
Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

Research Article

An improved convergence based on accelerated modulus‑based
Gauss–Seidel method for interactive rigid body simulations

Shugo Miyamoto1  · Makoto Yamashita2

Received: 6 July 2020 / Accepted: 18 January 2021 / Published online: 3 February 2021
© The Author(s) 2021   OPEN

Abstract
In this paper, we propose a novel method that fits linear complementarity problems arising in interactive rigid-body
simulations, based on the accelerated modulus-based Gauss–Seidel (AMGS) method. We give a new sufficient condition
for the convergence of the generated sequence under a milder condition on the matrix splitting than the special case
of the AMGS method. This gives a flexibility in the choice of the matrix splitting, and an appropriate matrix splitting can
lead to a better convergence rate in practice. Numerical experiments show that the proposed method is more efficient
than the simple application of the AMGS method, and that the accuracy in each step of the proposed method is superior
to that of the projected Gauss–Seidel method.

Keywords  Iterative methods for linear systems · Dynamics of multibody systems · Linear complementarity problems ·
Interactive simulations

1  Introduction

In rigid-body simulations, interactions (for example, nor-
mal forces) between rigid bodies are often mathematically
modeled as constraints. For computing these constraint
forces, we usually need to solve certain equations. Two
representative constraint formulations for rigid-body
simulations are acceleration-based formulations [3] and
velocity-based formulations [1]. In the acceleration-based
formulations, the constraints are described with forces
and accelerations of rigid bodies; we first compute forces
and accelerations, then integrate them to obtain velocity
changes. On the other hand, in the velocity-based formu-
lations, the variables in the constraints are impulses and
velocities of the rigid bodies. In this paper, we focus on
the velocity-based formulations, since the velocity-based
formulations are widely used and are known to be superior
to the acceleration-based formulations in many aspects

(for example, see [9, 14]). In recent years, position-based
formulations [8] have also been developed for rigid-body
simulations. The position-based method was originally
proposed for cloth simulations [7], but it is widely used
for various simulations especially in the context of com-
puter graphics [6].

There are two main categories for solving constraints,
iterative approaches and direct approaches. Our interest in
this paper is the iterative approaches rather than the direct
approaches, since the direct approaches such as pivoting
methods often suffer from time complexity and numeri-
cal instability as pointed in [13]. In the impulse-based
iterative approaches [9], impulses are applied to the rigid
bodies sequentially, until certain convergence conditions
are satisfied. Tang et al. [16] proposed an impulse-based
energy tracking method that computes accurate veloci-
ties by applying impulses iteratively. This method implic-
itly computes relative velocities after collisions, since an

 *  Shugo Miyamoto, miyamoto‑s@g.ecc.u‑tokyo.ac.jp; Makoto Yamashita, Makoto.Yamashita@c.titech.ac.jp | 1Department of Systems
Innovation, School of Engineering, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo 113‑8654, Japan. 2Department of Mathematical
and Computing Science, Tokyo Institute of Technology, 2‑12‑1‑W8‑29 Oh‑Okayama, Meguro‑ku, Tokyo 152‑8552, Japan.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-021-04238-8&domain=pdf
http://orcid.org/0000-0002-5080-0837

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

explicit computation of the velocities may lead to physi-
cally inaccurate results when multiple contacts occur
simultaneously.

