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Abstract
In this paper, we propose a novel method that fits linear complementarity problems arising in interactive rigid-body 
simulations, based on the accelerated modulus-based Gauss–Seidel (AMGS) method. We give a new sufficient condition 
for the convergence of the generated sequence under a milder condition on the matrix splitting than the special case 
of the AMGS method. This gives a flexibility in the choice of the matrix splitting, and an appropriate matrix splitting can 
lead to a better convergence rate in practice. Numerical experiments show that the proposed method is more efficient 
than the simple application of the AMGS method, and that the accuracy in each step of the proposed method is superior 
to that of the projected Gauss–Seidel method.

Keywords  Iterative methods for linear systems · Dynamics of multibody systems · Linear complementarity problems · 
Interactive simulations

1  Introduction

In rigid-body simulations, interactions (for example, nor-
mal forces) between rigid bodies are often mathematically 
modeled as constraints. For computing these constraint 
forces, we usually need to solve certain equations. Two 
representative constraint formulations for rigid-body 
simulations are acceleration-based formulations [3] and 
velocity-based formulations [1]. In the acceleration-based 
formulations, the constraints are described with forces 
and accelerations of rigid bodies; we first compute forces 
and accelerations, then integrate them to obtain velocity 
changes. On the other hand, in the velocity-based formu-
lations, the variables in the constraints are impulses and 
velocities of the rigid bodies. In this paper, we focus on 
the velocity-based formulations, since the velocity-based 
formulations are widely used and are known to be superior 
to the acceleration-based formulations in many aspects 

(for example, see [9, 14]). In recent years, position-based 
formulations [8] have also been developed for rigid-body 
simulations. The position-based method was originally 
proposed for cloth simulations [7], but it is widely used 
for various simulations especially in the context of com-
puter graphics [6].

There are two main categories for solving constraints, 
iterative approaches and direct approaches. Our interest in 
this paper is the iterative approaches rather than the direct 
approaches, since the direct approaches such as pivoting 
methods often suffer from time complexity and numeri-
cal instability as pointed in [13]. In the impulse-based 
iterative approaches [9], impulses are applied to the rigid 
bodies sequentially, until certain convergence conditions 
are satisfied. Tang et al. [16] proposed an impulse-based 
energy tracking method that computes accurate veloci-
ties by applying impulses iteratively. This method implic-
itly computes relative velocities after collisions, since an 
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explicit computation of the velocities may lead to physi-
cally inaccurate results when multiple contacts occur 
simultaneously.

Contact constraints are frequently modeled in a form 
of complementarity problems [4]; in particular, linear 
complementarity problems (LCPs) give mathematical 
formulations for frictionless contacts. For frictional con-
tacts, we can use nonlinear complementarity problems 
(NCPs) to formulate accurate Coulomb friction [18], or, as 
we will discuss later in Sect. 4.1, we can use boxed LCPs 
for approximated contact friction which employs fric-
tion pyramids instead of accurate friction cones. Among 
various iterative methods for solving LCPs, the projected 
Gauss–Seidel (PGS) method [5] has many extensions for 
solving contact constraints [9, 10, 14]. Another iterative 
approach for solving LCPs is the use of modulus-based 
methods. Bai [2] established modulus-based matrix split-
ting iteration (MMSI) methods, which include modulus-
based Jacobi (MJ), modulus-based Gauss–Seidel (MGS), 
modulus-based successive over relaxation (MSOR), and 
modulus-based accelerated overrelaxation (MAOR) itera-
tion methods as special cases. Mezzadri and Galligani [12] 
proposed an extension of the MMSI methods so that they 
can be used to solve horizontal linear complementarity 
problems (HLCPs). Zheng and Vong [19] examined the con-
vergence of the MMSI methods for HLCPs, and they pro-
posed a more general convergence result. Zheng and Yin 
[20] proposed accelerated modulus-based matrix splitting 
iteration (AMMSI) methods as an improvement of Bai [2]. In 
a similar way to the MMSI methods, the AMMSI methods 
include accelerated modulus-based Jacobi (AMJ), acceler-
ated modulus-based SOR (AMSOR), and accelerated mod-
ulus-based accelerated overrelaxation (AMAOR) iteration 
methods. Furthemore, the AMMSI methods also devised 
the accelerated modulus-based Gauss–Seidel (AMGS) 
method.

In this paper, we give a theoretical proof on the con-
vergence of the accelerated modulus-based Gauss–Seidel 
(AMGS) method. Zheng and Yin [20] already discussed the 
convergence in a general case, but their assumption for 
the case of positive-definite coefficient matrices is too 
restrictive to apply the same discussion to rigid-body sim-
ulations. We propose another sufficient condition of the 
convergence of the AMGS method when the coefficient 
matrix of the LCP is positive definite, so that we can choose 
a parameter which leads to a faster convergence. We also 
show a simple example that is covered by the condition we 
propose, but is not covered by the condition of a general 
case proposed in [20].

We also improve the efficency of the proposed method. 
In many applications of real-time simulations, interactive 
computer graphics and operations are considered most 
important, since, if the computation in each simulation step 

is considerably slower than real time, the quality of the users’ 
experience would be seriously degraded. Since the AMGS 
method proposed in [20] is not designed for interactive 
rigid-body simulations, a simple application of the AMGS 
method causes inefficiency and it is a serious disadvantage 
for real-time simulations. The proposed method focuses 
the update formula in the AMGS method and exploits the 
structures related to the generalized velocity vector of rigid 
bodies.

