fibers are small diameter glass fibers that widely 
used for telecommunication applications but recent years 
mostly preferred in sensing applications. Optical fibers are 
used in sensors, instrumental analysis devices in chemistry, 
diagnosis devices in the medical industry or laser systems. 
These fibers conduct very critical missions, so mechani-
cal durability and functional lifetime are important for 

embedded optical fibers. Moreover, the repairing process 
is almost impossible. Also, adherence to the embedded 
material and resistance to process conditions are crucial. 
For example, optical fibers which embedded in the epoxy 
matrix must stand 150–200 °C curing temperature and 
must adhere to the epoxy matrix [62]. Commercial optical 
fibers consist core and central layers which are made of 
different glass types. Central glass layer called the clad-
ding which is coated with acrylate resin that resistant 
up to 100–110 °C which is not enough for many applica-
tions. Therefore, the cladding is coated with very thin PI 
film (5–10 µm) to provide high temperature resistance 
up to 400 °C and also mechanical strength such as high 
modulus, abrasion and static-fatique resistance [61–68]. 
Several patents have been focused on the improvement 
of PI coating for optical fiber protection. Polyimide-silicone 
block copolymers were developed to obtain better adhe-
sion due to structural similarity with glass cladding and 
silicone groups [69]. Soluble-photocurable PI coating was 
developed to eliminate disadvantages of thermal imidi-
zation process such as water formation, and removal of 
residual solvent at high temperatures [67]. A new useful 
PI coating method was patented, low-temperature cur-
ing fluorinated-PI is coated during optical fiber drawing 
process occur to inhibit deterioration of optical fiber prop-
erties during coating and curing processes [68]. Dual PI 
coating method was developed to improve adhesion and 
provide elasticity, heat and moisture resistancy of optical 
fiber [70]. Strippable PI that can be easily stripped from the 
optical fiber with common, inexpensive solvents such as 
acetone was patented [71].

PI coatings are used to obtain sensor systems besides 
protecting against to working conditions [18]. It is not pos-
sible to produce humidity sensor from bare silica fibers 
since silica material is not sensitive to humidity. On the 
other hand, moisture sensitive PIs are hygroscopic and 
they show swelling when the water molecules diffuse, the 
swelling of the PI coating generates strain effect on the 
fiber. That behavior changes the Bragg condition of the 
Bragg grating optical fiber (FBG) and thus, provides the 
measurement of the relative humidity [18, 72]. By using 
this property of PIs, several studies were reported in the 
literature [72–78] (Fig. 3). For example, Kronenberg et al. 
studied the effect PI coating on the sensing ability of the 

Fig. 2   Polyimide coating steps
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FBGs used for intrinsic relative humidity (RH) and tempera-
ture sensor. They have produced sensors that are sensi-
tive to temperature and relative humidity ranges from 13 
to 60 °C and from 10 to 90% RH, respectively. Also, they 
reported that the sensitivity of the sensor increases with 
an increase in the PI coating thickness (from 3.6 to 29 µm) 
[73]. A new micro-capacitive-type relative humidity sen-
sor with nano-grass PI was developed as a dielectric sens-
ing material [79, 80]. PI is coated on the top of the sensor 
system. Then PI film was etched in an O2 plasma to obtain 
nano-grass surface. A nano-grass humidity sensor with 
high-performance properties was developed compared 
to a normal flat film type humidity sensor. Increased sur-
face area and water affinity demonstrated a clear improve-
ment over the normal flat-film sensor in key specifications 
such as quick response and sensitivity, low hysteresis, and 
long-term stability [79]. Besides, Yan et al. developed a soil 
moisture sensor with Bragg grating fiber by the help of 
the water sensitivity and linear expansion coefficient prop-
erties of PI layer. The designed sensor has the moisture 
measuring range between 15%RH ~ 75%RH, 12.6 pm/%RH 
senstivity and ± 10.26% accuracy [81].

PI coated optical fibers were also developed to meas-
ure fluidic properties [82–84]. Nellen et al. presented 
a PI-coated FBG that measure fluid pressure and tem-
perature in the oil-bore holes. The stability to downhole 
conditions and lifetime were studied with modelling and 
accelerated mechanical and thermal aging tests. The 
obtained results show that PI coated sensor withstand 

230 °C annealing temperature and also when used at 
lower than 1 GPa constant stress, the lifetime could be 
over 5 years [82]. Diamandi et al. coated with a new PI 
layer that transmit acoustic waves from the fiber clad-
ding toward outside media while provides mechanical 
protection. Developed PI-coated optical fibers properly 
distinguish the air, ethanol and water over 100 m outside 
the fiber contrary to traditional optical fibers that could 
sense to liquids contact to the fiber [83]. Also, Chow et al. 
show the feasibility of the thin PI (8 μm) coated optical 
fiber for measure the acoustic impedances of the sur-
rounding liquids [84].