Contact constraints are frequently modeled in a form
of complementarity problems [4]; in particular, linear
complementarity problems (LCPs) give mathematical
formulations for frictionless contacts. For frictional con-
tacts, we can use nonlinear complementarity problems
(NCPs) to formulate accurate Coulomb friction [18], or, as
we will discuss later in Sect. 4.1, we can use boxed LCPs
for approximated contact friction which employs fric-
tion pyramids instead of accurate friction cones. Among
various iterative methods for solving LCPs, the projected
Gauss–Seidel (PGS) method [5] has many extensions for
solving contact constraints [9, 10, 14]. Another iterative
approach for solving LCPs is the use of modulus-based
methods. Bai [2] established modulus-based matrix split-
ting iteration (MMSI) methods, which include modulus-
based Jacobi (MJ), modulus-based Gauss–Seidel (MGS),
modulus-based successive over relaxation (MSOR), and
modulus-based accelerated overrelaxation (MAOR) itera-
tion methods as special cases. Mezzadri and Galligani [12]
proposed an extension of the MMSI methods so that they
can be used to solve horizontal linear complementarity
problems (HLCPs). Zheng and Vong [19] examined the con-
vergence of the MMSI methods for HLCPs, and they pro-
posed a more general convergence result. Zheng and Yin
[20] proposed accelerated modulus-based matrix splitting
iteration (AMMSI) methods as an improvement of Bai [2]. In
a similar way to the MMSI methods, the AMMSI methods
include accelerated modulus-based Jacobi (AMJ), acceler-
ated modulus-based SOR (AMSOR), and accelerated mod-
ulus-based accelerated overrelaxation (AMAOR) iteration
methods. Furthemore, the AMMSI methods also devised
the accelerated modulus-based Gauss–Seidel (AMGS)
method.

In this paper, we give a theoretical proof on the con-
vergence of the accelerated modulus-based Gauss–Seidel
(AMGS) method. Zheng and Yin [20] already discussed the
convergence in a general case, but their assumption for
the case of positive-definite coefficient matrices is too
restrictive to apply the same discussion to rigid-body sim-
ulations. We propose another sufficient condition of the
convergence of the AMGS method when the coefficient
matrix of the LCP is positive definite, so that we can choose
a parameter which leads to a faster convergence. We also
show a simple example that is covered by the condition we
propose, but is not covered by the condition of a general
case proposed in [20].

We also improve the efficency of the proposed method.
In many applications of real-time simulations, interactive
computer graphics and operations are considered most
important, since, if the computation in each simulation step

is considerably slower than real time, the quality of the users’
experience would be seriously degraded. Since the AMGS
method proposed in [20] is not designed for interactive
rigid-body simulations, a simple application of the AMGS
method causes inefficiency and it is a serious disadvantage
for real-time simulations. The proposed method focuses
the update formula in the AMGS method and exploits the
structures related to the generalized velocity vector of rigid
bodies.

Through numerical experiments, we observed that the
proposed AMGS method attained shorter computation time
than the original AMGS method. Furthermore, its conver-
gence rate in each iteration was better than that of the PGS
method. These results indicate that the proposed method
is useful for practical real-time simulations. Mezzadri [11]
showed that under a specific condition, the PGS method
and the AMGS method are equivalent in that AMGS itera-
tions can be written as PGS iterations. Mezzadri also pointed
out that the AMGS method also performs like the projected
successive over-relaxation (PSOR) method under a specific
parameter choice, and this is consistent with our numerical
results.

The outline of this paper is as follows. In Sect. 2, we briefly
introduce a formulation of velocity-based constraints as an
LCP. We also discuss the PGS method and the AMGS method
to solve LCPs. We prove convergence theorems of the AMGS
method in Sect. 3, and the application of the AMGS method
to rigid-body simulations is developed in Sect. 4. In Sect. 5,
we will show numerical results to verify the efficiency of the
AMGS method. Finally, we will give a conclusion in Sect. 6.

2 � Preliminaries

2.1 � Linear complementarity problem
with velocity‑based constraints

For the latter discussions, we briefly introduce an LCP that
arises from velocity-based constraints. For more details, the
readers can refer to [4, 15, 17].

During a rigid-body simulation, we keep tracking move-
ments of the rigid bodies in multiple time periods, therefore,
an entire simulation is divided into a sequence of simula-
tion steps, and each simulation step corresponds to a small
time step. Since the constraints on the rigid bodies should
be satisfied at each time, we solve the following LCP in each
simulation step:

(1)

⎧⎪⎨⎪⎩

� ≥ 0

JM−1JT� + Jv + b ≥ 0

(JM−1JT� + Jv + b)T� = 0

Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

In this paper, we use the superscript T to denote the trans-
pose of a vector or a matrix.

The decision variable in this LCP is � ∈ ℝ
m , which is the

impulse vector applied to the rigid bodies in the constraint
space. The first constraint in (1) requires � to be nonnegative
to ensure that the constraint impulse must be repulsive.