Through numerical experiments, we observed that the 
proposed AMGS method attained shorter computation time 
than the original AMGS method. Furthermore, its conver-
gence rate in each iteration was better than that of the PGS 
method. These results indicate that the proposed method 
is useful for practical real-time simulations. Mezzadri [11] 
showed that under a specific condition, the PGS method 
and the AMGS method are equivalent in that AMGS itera-
tions can be written as PGS iterations. Mezzadri also pointed 
out that the AMGS method also performs like the projected 
successive over-relaxation (PSOR) method under a specific 
parameter choice, and this is consistent with our numerical 
results.

The outline of this paper is as follows. In Sect. 2, we briefly 
introduce a formulation of velocity-based constraints as an 
LCP. We also discuss the PGS method and the AMGS method 
to solve LCPs. We prove convergence theorems of the AMGS 
method in Sect. 3, and the application of the AMGS method 
to rigid-body simulations is developed in Sect. 4. In Sect. 5, 
we will show numerical results to verify the efficiency of the 
AMGS method. Finally, we will give a conclusion in Sect. 6.

2 � Preliminaries

2.1 � Linear complementarity problem 
with velocity‑based constraints

For the latter discussions, we briefly introduce an LCP that 
arises from velocity-based constraints. For more details, the 
readers can refer to [4, 15, 17].

During a rigid-body simulation, we keep tracking move-
ments of the rigid bodies in multiple time periods, therefore, 
an entire simulation is divided into a sequence of simula-
tion steps, and each simulation step corresponds to a small 
time step. Since the constraints on the rigid bodies should 
be satisfied at each time, we solve the following LCP in each 
simulation step:

(1)

⎧⎪⎨⎪⎩

� ≥ 0

JM−1JT� + Jv + b ≥ 0

(JM−1JT� + Jv + b)T� = 0
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In this paper, we use the superscript T to denote the trans-
pose of a vector or a matrix.

The decision variable in this LCP is � ∈ ℝ
m , which is the 

impulse vector applied to the rigid bodies in the constraint 
space. The first constraint in (1) requires � to be nonnegative 
to ensure that the constraint impulse must be repulsive.

The second constraint in (1) corresponds to the velocity 
constraints in the rigid-body simulation. The vectors b ∈ ℝ

m 
and v ∈ ℝ

n are the bias vector in a constraint space and the 
generalized velocity vector of rigid bodies, respectively. 
More precisely, when we have N rigid bodies, v is a vector 
that consists of N linear and angular velocities, i.e.,

where v i ∈ ℝ
3 and �i ∈ ℝ

3 are the linear velocity and 
the angular velocity of the ith rigid body, respectively, 
for i = 1,… ,N ; thus the length of v is n = 6N . The matrix 
J ∈ ℝ

m×n is the Jacobian matrix corresponding to the 
velocity constraints. The generalized mass matrix of the 
rigid bodies M ∈ ℝ

n×n consists of masses and inertia ten-
sor matrices in the diagonal positions:

where mi ∈ ℝ and Ii ∈ ℝ
3×3 are the mass and the inertia 

tensor matrix of the ith rigid body, respectively. We also 
use Er ∈ ℝ

r×r to denote the identity matrix of order r. The 
inertia tensor matricies I1,… , IN are symmetric, so is M.

The third constraint in (1) is a complementarity condi-
tion. We can understand this complementarity condition as 
follows. If (JM−1JT� + Jv + b)i > 0 holds for some i, then 
the rigid bodies are moving away from each other in the 
direction of the ith constraint, therefore, the ith constraint 
should be “inactive”. However, � is the impulse vector, thus 
𝜆i > 0 implies that the ith constraint must be “active”. Hence, 
𝜆i > 0 and (JM−1JT� + Jv + b)i > 0 should not hold simul-
taneously, and this requirement is implemented in the com-
plementarity condition.

By denoting q = Jv + b and A = JM−1JT and introducing 
an auxiliary variable w ∈ ℝ

m , the LCP (1) can be expressed 
in a general LCP as follows:

v =
(
vT
1
�
T
1
vT
2
�
T
2
⋯ vT

N
�
T
N

)T

(2)M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1E3

I1
m2E3

I2
⋱

mNE3

IN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)LCP(q,A)

⎧⎪⎨⎪⎩

A� + q = w

wT
� = 0

�,w ≥ 0

It is known that if the constraints are non-degenerate, 
the Jacobian matrix J is full row rank and the matrix 
A = JM−1JT  is positive definite (see [5], for example). 
Throughout this paper, we assume that A is positive defi-
nite. Since any positive definite matrix is a P-matrix, A is 
also a P-matrix and therefore the LCP (3) has a unique solu-
tion for an arbitrary vector q.

At the end of this subsection, we should note that the 
input data b, v , J and M vary in accordance with simulation 
steps. If we express the time dependence explicitly, they 
should be b(t)

, v(t), J(t) and M(t) where t is the simulation step. 
However, in this paper, we mainly focus on solving (1) in each 
simulation step, therefore, we usually drop the simulation 
step (t) from b(t)

, v(t), J(t) and M(t).

2.2 � Projected Gauss–Seidel method

In the LCP (3) from the rigid-body simulation, the matrix 
A has a structure such that A = JM−1JT  . The projected 
Gauss–Seidel (PGS) method [9] is designed to solve more 
general LCPs (3) in the sense that the assumption for A is 
only positive definiteness. The PGS method is an iterative 
method and generates a sequence 

{
�
k
}∞

k=0
⊂ ℝ

m.
A key property in the PGS method is to decompose A into 

A = D − L − U such that D is a diagonal matrix, L a strictly 
lower triangular matrix, and U a strictly upper triangular 
matrix. Since we assume A is a positive definite matrix, D is 
invertible. Due to this decomposition, A� + q = 0 is equiva-
lent to � = D−1(L� + U� − q).