The salinity degree is crucial for production control 
systems or ecosystem protection. Several sensor sys-
tems have been using to measure salinity. Convention-
ally salinity degree is determined by measuring optical 
refractive index with refractometer. Although refractom-
eter used widely, they have some disadvantages such as 
low sensitivity and difficult measuring due to bulky sys-
tem. Optical fiber sensors have many advantages such 
as small size, low cost, higher sensitivity, and ability of 
getting response over a long distance [85]. Therefore, 
optical fiber sensors are preferred instead of refractom-
eters as salinity sensors. PI coating on the optical fiber 
not only protect against the breakage but also, provide 
salinity sensing property [85]. There are several studies 
about development of PI coated FBG sensors for measur-
ing salinity and temperature [85–88]. For example, Men 
et al. have fabricated a multiplexed PI coated fiber Bragg 
grating sensor for simultaneous salinity and tempera-
ture measurement. Developed sensor was compared 
with acrylate coated FBG sensor. The developed sensor 
system showed that the PI-coated grating responds to 
variations of both temperature and salinity, while the 
acrylate-coated grating is only sensitive to the environ-
mental temperature (Fig. 4). The experimental results 

Fig. 3   PI coated RH Sensor [72]

Fig. 4   Bragg wavelengths of acrylate- and polyimide-coated FBGs 
as functions of NaCl concentrations [85]
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indicated that the temperature and the salinity sensi-
tivities of the PI-coated grating were 0.0094 nm/ °C and 
0.0165 nm/M, respectively [85].

PI coated membranes can be used as a gas sensor. 
For example, Aslam et al. have fabricated a PI membrane 
for low loss microheated metal oxide (MOS) gas sensor. 
Generally, silicon oxide or silicon nitride used to produce 
this type of membranes. But the fragility of these materi-
als reduces the yield and dielectric thickness and active 
area. They used thin rugged PI membrane to reduce the 
power consumption of a metal oxide gas sensor due to 
high elongation modulus and easy control layer thick-
ness. Liquid PI (DuPont PI2575) was spin-coated on bulk 
micromachined silicon wafer then cured at 400 °C for 
30 min. Then Pt heating elements were added to the 
gas sensor system. Temperature resistance tests show 
that PI coated heater withstand the 300  °C tempera-
ture that needed to activate the sensing layer for cer-
tain gas detection. PI is a better thermal insulator and 
easy to deposition Pt on PI layer due to the smoother 
surface and adhesion property compared to oxide or 
nitride membranes, therefore, polyimide preferred 
to produce low power sensor over an oxide or nitride 
membranes [89]. Similar studies have been reported 
in the literature [90, 91]. Flow cell test results indicate 
that PI-coated sensors inhibit the effect of gases, such 
as carbon monoxide, acetylene, ethylene, and methane 
on the H2 response, dramatically improving selectivity 
to hydrogen compared to un-coated palladium MIS sen-
sor (Pd-MIS) device [92]. Recently, different sensors were 
developed for thermal-strain sensing of rails. Two types 
of jacketed fibers and a carbon/polyimide coated single-
mode optical fiber were used in the sytem to observe 
jacket effect on the thermal-strain sensing in the rail [93]. 
On the other hand, new studies show that it is possible 
to improve sensor response time and stability by addi-
tion of polar groups (-COOH, -OH) to the PI structure that 
coated on the FBG [94]. The studies about this area con-
tinue to improve sensor sensitivity and coating quality 
and also to develop new sensor types.

4.2 � Electronic device and battery applications

Electronic displays show thermal shrinkage problem under 
working conditions [95]. Introducing the PIs as micro-
electric coatings enhances mechanical strength and also 
thermal stability [96]. PIs are very proper polymers for 
electronic applications due to superior dielectric proper-
ties such as high electrical insulation (dielectric constant 
3.4–3.5) [5–8], high ductility (ultimate elongation, 72%) [8] 
and low thermal expansion coefficient (CTE, 20 ppm/°C) 
[8, 97]. Thus, in the literature, many studies have been 
reported about PI coated electronic devices [98].

New polyimide-clay nanocomposite films as protec-
tive coatings were developed to protect microelectronic 
devices. PAA-clay nanocomposite coating solutions were 
prepared [99], and then, coated on a silicon wafer and 
glass substrate. Finally, thermal imidization at 300 °C for 
2 h was performed. Obtained PI-clay coating is suitable 
for protective coatings in the microelectronic area due 
to adhesion property to silicon substrate, besides high 
resistivity, low CTE, and low O2 permeability and water 
absorption, also high mechanical and dielectric strength 
[100]. PI aerogel coated carbon nanotube data and power 
cables (Fig. 5) can be produced with carbon nanotube yarn 
used as conductor instead of copper wire to decrease the 
weight in aerospace and automotive applications and PI 
aerogel (foam) coated with impregnation and rollers, as 
light-weight dielectric insulation layer. PI aerogels were 
synthesized with poly (isobutylene-alt-maleic anhy-
dride), poly(isobutylene-alt-maleic anhydride) (PMA-D) 
crosslinker, 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) 
and biphenyl-3,3′,4,4′- tetracarboxylic dianydride (BPDA) 
monomers via chemical imidization [101]. In another 
study, double walled CNT (DWCNT) wires and cables were 
produced via chemical dip coating method. The wire con-
sists of DWCNT coated polytetrafluoroethylene (PTFE) core 
and PI insulation layer. Iodine treated wire has low resistiv-
ity value as 4.5 10−6 Ω. m. [102].