The second constraint in (1) corresponds to the velocity
constraints in the rigid-body simulation. The vectors b ∈ ℝ

m
and v ∈ ℝ

n are the bias vector in a constraint space and the
generalized velocity vector of rigid bodies, respectively.
More precisely, when we have N rigid bodies, v is a vector
that consists of N linear and angular velocities, i.e.,

where v i ∈ ℝ
3 and �i ∈ ℝ

3 are the linear velocity and
the angular velocity of the ith rigid body, respectively,
for i = 1,… ,N ; thus the length of v is n = 6N . The matrix
J ∈ ℝ

m×n is the Jacobian matrix corresponding to the
velocity constraints. The generalized mass matrix of the
rigid bodies M ∈ ℝ

n×n consists of masses and inertia ten-
sor matrices in the diagonal positions:

where mi ∈ ℝ and Ii ∈ ℝ
3×3 are the mass and the inertia

tensor matrix of the ith rigid body, respectively. We also
use Er ∈ ℝ

r×r to denote the identity matrix of order r. The
inertia tensor matricies I1,… , IN are symmetric, so is M.

The third constraint in (1) is a complementarity condi-
tion. We can understand this complementarity condition as
follows. If (JM−1JT� + Jv + b)i > 0 holds for some i, then
the rigid bodies are moving away from each other in the
direction of the ith constraint, therefore, the ith constraint
should be “inactive”. However, � is the impulse vector, thus
𝜆i > 0 implies that the ith constraint must be “active”. Hence,
𝜆i > 0 and (JM−1JT� + Jv + b)i > 0 should not hold simul-
taneously, and this requirement is implemented in the com-
plementarity condition.

By denoting q = Jv + b and A = JM−1JT and introducing
an auxiliary variable w ∈ ℝ

m , the LCP (1) can be expressed
in a general LCP as follows:

v =
(
vT
1
�
T
1
vT
2
�
T
2
⋯ vT

N
�
T
N

)T

(2)M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m1E3

I1
m2E3

I2
⋱

mNE3

IN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)LCP(q,A)

⎧⎪⎨⎪⎩

A� + q = w

wT
� = 0

�,w ≥ 0

It is known that if the constraints are non-degenerate,
the Jacobian matrix J is full row rank and the matrix
A = JM−1JT is positive definite (see [5], for example).
Throughout this paper, we assume that A is positive defi-
nite. Since any positive definite matrix is a P-matrix, A is
also a P-matrix and therefore the LCP (3) has a unique solu-
tion for an arbitrary vector q.

At the end of this subsection, we should note that the
input data b, v , J and M vary in accordance with simulation
steps. If we express the time dependence explicitly, they
should be b(t)

, v(t), J(t) and M(t) where t is the simulation step.
However, in this paper, we mainly focus on solving (1) in each
simulation step, therefore, we usually drop the simulation
step (t) from b(t)

, v(t), J(t) and M(t).

2.2 � Projected Gauss–Seidel method

In the LCP (3) from the rigid-body simulation, the matrix
A has a structure such that A = JM−1JT  . The projected
Gauss–Seidel (PGS) method [9] is designed to solve more
general LCPs (3) in the sense that the assumption for A is
only positive definiteness. The PGS method is an iterative
method and generates a sequence

{
�
k
}∞

k=0
⊂ ℝ

m.
A key property in the PGS method is to decompose A into

A = D − L − U such that D is a diagonal matrix, L a strictly
lower triangular matrix, and U a strictly upper triangular
matrix. Since we assume A is a positive definite matrix, D is
invertible. Due to this decomposition, A� + q = 0 is equiva-
lent to � = D−1(L� + U� − q).

Taking this formula and the complementarity condition
into consideration, the PGS method computes the next itera-
tion �k+1 by the following update formula:

Throughout this paper, we use max {a,b} ( min {a,b} ) to
denote the element-wise maximum (minimum, respec-
tively) of two vectors a and b . The PGS method continues
the update by (4) until the sequence

{
�
k
}∞

k=0
 converges

enough, or the number of the iterations reaches a certain
limit.