Taking this formula and the complementarity condition 
into consideration, the PGS method computes the next itera-
tion �k+1 by the following update formula:

Throughout this paper, we use max {a,b} ( min {a,b} ) to 
denote the element-wise maximum (minimum, respec-
tively) of two vectors a and b . The PGS method continues 
the update by (4) until the sequence 

{
�
k
}∞

k=0
 converges 

enough, or the number of the iterations reaches a certain 
limit.

In the rigid-body simulation, the initial vector �0 is usu-
ally set as a zero vector 0 or the impulse vector obtained in 
the previous simulation step. Since the initial vector often 
affects the performance of iterative approaches, the use of 
the solution from the previous simulation step makes the 
convergence faster [9]. Such a technique is called warm start.

2.3 � Accelerated modulus‑based Gauss–Seidel 
method

For solving the general LCP (3), Bai [2] devised the fol-
lowing implicit fixed-point equation that is essential 

(4)�
k+1 = max

{
0,D−1

(
L�k+1 + U�k − q

)}
.
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for the modulus-based matrix splitting iteration (MMSI) 
methods:

Here, the matrices M0 ∈ ℝ
m×m and N0 ∈ ℝ

m×m are a split-
ting pair of A such that A = M0 − N0 . � ∈ ℝ

m×m and 
� ∈ ℝ

m×m are two diagonal matrices whose diagonal 
entries are positive. �1 ∈ ℝ

m×m and �2 ∈ ℝ
m×m are non-

negative diagonal matrices such that � = �1 +�2 . We 
should emphasize that the variable in (5) is x , and we use 
|x| to denote the element-wise absolute values of x . The 
relation between x and the pair of � and w in (3) will be 
discussed in Theorem 1.

By setting �1 = � , �2 = O , and � =
1

�
Em with a 

parameter 𝛾 > 0 in (5), we can obtain a simplified implicit 
fixed-point equation:

Based on (6), the iteration of the MMSI method can be 
derived as follows:

We decompose A into A = D − L − U in the same way as 
the PGS method. Set � = 2 , and let 𝛼 > 0 and 𝛽 > 0 be two 
parameters. Then, we can derive the update formula of 
four methods from (7); the modulus-based Jacobi (MJ) 
by setting M0 = D in (7), the modulus-based Gauss–Sei-
del (MGS) by M0 = D − L , the modulus-based successive 
over relaxation (MSOR) by M0 =

1

�
D − L , and the modulus-

based accelerated overrelaxation (MAOR) iteration method 
by M0 =

1

�
(D − �L) , respectively.

Zheng and Yin [20] utilized two splitting pairs of the 
matrix A such that A = M1 − N1 = M2 − N2 , and devised 
a new equation based on (5):

Zheng and Yin [20] established the following theorem 
to show an equivalence between (8) and LCP(q,A) in (3). 
Since a detailed proof is not given in [20], we give the 
proof here.

Theorem 1  [20] The following statements hold between (8) 
and LCP(q,A) : 

	 (i)	 i f  (�,w) i s  a  s o l u t i o n  o f  LCP(q,A) ,  t h e n 
x =

1

2
(� −1

� −�
−1w) satisfies (8).

	 (ii)	 if x satisfies (8), then the pair of � = � (|x| + x) and 
w = �(|x| − x) is a solution of LCP(q,A).

(5)(M0� +�1)x = (N0� −�2)x + (� − A� )|x| − q

(6)(M0 + ��)x = N0x + (�� − A)|x| − �q.

(7)(M0 + ��)xk+1 = N0x
k + (�� − A)

|||x
k||| − �q.

(8)
(M1� +�1)x = (N1� −�2)x + (� −M2� )|x|

+ N2� |x| − q.

Proof  We first prove (i). Since (�,w) is a solution of 
LCP(q,A) , (�,w) satisfies the four constraints, A� + q = w , 
wT� = 0 , � ≥ 0 and w ≥ 0 . The first constraint A� + q = w 
is equivalent to

From the rest three constraints and the fact that �  
and � are diagonal matrices whose diagonal entries 
are positive, if x =

1

2
(� −1

� −�
−1w) , it holds that 

|x| = 1

2
(� −1

� +�
−1w) . Therefore, x satisfies

and this is equivalent to (8).
To  p r o v e  ( i i ) ,  f r o m  ( 9 ) ,  i t  h o l d s  t h a t 

A� (|x| + x) + q = �(|x| − x)  .  B y  t h e  r e l a t i o n s 
� = � (|x| + x) and w = �(|x| − x) , we obtain A� + q = w . 
Since �  and � are positive diagonal matrices, it is easy 
to check that � and w are nonnegative vectors. Finally, it 
is also easy to show the element-wise complementarity 
between � and w . 	�  ◻

We may use Theorem  1 to establish some iterative 
methods for solving LCP(q,A) , but we need to set appro-
priate matrices for the implicit fixed-point equation (8) in 
actual computations. In particular, the splitting pair of � 
is not unique. By fixing �1 = � , �2 = O and � =

1

�
Em , we 

derive a simplified update equation of (8) as follows:

As mentioned in Sect. 2.1, we use Er ∈ ℝ
r×r to denote the 

identity matrix of order r. Based on this equation, Zheng 
and Yin [20] provided an update formula of the AMMSI 
methods:

When the sequence 
{
xk
}∞

k=0
 converges enough, the 

AMMSI methods output the impulse vector by using the 
relation � = � (|x| + x) =

|x|+x
�

 . As Mezzadri  [11] points 

out, every AMMSI method can be written in a projection 
form, and the value of � does not play an important role in 
convergence rates as it just changes the first iteration of 
the method in its projection form.