Although the microfibrillated cellulose (MFC) sheets 
as biodegradable product can be used in microelectronic 

Fig. 5   The images of a) LED 
light turns on when the clips 
were connected with the CNT 
yarns. b) LED light turns off 
when the clips were connected 
on the polyimide aerogel coat-
ings. Reprinted with permis-
sion from [101]. Copyright 
2019 American Chemical 
Society
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industry, MFC sheets have high surface roughness, poor 
dielectric properties and also, porous and hydrophilic 
structure which are not desired for electronic devices. 
Therefore, a thin PI coating on both surfaces of MFC sheets 
can be incorporated to improve dielectric properties for 
flexible substrate of an electrostatically actuated mechani-
cal switch device. Relative permittivity was decreased 
from ~ 10–70 to ~ 3–6 [103].

There are several studies about PI coatings used in 
optoelectronic devices. Organic light emitting diode 
(OLED) displays consist an insulation layer which require 
certain properties. These are photosensitivity for pattern-
ing process, curability less than 250 °C temperature, high 
and stable dielectric strength, thermal stability, adhesion 
to various substrates. A positive-tone photosensitive PI 
coating was developed as an insulation layer for OLED dis-
plays and compared with novalac resin and acrylic resin. 
After imidization at 230 °C for 30 min, O2 plasma treat-
ments (durable to this treatment no loss of film thickness 
after 20 min) were applied to the novel coating showed 
better thermal (no outgas (weight loss) until 320 °C) and 
electrical properties (350 kV/mm after 20 days at 85 °C) 
and also, better adhesion (no peel off more than 500 h at 
121 °C 2 × 105 Pa, 100% relative humidity) on substrates 
(glass, ITO and SiO2) compared to other coating polymers. 
Light emiting durability tests (voltage were applied at 
80 °C for 72 h) were conducted to coated OLED displays, 
novel PI coated OLED display did not show pixel shrink-
age while novalac and acrylic resin coatings showed 64% 
and 47% pixel shrinkage, respectively [104]. Moreover, 
Chien et al. produced high response time (3.4 ms at 5.5 V) 
liquid crystal displays (LCD) with optically compensated 
bend (OCB) cells method. They used ion-beamed PI lay-
ers to obtain lower warm up (transition) and response 
time. Ar+ ion beam treatment increased the nucleation 
sites in the surface of PI, thus the transition time reduced 
from 24 to 17 s without morphological destruction. [105]. 
Nakano et al. developed flexible active matrix organic light 
emitting diode (AMOLED) displays. PI film was coated on 
a glass substrate with a process that is compatible with 
mass‐production lines and than amorphous In–Ga–Zn–O 
thin‐film transistors (a‐IGZO TFTs) coated on transparent PI 
films. Finally glass substate was removed from Pl film. The 
results show that a‐IGZO TFTs on PI film stable to anneal-
ing process at high temperature (up to 290 °C) [106]. Also, 
French et al. have developed the thinnest PI-based plastic 
display with a five-micron plastic substrate for the thin-film 
transistor (TFT) array (Fig. 6) by electronics on plastic by 
laser release (EPLaR) process [107].

Researchers reported molecular dynamics simulation 
studies to show the interfacial adhesion mechanism of 
PI to the silica glass for production of flexible displays. 
Adhesion depends on hydroxylation degree on silica glass 

surface, crystallinity of silica glass, and oxygen density 
within PI structure. Adhesion occurs via hydrogen bond-
ing between oxygen atoms in PI and hydroxyl groups on 
the glass (Fig. 7a). Moreover, surface roughness increased 
the surface area so, more hydroxyl groups reveal and adhe-
sion energy increases (Fig. 7b). also crystallinity of silica 
decreases the adhesion due to decreasing the roughness 
of silica surface [108–110].

Numerous patents focused on PI coating on displays for 
different purposes. An aqueous alkali-developable photo-
sensitive PI precursor resin was invented for the purpose of 
use as highly heat-resistant transparent protection layers 
and insulation layers for LCD devices [111]. A new method 
was developed for polyimide coating on LCD panel to 
improve coating parameters such as cost time, quality 
[112]. Multi-layered PI cover film production containing 
optical adhesive layer with nanoscale colorant to inhibit 
characteristic yellow colour of the polyimide for the flex-
ible display panel [113], soluble PI synthesis and coating 
for flexible displays [114] and an OLED device production 
with longer service life with PI base layer that improved 
the water and oxygen blocking performance [115] were 
presented as patent.

Fig. 6   50 × 50 mm a-Si TFT array on 3 μm thick freestanding polyim-
ide layer made by the EPLaR process [107]
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The PI coatings are also used to improve the mechani-
cal strength and thermal shrinkage resistance in batteries. 
Thermal shrinkage of polyethylene separators is a crucial 
problem for lithium-ion batteries. Soluble co-polyimide 
(P84, random co-polyimides composed of 3,3′,4,4′-ben-
zophenone tetracarboxylic dianhydride (BTDA) with 80% 
toluene diisocyanate (TDI) and 20% methylene diphenyl 
diisocyanate (MDI)) was synthesized and coated on a PE 
separator with a dip-coating method. Optimum coat-
ing concentration was determined as 3% (wt polymer/ 
wt DMF) and thickness is 23 µm. Heat exposure test at 
140 °C, 30 min showed that the PI coating improved ther-
mal shrinkage resistance (no shrinkage) while preserving 
electrochemical properties (Fig.  8) (ionic conductivity 
2.43 × 10 − 4 S cm−1 similar to bare PE (2.54 × 10 − 4 S cm−1), 

(electrolyte resistance up to 4 V) of the battery due to high 
thermal resistance of PI and the proper porous structure. 
Thermal resistance property was evaluated by open circuit 
voltage (OCV) measurement. PI coated battery resist (OCV 
value 4 V) 140 °C for 110 min while OCV value of the bare 
PE drop 0 °C after 60 min [95].