In the rigid-body simulation, the initial vector �0 is usu-
ally set as a zero vector 0 or the impulse vector obtained in
the previous simulation step. Since the initial vector often
affects the performance of iterative approaches, the use of
the solution from the previous simulation step makes the
convergence faster [9]. Such a technique is called warm start.

2.3 � Accelerated modulus‑based Gauss–Seidel
method

For solving the general LCP (3), Bai [2] devised the fol-
lowing implicit fixed-point equation that is essential

(4)�
k+1 = max

{
0,D−1

(
L�k+1 + U�k − q

)}
.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

for the modulus-based matrix splitting iteration (MMSI)
methods:

Here, the matrices M0 ∈ ℝ
m×m and N0 ∈ ℝ

m×m are a split-
ting pair of A such that A = M0 − N0 . � ∈ ℝ

m×m and
� ∈ ℝ

m×m are two diagonal matrices whose diagonal
entries are positive. �1 ∈ ℝ

m×m and �2 ∈ ℝ
m×m are non-

negative diagonal matrices such that � = �1 +�2 . We
should emphasize that the variable in (5) is x , and we use
|x| to denote the element-wise absolute values of x . The
relation between x and the pair of � and w in (3) will be
discussed in Theorem 1.

By setting �1 = � , �2 = O , and � =
1

�
Em with a

parameter 𝛾 > 0 in (5), we can obtain a simplified implicit
fixed-point equation:

Based on (6), the iteration of the MMSI method can be
derived as follows:

We decompose A into A = D − L − U in the same way as
the PGS method. Set � = 2 , and let 𝛼 > 0 and 𝛽 > 0 be two
parameters. Then, we can derive the update formula of
four methods from (7); the modulus-based Jacobi (MJ)
by setting M0 = D in (7), the modulus-based Gauss–Sei-
del (MGS) by M0 = D − L , the modulus-based successive
over relaxation (MSOR) by M0 =

1

�
D − L , and the modulus-

based accelerated overrelaxation (MAOR) iteration method
by M0 =

1

�
(D − �L) , respectively.

Zheng and Yin [20] utilized two splitting pairs of the
matrix A such that A = M1 − N1 = M2 − N2 , and devised
a new equation based on (5):

Zheng and Yin [20] established the following theorem
to show an equivalence between (8) and LCP(q,A) in (3).
Since a detailed proof is not given in [20], we give the
proof here.

Theorem 1  [20] The following statements hold between (8)
and LCP(q,A) :

	 (i)	 i f (�,w) i s a s o l u t i o n o f LCP(q,A) , t h e n
x =

1

2
(� −1

� −�
−1w) satisfies (8).

	 (ii)	 if x satisfies (8), then the pair of � = � (|x| + x) and
w = �(|x| − x) is a solution of LCP(q,A).

(5)(M0� +�1)x = (N0� −�2)x + (� − A�)|x| − q

(6)(M0 + ��)x = N0x + (�� − A)|x| − �q.

(7)(M0 + ��)xk+1 = N0x
k + (�� − A)

|||x
k||| − �q.

(8)
(M1� +�1)x = (N1� −�2)x + (� −M2�)|x|

+ N2� |x| − q.

Proof  We first prove (i). Since (�,w) is a solution of
LCP(q,A) , (�,w) satisfies the four constraints, A� + q = w ,
wT� = 0 , � ≥ 0 and w ≥ 0 . The first constraint A� + q = w
is equivalent to

From the rest three constraints and the fact that �
and � are diagonal matrices whose diagonal entries
are positive, if x =

1

2
(� −1

� −�
−1w) , it holds that

|x| = 1

2
(� −1

� +�
−1w) . Therefore, x satisfies

and this is equivalent to (8).
To p r o v e (i i) , f r o m (9) , i t h o l d s t h a t

A� (|x| + x) + q = �(|x| − x)  . B y t h e r e l a t i o n s
� = � (|x| + x) and w = �(|x| − x) , we obtain A� + q = w .
Since � and � are positive diagonal matrices, it is easy
to check that � and w are nonnegative vectors. Finally, it
is also easy to show the element-wise complementarity
between � and w . 	� ◻