By changing the splitting pairs of A , the update for-
mula (11) above yields variant methods; MMSIM ( M2 = A 
and N2 = O ), the accelerated modulus-based Jacobi (AMJ) 
iteration method ( M1 = D , N1 = L + U , M2 = D − U and 
N2 = L ), the accelerated modulus-based SOR (AMSOR) itera-
t ion method (  M1 =

1

�
D − L ,  N1 =

(
1

�
− 1

)
D + U  , 

(� + A� )(� −1
� −�

−1w)

= (� − A� )(� −1
� +�

−1w) − 2q.

(9)(� + A� )x = (� − A� )|x| − q

(10)(M1 + ��)x = N1x + (�� −M2)|x| + N2|x| − �q.

(11)
(M1 + ��)xk+1

= N1x
k + (�� −M2)

|||x
k||| + N2

|||x
k+1||| − �q



Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

M2 = D − U and N2 = L ), and the accelerated modulus-
based accelerated overrelaxation (AMAOR) iteration method 
(  M1 =

1

�
(D − �L)  ,  N1 =

1

�
((� − 1)D + (� − �)L + �U)  , 

M2 = D − U and N2 = L).
In particular, the update formula of the accelerated 

modulus-based Gauss–Seidel (AMGS) method in [20] is 
derived with M1 = D − L , N1 = U , M2 = D − U and N2 = L 
as follows:

Let �xk = xk+1 − xk be the difference between xk and xk+1 . 
Then, (12) is equivalent to

By Theorem 1 and � =
1

�
Em , the sequence {�k}∞

k=0
 for the 

LCP (3) can be associated with the sequence {xk}∞
k=0

 gener-
ated by (12) by the relation �k =

|xk|+xk
�

=
2

�
max{0, xk} , 

thus �k is a multiple of the positive part of xk . This moti-
vates us to split xk into the positive and negative parts 
s u c h  t h a t  xk = xk

+
− xk

−
  ,  w h e r e 

xk
+
= max{0, xk} =

1

2
(||xk|| + xk)  a n d 

xk
−
= −min{0, xk} =

1

2
(||xk|| − xk) . From the relations 

xk =
�

2
�
k − xk

−
 and ||xk|| = �

2
�
k + xk

−
 , (14) is equivalent to

(12)
(D + �� − L)xk+1

= Uxk + (�� − D + U)
|||x

k||| + L
|||x

k+1||| − �q.

(13)
(D + ��)�xk

= Lxk+1 − (�� + D − U)xk + (�� − D + U)
|||x

k|||

(14)+ L
|||x

k+1||| − �q.

Therefore, for computing �xk
i
 , we only need the ith com-

ponent of xk
−

 , which will be denoted as (xk
−
)i , since D and 

� are diagonal matrices. This simplifies the computation 
of �xk . Recalling the decomposition of A = D − L − U , we 
compute �xk

i
 for each i = 1,… ,m by

We can summarize a framework of the AMGS method as 
follows.

Method 1  (the AMGS method for (3))
Choose a nonnegative vector �0 ∈ ℝ

m as an initial vec-
tor. Generate the iteration sequence {�k}∞

k=0
 by the follow-

ing procedure: 

(D + ��)�xk = �L�k+1 − (�� + D − U)(
�

2
�
k − xk

−
)

+ (�� − D + U)(
�

2
�
k + xk

−
) − �q

= �L�k+1 − �(D − U)�k + 2��xk
−
− �q.

(15)

�xk
i
=

�

Dii + ��ii

(
i−1∑
j=1

Lij�
k+1
j

− Dii�
k
i

+

m∑
j=i+1

Uij�
k
j
+ 2�ii(x

k
−
)i − qi

)

= −
�

Aii + ��ii

(
i−1∑
j=1

Aij�
k+1
j

+

m∑
j=i

Aij�
k
j
+ qi − 2�ii(x

k
−
)i

)
.

x0 ← γ
2λ

0

repeat k = 1, 2, . . .
for i = 1, 2, . . . ,m do

xk+1
i ← xk

i−
γ

Aii+γΩii

(∑i−1
j=1 Aijλ

k+1
j +

∑m
j=i Aijλ

k
j + qi − 2Ωii(xk

−)i
)

λk = 2
γx

k
+.

until xk satisfies a certain convergence threshold
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3 � Convergence theorem

In this section, we focus on the convergence of the acceler-
ated modulus-based Gauss–Seidel (AMGS) method.

Although Zheng and and Yin [20] gave a generic form of 
a sufficient condition of the convergence, a more detailed 
discussion of the case that A is a positive definite matrix 
is somewhat limited: � is assumed to be a multiple of the 
identity matrix ( � = 𝜔̄Em for some 𝜔̄ > 0 ), so we cannot 
take � = �D that is actually used in the numerical experi-
ments in [20].

Since the matrix A is always positive definite in the 
rigid-body simulation, it is worthwhile to give a sufficient 
condition of the convergence when A is positive definite 
while allowing a more generic form of � . For example, if 
we can take � = �D , we may be able to improve the con-
vergence, as we will show in Sect. 5. Here, � ∈ ℝ is a posi-
tive constant, and D is the diagonal matrix whose diagonal 
elements are those of A . We also give an example in Exam-
ple 1 that is covered by the theorem we will show, but is 
not covered by theorems in [20].

We use ‖x‖ =
√
xTx  to denote the Euclidean norm of 

x ∈ ℝ
m . We also use ‖L‖ to denote an arbitrary norm of 

a matrix L ∈ ℝ
m×m that is consistent with the Euclidean 

vector norm, so that we can employ ‖Lx‖ ≤ ‖L‖‖x‖ . Espe-
cially, ‖L‖2 represents the spectral norm of a matrix L.

The following theorem covers the case that � = �D , 
which will be actually used in numerical experiments of 
Sect. 5.

For the subsequent discussion, we assume that A is a 
symmetric positive definite matrix and hence U = LT  . Let 
�̄ = 𝛾� . The matrix �̄ is also a positive diagonal matrix.