Also, PI aerogel-polyethylene double-layer composite 
seperators which are temperature resistant up to 140 °C 
and do not show thermal shrinkage contrary to commer-
cial PE seperators, provide safe usage conditions against 
explosion and overcharging for high-safety lithium-ion 
batteries. Besides, coin cells with PI aerogel/PE separa-
tor show similar cycling and higher C-rate performances 
with PE seperator due to high electrolyte uptake (246% for 
aerogel/PE while 136,5% for PE seperator) and wettability 

Fig. 7   Adhesion energy as a a function of average roughness (Ra) 
(1.0 ~ 8.4  Å) and hydroxylation density (2.4 and 4.8 OH/nm2) (a), 
Adhesion energy, number of hydrogen bonds, surface area of 

glassy silica and PI increment (%) as a function of Ra (1.0 ~ 8.4  Å) 
Reprinted with permission from [109]. Copyright (2017) American 
Chemical Society

Fig. 8   Charge–discharge profiles (a), cycling performance (b), rate capability (c) of the unit cells employing the bare PE separator and the 
3 wt.% P84-coated PE separator [95]
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of seperator with electrolyte [116]. Lithium-ion batteries 
are used for portable electronics and electrical vehicles. 
Especially the spinel lithium titanate (Li4Ti5O12, LTO) mate-
rial is one of the most effective anodes for long-life and 
high power lithium-ion batteries. However, LTO anodes 
cause interfacial side reactions during charge–discharge 
and storage, this problem limits the wide usage lithium-
ion batteries. This problem can be solved by incorporating 
an ion conductive PI layer on the Li4Ti5O12 anode material. 
First, PAA precursor solution (PMDA-ODA) was synthesized 
and coated on the anode material. PI gel electrolyte layer 
was obtained after thermal imidization. The thermal resist-
ance, ion transport property, nano-scale thickness and full 
protection of surface inhibit the side reactions between 
the partially charged LTO and liquid electrolyte (Fig. 9). 
Thus, the cycling and rate performance of developed lith-
ium-ion batteries were improved [117].

By coating carbon nanotube electrode with PI layer, 
side reactions between electrode and electrolyte can be 
prevented. Thus, the cyclic performance of long-cycle 
Li-air batteries was improved [118]. Similarly, Yoon et al. 
have coated PI on carbon nanotube and prepared air 

electrode material. Electrochemical test results show that 
PI coating suppresses unwanted side reactions [119]. In 
a recent study, PI spheres and poly(acrylonitrile) fibers 
were coated on the Cu substrate and Li metal deposited 
to simulate Li-ion battery working condition. The results 
show that dual coating layer inhibit dendrite formation 
on the Li metal layer that negatively affect the battery 
performance [120]. Recently, PI coating of lithium titan-
ate particles to reduce gas formation in the electrochemi-
cal cells were patented [121] Electrode cracking is another 
serious problem of lithium-ion batteries that reduces the 
capacity. The crack-resistant and high performance bat-
teries can be developed by high modulus–high compres-
sive PI coating on SnO2 electrode materials holding par-
ticles, in contact during charge and discharge. Moreover, 
the PI coating improves capacity retention and stable 
capacity of after 300 cycles [122]. On the other hand, sili-
con thin films have electrode cracking and delamination 
problems during cycling that causes capacity degrada-
tion. When silicon thin film electrodes capped with PI to 
solve mechanical degradation problem, PI layers protect 
the electrodes, so the battery could be used with a high 

Fig. 9   a Variation in alternating current (AC) impedance spectra 
of cells assembled with pristine LTO and polyimide-coated LTO at 
55 C; b DSC thermograms of the interfacial exothermic reaction 
between partially charged LTO and polyimide-coated LTO and liq-

uid electrolyte; c schematic illustration of ion-conductive polyim-
ide nanocoating layer for suppressing the interfacial side reactions. 
Reproduced from Ref. [117] with permission from The Royal Society 
of Chemistry
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capacity of 2610 mAh g−1 at 100 mA g−1 up to 300 cycles 
without capacity loss at 3500 mA g−1 [123].

The hydrophilic PI changes the resonant frequencies of 
the antenna with atmospheric relative humidity, so relative 
humidity will be measured by detecting the resonant fre-
quencies. Therefore, PI coated Yugi-Ada antennas can be 
designed and analyzed for humidity sensing application. 
Simulation results show that this system could be alterna-
tive to existing humidity sensors [124].

Moreover, there are patents about PI coating on elec-
trodes for production of paterning layer [125] and photo-
lithography application [126]. On the other hand, several 
patents were focused on electrical wires coated with PI 
layer for insulation. Electrical wires have been improved 
over time by using low-melt PI and PAA solution to easily 
(melting at low temperature) repair damaged electrical 
wires [127], easily coatable low viscosity insulating var-
nish (PI precursor solution) [128], low-dielectric constant 
PI insulation coating [129]. Also, implantable medical 
device cables (lead) for electrical stimulation coated with 
PI providing conductor coil insulation have been devel-
oped [130].