We may use Theorem 1 to establish some iterative
methods for solving LCP(q,A) , but we need to set appro-
priate matrices for the implicit fixed-point equation (8) in
actual computations. In particular, the splitting pair of �
is not unique. By fixing �1 = � , �2 = O and � =

1

�
Em , we

derive a simplified update equation of (8) as follows:

As mentioned in Sect. 2.1, we use Er ∈ ℝ
r×r to denote the

identity matrix of order r. Based on this equation, Zheng
and Yin [20] provided an update formula of the AMMSI
methods:

When the sequence
{
xk
}∞

k=0
 converges enough, the

AMMSI methods output the impulse vector by using the
relation � = � (|x| + x) =

|x|+x
�

 . As Mezzadri [11] points

out, every AMMSI method can be written in a projection
form, and the value of � does not play an important role in
convergence rates as it just changes the first iteration of
the method in its projection form.

By changing the splitting pairs of A , the update for-
mula (11) above yields variant methods; MMSIM ( M2 = A
and N2 = O ), the accelerated modulus-based Jacobi (AMJ)
iteration method ( M1 = D , N1 = L + U , M2 = D − U and
N2 = L ), the accelerated modulus-based SOR (AMSOR) itera-
t ion method ( M1 =

1

�
D − L , N1 =

(
1

�
− 1

)
D + U  ,

(� + A�)(� −1
� −�

−1w)

= (� − A�)(� −1
� +�

−1w) − 2q.

(9)(� + A�)x = (� − A�)|x| − q

(10)(M1 + ��)x = N1x + (�� −M2)|x| + N2|x| − �q.

(11)
(M1 + ��)xk+1

= N1x
k + (�� −M2)

|||x
k||| + N2

|||x
k+1||| − �q

Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

M2 = D − U and N2 = L ), and the accelerated modulus-
based accelerated overrelaxation (AMAOR) iteration method
( M1 =

1

�
(D − �L)  , N1 =

1

�
((� − 1)D + (� − �)L + �U)  ,

M2 = D − U and N2 = L).
In particular, the update formula of the accelerated

modulus-based Gauss–Seidel (AMGS) method in [20] is
derived with M1 = D − L , N1 = U , M2 = D − U and N2 = L
as follows:

Let �xk = xk+1 − xk be the difference between xk and xk+1 .
Then, (12) is equivalent to

By Theorem 1 and � =
1

�
Em , the sequence {�k}∞

k=0
 for the

LCP (3) can be associated with the sequence {xk}∞
k=0

 gener-
ated by (12) by the relation �k =

|xk|+xk
�

=
2

�
max{0, xk} ,

thus �k is a multiple of the positive part of xk . This moti-
vates us to split xk into the positive and negative parts
s u c h t h a t xk = xk

+
− xk

−
  , w h e r e

xk
+
= max{0, xk} =

1

2
(||xk|| + xk) a n d

xk
−
= −min{0, xk} =

1

2
(||xk|| − xk) . From the relations

xk =
�

2
�
k − xk

−
 and ||xk|| = �

2
�
k + xk

−
 , (14) is equivalent to

(12)
(D + �� − L)xk+1

= Uxk + (�� − D + U)
|||x

k||| + L
|||x

k+1||| − �q.

(13)
(D + ��)�xk

= Lxk+1 − (�� + D − U)xk + (�� − D + U)
|||x

k|||

(14)+ L
|||x

k+1||| − �q.

Therefore, for computing �xk
i
 , we only need the ith com-

ponent of xk
−

 , which will be denoted as (xk
−
)i , since D and

� are diagonal matrices. This simplifies the computation
of �xk . Recalling the decomposition of A = D − L − U , we
compute �xk

i
 for each i = 1,… ,m by

We can summarize a framework of the AMGS method as
follows.

Method 1  (the AMGS method for (3))
Choose a nonnegative vector �0 ∈ ℝ

m as an initial vec-
tor. Generate the iteration sequence {�k}∞

k=0
 by the follow-

ing procedure:

(D + ��)�xk = �L�k+1 − (�� + D − U)(
�

2
�
k − xk

−
)

+ (�� − D + U)(
�

2
�
k + xk

−
) − �q

= �L�k+1 − �(D − U)�k + 2��xk
−
− �q.