Theorem 2  Let A be a symmetric positive definite matrix, �̄ 
be a positive diagonal matrix, and A = D − L − LT  be a split-
ting of the matrix A such that D is a positive diagonal matrix 
and L is a strictly lower triangular matrix. Also, let ‖⋅‖ be an 
arbitrary submultiplicative matrix norm consistent with the 
Euclidean vector norm. Then, if the inequality

holds, the iteration sequence {�k}∞
k=0

⊂ ℝ
m generated 

by Method  1 with an arbitrary nonnegative initial vec-
tor �0 ∈ ℝ

m converges to the unique solution �∗ ∈ ℝ
m of 

LCP(q,A).

Proof  In the AMMSI methods [20] from which the AMGS 
was derived, we chose �1 = �,�2 = O and � =

1

�
Em for 

the simplif ied f ixed-point equation (10).  Let 
(�∗,w∗) ∈ ℝ

m ×ℝ
m be a solution of LCP(q,A) , and let 

x∗ =
1

2
(��∗ −�

−1w∗) . From Theorem 1, x∗ satisfies (10), 

2‖L‖ <
���(D − L + �̄)−1

���
−1

− ��D − L − �̄��

and the convergence of 
{
�
k
}∞

k=0
 to �∗ can be guaranteed 

by that of 
{
xk
}∞

k=0
 to x∗ , therefore, we discuss the conver-

gence of the sequence 
{
xk
}∞

k=0
 . Subtracting (10) with x∗ 

from the update formula (11), we obtain

I n  t h e  s e t t i n g  o f  t h e  A M G S  m e t h o d 
( M1 = D − L,N1 = LT ,M2 = D − LT  and N2 = L ), we can 
further evaluate this inequality as follows:

Using the triangular inequality ‖�a� − �b�‖ ≤ ‖a − b‖ for 
any two vectors a and b of the same dimension, we have

and it holds that

under the assumption of ��(D − L + �̄)−1��‖L‖ < 1 . There-
fore, if

or equivalently

(M1 + �̄)(xk+1 − x∗)

= N1(x
k − x∗) + (�̄ −M2)(

|||x
k||| − |x∗|)

+ N2(
|||x

k+1||| − |x∗|).

(xk+1 − x∗) = (D − L + �̄)−1LT (xk − x∗)

+ (D − L + �̄)−1(�̄ − D + LT )(
|||x

k||| − |x∗|)
+ (D − L + �̄)−1L(

|||x
k+1||| − |x∗|).

(16)

���x
k+1 − x∗���
≤
���(D − L + �̄)−1LT

���
���x

k − x∗���
+
���(D − L + �̄)−1(�̄ − D + LT )

���
���x

k − x∗���
+
���(D − L + �̄)−1L

���
���x

k+1 − x∗���
≤
���(D − L + �̄)−1

���
���L

T���
���x

k − x∗���
+
���(D − L + �̄)−1

���
����̄ − D + LT

���
���x

k − x∗���
+
���(D − L + �̄)−1

���‖L‖
���x

k+1 − x∗���
≤
���(D − L + �̄)−1

���
�‖L‖ + ��D − L − �̄��

����x
k − x∗���

+
���(D − L + �̄)−1

���‖L‖
���x

k+1 − x∗���,

���x
k+1 − x∗���
≤

��(D − L + �̄)−1��
�‖L‖ + ��D − L − �̄��

�

1 − ��(D − L + �̄)−1��‖L‖
���x

k − x∗���

��(D − L + �̄)−1��
�‖L‖ + ��D − L − �̄��

�

1 − ��(D − L + �̄)−1��‖L‖
< 1,
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holds, we obtain the convergence of {xk}∞
k=0

 by the fixed-
point theorem and we know that x∗ is the unique point 
to which the sequence {xk}∞

k=0
 converges. Note that (17) 

implies ��(D − L + �̄)−1��‖L‖ < 1 . 	�  ◻

Based on Theorem 2, we obtain the following corollary.

Corollary 1  Let A be a symmetric positive definite matrix, �̄ 
be a positive diagonal matrix, and A = D − L − LT  be a split-
ting of the matrix A such that D is a positive diagonal matrix 
and L is a strictly lower triangular matrix. Also, let ‖⋅‖2 be the 
spectral matrix norm, �min be the minimum singular value of 
the matrix D − L + �̄ , and �max be the maximum singular 
value of the matrix D − L − �̄ . Then, if the inequality

holds, the iteration sequence {�k}∞
k=0

⊂ ℝ
m generated 

by Method  1 with an arbitrary nonnegative initial vec-
tor �0 ∈ ℝ

m converges to the unique solution �∗ ∈ ℝ
m of 

LCP(q,A).

Proof  By applying the spectral norm to (17), we get

From the fact that

holds for any invertible matrix P and its singular values �i , 
we have

Thus,

follows from the assumption and this completes the 
proof. 	�  ◻

Example 1  The following example gives a case that is appli-
cable to Corollary 1, but is not applicable to Theorem 4.1 
in [20]:

(17)2‖L‖ <
���(D − L + �̄)−1

���
−1

− ��D − L − �̄��

2‖L‖2 < 𝜎min − 𝜎max

2‖L‖2 < ���(D − L + �̄)−1
���
−1

2
− ��D − L − �̄��2.

‖‖‖P
−1‖‖‖2 = max

�i
�−1
i

=

(
min
�i

�i

)−1

‖‖‖(D − L + �̄)−1
‖‖‖
−1

2
= 𝜎min

‖‖D − L − �̄‖‖2 = 𝜎max.