Additionally, advanced coatings showing better UV 
curing ability, optical transparency, thermal stability, hard-
ness and lower moisture uptakes respect to conventional 
Kapton films can be synthesized about to be used LCD, 
photoelectric, microelectronic applications [126, 131–133].

4.3 � Anticorrosion applications

Polymeric coatings inhibit corrosion by physically block-
ing diffusion of the species such as O2 and H+ [134]. NASA 
developed a new PI powder coating material for metal 
substrates such as pipes and other infrastructure com-
ponents, machinery, exposed metal parts and structures, 
automobile components, bridges provides anti-corrosion 
property. PI coated metal was obtained by spray coating 
of the low melting point PAA and curing in powder coat-
ing oven [135, 136]. By incorporating the layered mont-
morillonite clay and coating organosoluble polyimide/clay 
nanocomposite material on the steel substrate, anticorro-
sion property was enhanced. Organosoluble polyimide/
clay nanocomposite material show better corrosion resist-
ance compared to polyaniline, poly(o-ethoxyaniline) and 
poly(methyl methacrylate) [134].

An electroactive PI (EPI), a promising anticorrosion 
material, was synthesized by reaction of amine-capped 
aniline trimers (1,4-phenylenediamine) and 4,4′-(4,4′-iso-
propylidenediphenoxy)- bis(phthalic anhydride) (BSAA) 
and then coated on steel as a thin layer (20 µm) show 
advanced corrosion inhibition [55]. Huang et al. obtained 
effective anticorrosion coating with synthesized aniline 
tetramer (AT) capped electroactive imide oligomer and a 

polymer with electrochromic properties [137, 138]. Corro-
sion resistance of EPIs can also be improved by incorporat-
ing TiO2 nanoparticles to the coating solution. While EPI 
layer inhibits corrosion of cold-rolled steel (CRS) electrode 
by the formation of a protective passivation oxide layer, 
TiO2 nanoparticles make complex the O2 diffusion path-
way (Fig. 10) [139].

Besides, incorporation of SnO2 nanoparticles to the EPI 
coating improves thermal and anticorrosion properties of 
coating on the steel. The EPI/SnO2 nanocomposites were 
prepared by in situ oxidative coupling polymerization of 
oligoaniline and thermal imidization processes. The EPI/
SnO2 nanocomposite was coated on 316L stainless steel 
and cold rolled steel with spin coating method. The semi-
conductor property of both SnO2 and EPI provide syner-
gistic effect against corrosion by redox reaction and also, 
SnO2 nanoparticles form a barrier to inhibit corrosive ion 
transition. The anticorrosion property of low nickel stain-
less steel (AISI 201) can be improved by incorporating 
copper oxide (CuO) into the EPI by oxidative coupling 
polymerization followed by coating then thermal imidi-
zation [140, 141]. EPI was also synthesized to develop a 
biomimetic superhydrophobic surface for advanced anti-
corrosive coatings via nanocasting technique [142].

Beside the steel substrate, it is also possible to protect 
aluminum substrates by coating with polyimide [143]. Pol-
yurea-b-polyimide (PUI) block copolymer that providing 
long lifetime (about 8 years), high contact angle (110°) and 
low surface energy (about 25.5 mJ/m2) was synthesized 

Fig. 10   Corrosion protection mechanism of the EPI (a) and TiO2 (b) 
layer on the steel [139]
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and coated on aluminum alloy 2024-T3 [144]. When the 
structure and morphology of the PUI block copolymer 
coatings were investigated, intra– and inter– hydrogen 
bonding between PI and polyurea macromolecules were 
detected. This entangled morphology provides corrosion 
protection by reducing surface energy and providing bar-
rier properties. Moreover, H-bonded imide chains avoid 
the hydrolysis of the ring structure in a corrosive aque-
ous environment [145]. Also, graphene-based PI coatings 
have been investigated. Chang et al. produced graphene/
EPI nanocomposite coatings that have improved anti-
corrosion property over EPI coating on CRS electrodes. 
The results show that synergistic effect of redox catalytic 
property of EPI and oxygen barrier property of graphene 
nanosheets enhanced the anticorrosion effect [146]. In 
order to investigate the anticorrosion property of PI with 
alumina-covered graphene oxide, alumina-covered gra-
phene oxide/polyimide (AlGO/PI) nanocomposite coating 
material was produced by sol–gel method. Anticorrosion 
behavior was improved by isolating charge transfer path-
way by alumina on GO [147].

4.4 � Capillary tubes

Capillary tubes used in column chromatography devices 
are very brittle and sensitive to high temperatures and lose 
their properties when using chemicals for a long time, thus 
reducing the reliability of the device. In practical applica-
tions, the capillary columns are coated with flexible poly-
mers that exhibit thermal and dimensional stability, good 
adhesion, mechanical flexibility, toughness, hardness to 
winding and abrasion, as well as chemical resistance. PIs 
are one of the best candidates for a high performance 
coating material providing the desired properties. [148]. PI 
coating can be applied on fused silica-capillary tubes due 
to flexibility, high mechanical strength, and chemical inert-
ness. PI coated fused silica tubes are used commercially 
for capillary electrophoresis, capillary electrochromatogra-
phy and gas chromatography [149, 150]. Novel PI copoly-
mer including benzimidazole groups in the structure to 
increase thermal stability and adhesion property of the 
coating was developed and coated to protect intrinsically 
brittle quartz chromatographic columns. As a result, while 
Tg increased to 346.9 °C, CTE decreased to 24.6 × 10 − 6/K 
in the range of 50–300 °C. Besides, the novel PI resist 100-
cycle thermal shock test in the range of 25–320 °C without 
cracking, delamination, warpage, or other failures [148].

PI coated optical fibers or capillary tubes are suitable for 
medical applications such as sensors, laser surgery devices 
or diagnosis instruments [130, 151–153]. Resistance to cry-
ogenic temperature beside high temperature is important 
for medical devices. Also, PIs are resistant to medical pro-
cess conditions such as sterilization. On the other hand, PI 

coatings are inert and non-toxic, resistant to solvents and 
chemicals. Moreover, mechanical strength and flexibility 
properties of PIs make them good candidates for medical 
applications.

4.5 � Membrane applications

Membranes are preferred for separation applications such 
as gas separation [154], water treatment [155], liquid per-
vaporation [156], and etc. thanks to porous structure. The 
thermal and chemical resistance of membranes can be 
enhanced by PI coating on the membrane structure [157, 
158]. Moreover, PIs increase the selectivity of the mem-
branes by adsorbing or interacting with species [159]. PI-
coated composite membrane was obtained by dip coating 
of asymmetric polyimide membrane (as support) in PAA 
salt solution and imidization process. Firstly, PAA sodium 
salt solution was synthesized with PMDA and ODA, then 
mixed with trimethylamine to achieve chemical imidiza-
tion. Developed PI coated composite membranes showed 
improved gas separation performance with the CO2/N2 
selectivity of over 25 on gas permeation, and separation 
factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/
m2 h on pervaporation [157]. Also there are studies about 
development of PI coated composite membranes by the 
solvent-less vapour deposition followed by in-situ polym-
erization (SLIP) technique [160].

PI is preferred as sorbent layer due to pi–pi stacking 
interaction of PI with other organic compounds or adhe-
sion of electronegative elements (N or O) of PI structure 
with inorganic compounds. Therefore, PI-coated magnetic 
nanoparticles can be produced as a sorbent in the solid-
phase extraction of polycyclic aromatic hydrocarbons such 
as naphthalene, anthracene, and pyrene in seawater [159].

Additionally, gas separation PI membranes by PI coat-
ing on porous polysulphone hollow fibers provides maxi-
mum gas separation performance (the CO2/CH4 separation 
factor was 30.1, and CO2 permeance was 5.7 × 10−5 cm3 
(STP)/ (cm2/cm.Hg.s)) respected to non-coated polysulfone 
membranes (the CO2/CH4 separation factor is 13) [161]. 
Recent studies have been focused on polyimide mem-
branes rather than PI coated membranes due to higher 
effectivity [162–165].

4.6 � Polyimide coatings on high temperature 
resistant materials

PI coating is a very promising application for transfer the 
excellent properties of PIs to various materials. The studies 
also focused on PI coatings on high temperature resistant 
materials due to thermal imidization process. Research-
ers have studied the adhesion behavior, effects of PIs, and 
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different effective coating methods on several types of 
materials such as steel, copper, aluminum or carbon fiber.

4.6.1 � Metallic substrates

Copper materials are widely used in electronic devices due 
to low cost and high electrical (58.7 106 S/m) and thermal 
conductivity (386 W/m.K) [29]. Since copper materials are 
susceptible to oxidation upon exposure to high tempera-
ture or high humidity [166], protective coating to increase 
reliability and service life is required. In the literature, after 
synthesis of PMDA-ODA based PAA in NMP solvent and 
coating on Cu foil, imidization was performed by heat-
ing slowly from 150 °C to 400 °C and adhesion behavior 
between polyimide and copper was investigated. The 
high peeling strength which is desired for microelectronic 
devices was reported between copper and PI [29]. The PI 
was studied as a binder on Cu/AlO3 film to improve adhe-
sion between Cu wire and other substrates of stretchable 
and transparent heater. The developed Cu wire/alumina/
polyimide-based transparent heater showing remarkable 
properties such as high temperature resistance (300 °C), 
high flexural strength by enduring 100 cycles of stretching 
releasing at a strain of 30% could find application in heat-
ing of future wearable optoelectronic devices [166]. The 
phosphinate diamine groups-contained PIs were synthe-
sized that exhibit heat resistance, adhesion property and 
also, excellent hot-melt processability for flexible copper 
clad laminates [167].

Steel materials are often used in industrial applications, 
since they have high mechanical strength. However, those 
machine parts exposed to harsh conditions such as high 
friction, heat, or corrosive liquids. So, PI coating is one 
way to reduce these negative effects [168, 169]. The liquid 

flame spray method that does not require thermal imidi-
zation process was applied to obtain polyimide-copper 
(PI-Cu) coatings on a steel substrate. Newly developed 
PI-Cu coatings showing anti-fouling and anti-corrosion 
properties could be used in marine applications [170, 
171]. PI coated stainless steel high loaded bearings can 
be produced by the wet coating method. When the life-
time of coated and non-coated bearings by friction test 
was compared, it was seen that the lifetime of uncoated 
bearings lasted 150 h, while PI coated bearings lasted 
500 h. Moreover, PI coatings on steel surfaces may lower 
the overall consumption of lubricants due to decreasing 
of wear [172].