2‖L‖2 < 𝜎min − 𝜎max

=
���(D − L + �̄)−1

���
−1

2
− ��D − L − �̄��2

Indeed, ‖L‖2 = 1 , �min =
1

2

�√
65 − 1

�
= 3.5311… , �max = 1 

and 2‖L‖2 < 𝜎min − 𝜎max holds. However, it holds that

so 𝜇(�̄) + 2𝜉(�̄) + 2𝜂(�̄) = 1.2653… > 1 and therefore 
the example does not fulfill the assumption of Theorem 1.4 
in [20].

4 � Accelerated modulus‑based matrix 
splitting iteration methods for interactive 
rigid‑body simulation

Since the AMGS method is a general method for LCPs, 
it is possible to simply apply the AMGS method to (3). 
However, explicit evaluation of A = JM−1JT  is inefficient 
even though the matrices J and M−1 are sparse. Thus, 
such a simple application of the AMGS method is not 
practical. To overcome this inefficiency, we modify the 
AMGS method so that it does not require the explicit 
evaluation of the matrix A . In a similar way to the AMGS 
method, we can also modify the AMSOR method for solv-
ing LCPs in the rigid-body simulations.

As already pointed out at above, the direct computa-
tion of A is unfavorable for real-time simulations. Thus, 
we should avoid the computations of 

∑i−1

j=1
Aij�

k+1
j

 and ∑m

j=i
Aij�

k
j
 in (15), which involve all the off-diagonal ele-

ments of A.
To improve the computational efficiency, we 

introduce an intermediate variables �k+1,i ∈ ℝ
m and 

vk+1,i ∈ ℝ
n . In particular, vk+1,i stores information of 

applied impulse [9, 17]. For i = 1,… ,m , let

where M̂ = M−1JT . By the definitions of A and q , it holds

A =

(
2 1

1 2

)
, D =

(
2 0

0 2

)
, L =

(
0 0

1 0

)
, �̄ =

(
2 0

0 2

)
, 𝛾 = 1

𝜇(�̄) =
���(D − L + �̄)−1(D − L − �̄)

���2 = 0.25

𝜉(�̄) =
���(D − L + �̄)−1LT

���2 =
√
17

16
= 0.2576…

𝜂(�̄) =
���(D − L + �̄)−1L

���2 = 0.25,

(18)�
k+1,i =

(
�k+1
1

… �k+1
i−1

�k
i
… �k

m

)T

(19)vk+1,i = v + M̂�
k+1,i
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and this leads to

Due to the relation �k =
2

�
xk
+

 , we can compute �k+1,i+1 by 

updating only the ith position of �k+1,i,

i−1∑
j=1

Aij�
k+1
j

+

m∑
j=i

Aij�
k
j
+ qi =

(
A�k+1,i

)
i
+ qi

=
(
JM−1JT�k+1,i

)
i
+ (Jv)i + bi =

(
Jvk+1,i

)
i
+ bi

=

m∑
j=1

Jijv
k+1,i

j
+ bi ,

xk+1
i

= xk
i
+ �xk

i
= xk

i

−
�

Aii + ��ii

(
m∑
j=1

Jijv
k+1,i

j
+ bi − 2�ii(x

k
−
)i

)
.

Thus, from (19), we obtain

where M̂∗i is the ith column of M̂.
The following method summarizes the proposed 

AMGS method for rigid-body simulations.

Method 2  (the proposed AMGS method for rigid-body 
simulations)

Choose a nonnegative vector �0 ∈ ℝ
m as an initial vec-

tor. Generate the iteration sequence {�k}∞
k=0

 by the follow-
ing procedure: 

�
k+1,i+1 =

(
�k+1
1

… �k+1
i−1

2

�
(xk+1

+
)i �

k
i+1

… �k
m

)T

.

vk+1,i+1 = vk+1,i + M̂(�k+1,i+1 − �
k+1,i)

= vk+1,i + M̂∗i(�
k+1,i+1

i
− �k+1

i
),

M̂ = M−1JT

v1,1 ← v + M̂λ0

repeat k = 1, 2, . . .
for i = 1, 2, . . . ,m do

xk+1
i ← xk

i − γ
Aii+γΩii

(∑m
j=1 Jijv

k+1,i
j + bi − 2Ωii(xk

−)i
)

λk+1
i ← 2

γ max
{
0, xk+1

i

}

if i = m then
vk+2,1 ← vk+1,i + M̂∗i(λk+1

i − λk
i )

else
vk+1,i+1 ← vk+1,i +M∗i(λk+1

i − λk
i )

until xk satisfies a certain convergence threshold

̂

In Sect.  5, we compare the computational costs of 
Method 1 and Method 2, which is an optimized version 
of Method 1 for interactive rigid-body simulations. As the 
experiments will show, Method 2 achieves considerably 
lower computational costs than that of Method 1 in all 
cases, and is suitable for interactive rigid-body simulations.

4.1 � Linear complementarity problems with lower 
and upper bounds

In this section, we discuss a method for solving LCPs with 
lower and upper bounds on � , which often occur in the 
formulations of contact constraints with friction [14, 17]. 
We call such LCPs with lower and upper bounds “Boxed 
LCPs (BLCPs)”. Consider the following BLCP:

Here, l ∈ ℝ
m and u ∈ ℝ

m are the lower and the upper 
bounds, respectively. Without loss of generality, we 
assume 0 ≤ li < ui for each i = 1,… ,m.

We define a projection function of � to the interval l  
and u by

BLCP(q, l,u,A)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A� + q = w

l ≤ � ≤ u

for each i = 1,… ,m,

⎧⎪⎨⎪⎩

wi ≥ 0 (𝜆i = li)

wi ≤ 0 (𝜆i = ui)

wi = 0 (li < 𝜆i < ui).

pBLCP(�) = min {max {l,�},u}.
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Since l  is a nonnegative vector, so is pBLCP(�) . With this 
projection, we can give an AMGS method for Boxed LCPs 
as follows.

Method 3  (the AMGS method for Boxed LCPS in rigid-
body simulations)

Choose a nonnegative vector �0 ∈ ℝ
m as an initial vec-

tor. Generate the iteration sequence {�k}∞
k=0

 by the follow-
ing procedure: 

Fig. 1   A simulation of circles in Pool 1 and Pool 2. Small red points 
represent the contact points between the circles, and short red line 
segments the normal vectors at the contact points

Fig. 2   A simulation of vertically stacked circles. Small red points 
represent the contact points of the circles, and short red line seg-
ments the normal vectors at the contact points

x0 ← γ
2λ

0

λ1 ← λ0

M̂ = M−1JT

v1,1 ← v + M̂λ0

repeat k = 1, 2, . . .
for i = 1, 2, . . . ,m do

xk+1
i ← xk

i − γ
Aii+γΩii

(∑m
j=1 Jijv

k+1,i
j + bi − 2Ωii(xk

−)i
)

λk+1
i ← 2

γ pBLCP(xk+1
i )

if i = m then
vk+2,1 ← vk+1,i + M̂∗i(λk+1

i − λk
i )

else
vk+1,i+1 ← vk+1,i +M∗i(λk+1

i − λk
i )

until xk satisfies a certain convergence threshold

̂
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Note that BLCP(q, l,u,A) with l = 0 and u being a very 
large vector represents the same problem as LCP(q,A) , 
thus Method 3 can be considered as a generalization of 
Method 1.

5 � Numerical experiments

In this section, we show numerical results of several 
2-dimensional examples to verify the numerical perfor-
mance of the proposed method. All tests were performed 
on an Windows 8 computer with Intel Core i7-5500U (2.4 
GHz CPU) and 8 GB memory space.

In the numerical experiments, we utilized the warm-
start strategy [9], that is, the final solution obtained in 
a simulation step will be used as the first guess of the 
solution in the next simulation step. More precisely, let {
�
(t),k

}∞

k=0
 denote the sequence generated for solving 

LCP(q(t),A(t)) at a simulation step t. We set the number of 
iterations in a single simulation step to 10, that is, �(t),10 is 
used as the first guess �(t+1),0 . The initial point of the entire 
simulation is set as the zero vector (�(0),0 = 0) . To evaluate 
the accuracy of �(t),k , we use a residual function in [2]:

For the AMGS methods, we set � = 2 , and 𝜔̄ is chosen as ∑m

i=1
Dii

m�
 (the average of D11,… ,Dmm divided by � ) based on 

preliminary experiments.
For the numerical experiments, we use examples “Pool 

1”, “Pool 2” and “Stacking”; in the first two examples, rigid 
circles are stuffed into a small space, while, in the last case, 
rigid circles are vertically stacked.

Pool 1
Figure 1 displays an example with 221 circles in an area 

of 6 meters wide. All the circles have the same mass (2 
kilograms) and the same radius (21 centimeters). The coef-
ficients of friction are set to 0.1, and the coefficients of 
restitution are set to 0.2. When the coefficient of restitu-
tion is 1, collisions are perfectly elastic (i.e., no energy loss), 
and when the coefficient of restitution is 0, collisions are 
perfectly inelastic. The gravitational acceleration is set to 
9.80665 m/s

2 in the downward direction in the figure.
In Pool  1, the size n in the matrices J ∈ ℝ

m×n and 
M ∈ ℝ

n×n is 672, while the size m depend on the simula-
tion step t, since the number of contact points between 

(20)RES(�(t),k) =
‖‖‖min{�(t),k ,A�(t),k + q}

‖‖‖.

Fig. 3   Residuals of the sequence generated in the 100th simulation 
step for Pool 1

Fig. 4   Residuals of the sequence generated in the 100th simulation 
step for Pool 2

Fig. 5   Residuals of the sequence generated in the 100th simulation 
step for Stacking
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the circles changes as the simulation proceeds. During the 
entire simulation, the average of m is 516.

Pool 2 
The most part of this example is same as Pool 1, but the 

masses of the circles increases linearly from 1.0 kilograms 

Table 1   The iteration number and the computation time to reach 
10−4

Pool 1

Iteration Time (s)

PGS method 1452 0.042

Method 1[1
�
D] 766 1.251

Method 2[𝜔̄E
m

] 1522 0.055

Method 2[1
�
D] 766 0.023

Pool 2

Iteration Time (s)

PGS method 1359 0.042

Method 1[1
�
D] 744 1.428

Method 2[𝜔̄E
m

] 1393 0.048

Method 2[1
�
D] 744 0.028

Stacking

Iteration Time (s)

PGS method 16186 0.162

Method 1[1
�
D] 7754 0.293

Method 2[𝜔̄E
m

] 16431 0.183

Method 2[1
�
D] 7754 0.066

Fig. 6   The residuals in the entire simulation of Pool 1

Fig. 7   The residuals in the entire simulation of Pool 2

to 3.0 kilograms in accordance with their initial heights 
from the ground; circles in higher positions have larger 
masses than those in lower positions, and the mass of the 
heaviest circles (the top circles) are three times of that of 
the lightest circles (the bottom circles). This is expected 
that the convergence will be slower, since it is hard for the 
lower (lighter) circles to support higher (heavier) circles. 
The sizes n and m of the matrices are the same as Pool 1.

Stacking
Figure 2 displays a simple example with 30 vertically 

stacked circles of 18-centimeter radius. All circles have the 
same masses (1.0 kilograms), and the coefficients of resti-
tution are set to 0.2. The coefficients of friction are set to 
0.1, but no frictional forces are produced because of the 
arrangement of the circles. The sizes of n and m (average) 
are 48 and 14, respectively.