Tribological and wear properties can be improved by 
using polyimide/epoxy resin-polytetrafluoroethylene (PI/
EP-PTFE) bonded solid lubricant coatings filled with silver 
nanoparticles. Better friction and anti-wear abilities of 
steel materials were obtained compared to coatings with 
RP-3 aviation kerosene (Fig. 11) [173].

In another study, PTFE and SiC filled PI composite coat-
ings on aluminium substrates improved the mechanical 
and tribological properties. The results showed that the 
fillers lower the friction coefficient from 0.38% to 0.18%. 
However, wear rate decreased slightly and thermal deg-
radation bahavior remained with same as pure PI coated 
material [27]. Cakir et al. developed PI nanocomposites 
that contain fluorine and SiO2 particles (perfluorooctyl-
triethoxysilane and tetraethyl orthosilicate) with sol–gel 
method. The PI nanocomposite coatings with 5–10% 
reinforcement amount improved the hydrophobicity, 
wear and thermal resistance, adhesion, hardness and, 
methyl ethyl ketone solvent resistance [174]. Same group 
synthesized the new PI (PIF) with 6FDA (hexafluoroiso-
propylidene diphthalic anhydride) and/or NTDA (1,4,5,8 

Fig. 11   Friction coefficient and wear life graphics of PI/EP-PTFE and Ag nanoparticles (RP-3 lubrication) coated steel [173]
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naphthalenetetracarboxylic dianhydride) and terminated 
with 1H,1H-perfluorooctylamine (PFOA) (1% of the PI 
chains). Then, the PIF polymer was coated on aluminum 
substrates by using a 75-μm wire-wound applicator and 
thermal imidization was conducted. The test results reveal 
that the properties of the PIF coating improved the glass 
transition temperature, thermal stability, gloss value, abra-
sion resistance and, pendulum hardness value when com-
pared with neat PI coating [175].

Recently, the tribological and thermo-degradation 
properties of steel materials were enhanced by carbon 
based nanoparticles such as multi‐walled carbon nano-
tubes (MWCNT), graphene etc. filled PI coatings [176–178].

4.6.2 � Carbon fiber

Carbon fibers are high performance fibers that consisted 
at least 92% carbon atoms. These fibers are produced 
from different precursors such as polyacrylonitrile fiber 
and pitch. The production steps are high temperature 
oxidation, carbonization and graphitization processes 
[179]. Carbon fibers have high specific strength and high 
modulus, so they are used to produce composite materials 
for in aerospace, automotive, and sporting goods [180]. 
PIs are one of the preferred organic matrices for hybrid 
coatings or nanocomposites due to high thermal resist-
ance, mechanical strength, chemical inertness and also, 
adhesion properties. PI coatings are applied to the carbon 
fibers to enhance mechanical or thermal properties of the 
materials.

Naganuma et al. produced PI coated carbon fibers by 
high temperature vapor deposition polymerization (VDP) 
method and thermal imidization process. Two types of PI 
were synthesized which are PMDA and ODA-based that 
coated on carbon fiber and 3,4,3′,4′-benzophenone tetra-
carboxylic dianhydride (BTDA) and 4,4′-methylendianiline 
(MDA)-based that used as the matrix polymer. Mechanical 

tests showed that PI nano-coating (100 nm) improved the 
tensile strength (from 5.31 ± 0.29 to 5.76 ± 0.25 GPa) and 
Weibull modulus (from 20.8 to 25.1) of the T1000GB carbon 
fiber (Fig. 12) [180] Similar results were obtained in another 
study [181]. It was reported that PI coating on carbon fib-
ers by especially VDP coating method heals the nano-flaws 
on the carbon fiber, since small-sized monomers and poly-
mers penetrate into the nano-flaws [182]. Electrophoretic 
deposition technique which is more economical and envi-
ronmental according to VDP method is also used to pro-
vide strong adhesion mechanism between PI and carbon 
fiber due to chemical bonding and increased decomposi-
tion temperature of carbon fiber (from 330 °C to 545 °C) 
indicating that the PI coating suppresses the oxidation of 
carbon fiber [183]. Organic solvent-free PI coating tech-
niques with epoxy systems [184], photodegradation prop-
erty of methylene orange [185], PI-silica hybrid colloidal 
composite coating which improves the thermal resistance 
of carbon fiber up to 600 °C [186] and sol–gel process for 
polyimide coating [187] were also studied.

4.6.3 � Textiles

By coating the PI films on different textile materi-
als, functional properties such as high heat resist-
ance, flame retardant and chemical resistance can be 
gained. Hybrid membranes were produced by coating 
PI nanofibers onto Kevlar fabric for protection against 
heat and flame. First, organo-soluble PI was synthesized 
from 4,4′-(4,4′-isopropylidenediphenyl-1,1′-diyldioxy) 
dianiline and 4,4′-oxydiphthalic anhydride and then, 
obtained PI dissolved in DMF and deposited onto Kevlar 
fabric substrate by electrospinning method. [188]. Same 
technique was applied onto polyester fabrics [189]. The 
thermal and tensile properties of p-aramid yarns were 
improved by PI film coating by impregnation of PAA 
and imidization at high temperature. Lee et. al. coated 

Fig. 12   SEM images and Weibull modulus graphics of the PI coated and non-coated T1000GB carbon fiber [180]
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poly(N,N’-bis(phenoxyphenyl)-pyromellitimide) based 
on PMDA and ODA onto p-aramid yarns with high tem-
perature (350 °C) imidization process to increase tensile 
strength and thermal resistance [190]. Recently, Hicyilmaz 
et al. converted conventional fabrics to high performance 
textile materials by PI coating of polyester and cotton fab-
rics with low temperature imidization process (at 200 °C) 
(Fig. 13) [32]. Also flame retardant property of PI coating 
can be applied onto carbon-blended aluminized (E-glass-
based) and non-aluminized (basofil/nomex/carbon-based) 
firefighting suit fabrics [191]. Furthermore, in wearable 
energy applications, PI coatings can be applied to provide 
a smooth surface in multiple layers in cotton, polyester 
and glass fabrics. By PI coating, surface roughness of the 
fabrics was decreased and the service life, performance 
and stability of the dye sensitized solar cells on textiles for 
wearable energy harvesting applications were increased 
[192].

5 � Commercialization of polyimide coatings 
and future studies

Optical fibers were used in a wide range of area from medi-
cal instruments to industrial laser systems. These materi-
als are very crucial and expensive parts, so they must be 
protected against environmental conditions. Fiberguide™ 
produced PI coated optical fibers and fused silica capil-
lary tubes that are used in medical laser, chromatography, 
bio-analytical sensing, spectroscopy or industrial laser 
system applications needed high-temperature steriliza-
tion or curing process. PI coating provides thermal and 
dimensional stability to the optical fibers [193]. Fiber-
core™ produce high and low temperature resistance, 
flexible and light sensitive PI coated optical fibers. These 
products are used in geo-sensors, bio-medical sensors, 

high temperature sensors, or chemical resistance sensors 
[194]. Thorlabs produces high temperature resistant (up 
to 350 °C), chemical resistant, autoclavable and vacuum 
compatible PI coated single-mode and multimode-optical 
fibers, used in oil and gas sensing, aerospace, military, data 
communication, and medical applications [195]. iXBlue 
Photonics is another company that produces PI coated 
optical fibers with high temperature and radiation resist-
ance [65]. Molex provides PI coated optical fiber and fused 
silica capillary tubing for medical, scientific and industrial 
applications [196, 197]. Zeus Inc. provides PI coated tubing 
and wires [198]. Hilgenberg-GMBH produce PI coated nee-
dles that are resistant to bending and cracks [199]. Acu-
lon firm makes nanoscale PI coatings on the metal part, 
LCD, plasma projection scenes or industrial pipes etc. to 
obtain hydrophobic and oleophobic surfaces [200]. High 
dielectric strength PI coating material was developed for 
insulation of magnets, and different substrates by Com-
posite Technology Development Inc [201]. Also different 
varnishes most of them based on the PAA precursor solu-
tion of PI are in the market for heat resistant coatings [136, 
202–207]. On the other hand, coatable PI films or tapes 
are in the market and commonly used for wide range of 
applications [8, 208–212].

Morover, PI can be coated on cooking articles to provide 
resistance to detergents, flame resistance and also, adhe-
sion to an anodized support, thermal conductivity and 
non-sticking properties [213, 214], and also, glass contain-
ers used in several areas such as pharmaceutical packages 
coated with PI to low-friction property [215].

With the development of technology, the interest 
and need for high performance polymers has increased. 
PIs have a wide range of applications from electronics 
to textiles, and the disadvantages of PIs are reduced by 
developing new synthesis and production methods. For 
example; new types of PIs, multi-functional [36, 44, 64, 101, 

Fig. 13   Images (left), young modulus (middle) and thermal gravimetric analysis (right) graphics of non-coated, PAA and PI coated PET fab-
rics [32]
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216–218], soluble [175, 219, 220] and colorless [221–226] 
were produced. Furthermore, the properties of PI polymers 
are further enhanced by the addition of functional micro 
and nanoparticles such as metal oxides [140, 227–229] and 
graphene derivatives [230–233]. In recent years, studies 
have been focused on the synthesis of special PIs for the 
desired properties [64, 230], as well as the development of 
low-cost polymer production and coating methods [234]. 
These developments will expand the application area of 
the PI coated materials.

6 � Conclusion

In this review, the most common coating applications of 
PIs are summarized, the coating methods and the effects 
of PIs on coated materials are explained in depth. PI is an 
important polymer for technical coating applications due 
to its superior thermal resistance, resistance to external 
factors and mechanical properties in a wide range of prop-
erties. PIs can be applied to various substrates such as vari-
ous fibers (optical fibers, carbon fibers etc.), metal sheets 
/ wires and textile materials to increase their temperature 
resistance, corrosion-wear resistance and mechanical 
strength. It can be used in microelectronic devices and bat-
teries, gas separation systems, medical devices in order to 
provide insulation against environmental conditions and 
protection against working conditions, and also in sen-
sor systems for determination of humidity, temperature 
and salinity. In this context, researchers are working with 
micro / nanoparticle additives or various synthesis tech-
niques to develop new PI coatings. Especially new coating 
methods pave the way for the development of high-tech 
products that require high temperatures in applications 
such as space. In addition, PI aerogels, foams, membranes 
and nanocomposites with multifunctional properties have 
come to the fore in applications in recent years. As a result, 
future work on PI coatings will focus more on new multi-
functional new coating applications and advanced materi-
als including the synthesis of new additives and new types 
of polyimides.
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