5.1 � Convergence in each simulation step

In each simulation step t, we execute only 10 iterations 
and we move to the next simulation step t + 1 with the 
first guess �(t+1),0 = �

(t),10 . In this subsection, we execute 
more iterations to compare the convergence of the PGS 
method and the proposed AMGS methods in each simula-
tion step. The average values of 𝜔̄ in the numerical experi-
ments are 1.928, 1.086, and 3.872 in Pool 1, Pool 2 and 
Stacking, respectively.

For Pool 1, Fig. 3 plots RES(�(100),k) for k = 1,… , 200 of 
the PGS method, Method  2 with � = 𝜔̄Em (shortly, 
Method  2[𝜔̄Em ]) and Method  2 with � =

1

�
D (shortly, 

Method 2[1
�
D]). The horizontal axis is the iteration number 

k of RES(�(100),k) . In a similar way, Figs.  4 and 5 show 
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Table 2   The computation time for 1000 simulation steps

Pool 1

Time (s)

PGS method 2.639
Method 2[0.1D] 2.083
Method 2[0.2D] 1.974
Method 2[0.3D] 2.051
Method 2[0.4D] 1.996
Method 2[0.5D] 1.968
Method 2[0.6D] 2.022

Pool 2

Time (s)

PGS method 2.093
Method 2[0.1D] 1.921
Method 2[0.2D] 1.907
Method 2[0.3D] 1.849
Method 2[0.4D] 1.904
Method 2[0.5D] 1.915
Method 2[0.6D] 1.915

Stacking

Time (s)

PGS method 0.095
Method 2[0.1D] 0.099
Method 2[0.2D] 0.081
Method 2[0.3D] 0.085
Method 2[0.4D] 0.085
Method 2[0.5D] 0.089
Method 2[0.6D] 0.082

Fig. 8   The residuals in the entire simulation of Stacking

RES(�(100),k) of Pool 2 and Stacking, respectively. We chose 
the 100th simulation step, since the early steps contained 
a lot of noise and the warm-start strategy did not work 
effectively there.

From Figs. 3, 4, and 5 , we observe that Method 2 attains 
better convergence than the PGS method in most cases.

Table 1 reports the iteration number k and the com-
putation time in seconds of each method to reach 
RES(�(100),k) < 10−4 . Since the standard AMGS method 
cannot directly handle contacts with frictions, coefficients 
of friction are set to 0 only for this experiment. Also, the 
computation time for the 30 circles in Stacking (Fig. 2) was 
too short to measure (shorter than 0.001 s), therefore we 
used 150 circles instead of 30 circles. Method 1 computes 
the coefficient matrix A explicitly, and we observe that 
Method 1 is the slowest in Table 1. This computation time 
is insufficient for real-time simulations.

In the comparison between Method  2[𝜔̄Em ] and 
Method 2[1

�
D ], we can see that Method 2[1

�
D ] achieves bet-

ter convergences than Method  2[𝜔̄Em ]. Furthermore, 
Method 2[1

�
D ] achieves the smallest number of iterations 

and computation times in all three cases.

5.2 � Convergence in entire simulation

In this subsection, we report the computational errors 
RES(�(t),10) along with the progress of simulation steps 
t ≥ 60 . We removed the first 60 steps from the figure, since 
the early steps contained much noise. In the previous sub-
section, we observed that Method 2[1

�
D ] is superior to 

Method 1 and Method 2[𝜔̄Em ] in each simulation step. 
Thus, we use only Method 2[�D ] in this subsection, chang-
ing the value of �.

In Fig. 6, the horizontal axis is the simulation step t, and 
the vertical axis is the residual RES(�(t),10) . From Fig. 6, we 
observe that Method 2 converges faster than the PGS 
method for t ≥ 300 . Among different values of � , � = 0.2 
shows the fastest convergence in the figure.

The result of Pool 2 illustrated in Fig. 7 indicates that 
there are no clear differences of the convergence speed 
between the PGS method and the AMGS method with 
various values of � , but when � = 0.1 , the simulation is 
unstable during about the first 100 simulation steps.

From Fig. 8 for Stacking, in a similar way to Pool 1, we 
can again observe that the AMGS method with the smaller 
� gives the faster convergence, and the AMGS method 
with � = 0.6 still converges faster than the PGS method.

Finally, Table 2 shows the entire computation time for 
1,000 simulation steps, with 200 iterations for each step, 
that is, we computed �(1000),200 . The entire computation 
time is shorter in the proposed method than in the PGS 
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method. As mentioned in Table  1, the convergence 
rate is better in the proposed method (Method 2[�D ]) 
than in the PGS method, in other words, the proposed 
method simulates the circles more accurately than the 
PGS method. Therefore, the proposed method has the 
advantages for interactive rigid-body simulations.

6 � Conclusion

We presented a numerical method based on the AMGS 
method for interactive rigid-body simulations. We 
established the convergence theorem of the AMGS 
method for the case the matrix A is positive definite 
and � = �D with 𝛼 > 0 . This case was examined in the 
numerical experiments, and we observed that the pro-
posed method attained the better accuracy than the 
PGS method and the computation time of the proposed 
method was shorter than that of a simple application of 
the AMGS method.

In practical cases, however, determining a proper value 
of � is not simple. The numerical results showed that a 
smaller value of � gave a better convergence, but it is also 
shown that a too small value of � results in an unstable 
behavior. An approach that adaptively determines the 
value of � may resolve this problem, and we leave a dis-
cussion on such an approach as a future task of this paper. 
Further numerical experiments in 3-dimensional spaces 
that take frictions into consideration will be another topic 
of our future studies. Related to computing frictions cor-
rectly, applying the proposed method to more general 
form of LCPs, such as NCPs and HLCPs, will also be an inter-
esting extension of this paper.
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