(15)

�xk
i
=

�

Dii + ��ii

(
i−1∑
j=1

Lij�
k+1
j

− Dii�
k
i

+

m∑
j=i+1

Uij�
k
j
+ 2�ii(x

k
−
)i − qi

)

= −
�

Aii + ��ii

(
i−1∑
j=1

Aij�
k+1
j

+

m∑
j=i

Aij�
k
j
+ qi − 2�ii(x

k
−
)i

)
.

x0 ← γ
2λ

0

repeat k = 1, 2, . . .
for i = 1, 2, . . . ,m do

xk+1
i ← xk

i−
γ

Aii+γΩii

(∑i−1
j=1 Aijλ

k+1
j +

∑m
j=i Aijλ

k
j + qi − 2Ωii(xk

−)i
)

λk = 2
γx

k
+.

until xk satisfies a certain convergence threshold

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

3 � Convergence theorem

In this section, we focus on the convergence of the acceler-
ated modulus-based Gauss–Seidel (AMGS) method.

Although Zheng and and Yin [20] gave a generic form of
a sufficient condition of the convergence, a more detailed
discussion of the case that A is a positive definite matrix
is somewhat limited: � is assumed to be a multiple of the
identity matrix ( � = 𝜔̄Em for some 𝜔̄ > 0 ), so we cannot
take � = �D that is actually used in the numerical experi-
ments in [20].

Since the matrix A is always positive definite in the
rigid-body simulation, it is worthwhile to give a sufficient
condition of the convergence when A is positive definite
while allowing a more generic form of � . For example, if
we can take � = �D , we may be able to improve the con-
vergence, as we will show in Sect. 5. Here, � ∈ ℝ is a posi-
tive constant, and D is the diagonal matrix whose diagonal
elements are those of A . We also give an example in Exam-
ple 1 that is covered by the theorem we will show, but is
not covered by theorems in [20].

We use ‖x‖ =
√
xTx to denote the Euclidean norm of

x ∈ ℝ
m . We also use ‖L‖ to denote an arbitrary norm of

a matrix L ∈ ℝ
m×m that is consistent with the Euclidean

vector norm, so that we can employ ‖Lx‖ ≤ ‖L‖‖x‖ . Espe-
cially, ‖L‖2 represents the spectral norm of a matrix L.

The following theorem covers the case that � = �D ,
which will be actually used in numerical experiments of
Sect. 5.

For the subsequent discussion, we assume that A is a
symmetric positive definite matrix and hence U = LT  . Let
�̄ = 𝛾� . The matrix �̄ is also a positive diagonal matrix.

Theorem 2  Let A be a symmetric positive definite matrix, �̄
be a positive diagonal matrix, and A = D − L − LT be a split-
ting of the matrix A such that D is a positive diagonal matrix
and L is a strictly lower triangular matrix. Also, let ‖⋅‖ be an
arbitrary submultiplicative matrix norm consistent with the
Euclidean vector norm. Then, if the inequality

holds, the iteration sequence {�k}∞
k=0

⊂ ℝ
m generated

by Method 1 with an arbitrary nonnegative initial vec-
tor �0 ∈ ℝ

m converges to the unique solution �∗ ∈ ℝ
m of

LCP(q,A).

Proof  In the AMMSI methods [20] from which the AMGS
was derived, we chose �1 = �,�2 = O and � =

1

�
Em for

the simplif ied f ixed-point equation (10). Let
(�∗,w∗) ∈ ℝ

m ×ℝ
m be a solution of LCP(q,A) , and let

x∗ =
1

2
(��∗ −�

−1w∗) . From Theorem 1, x∗ satisfies (10),

2‖L‖ <
���(D − L + �̄)−1

���
−1

− ��D − L − �̄��

and the convergence of
{
�
k
}∞

k=0
 to �∗ can be guaranteed

by that of
{
xk
}∞

k=0
 to x∗ , therefore, we discuss the conver-

gence of the sequence
{
xk
}∞

k=0
 . Subtracting (10) with x∗

from the update formula (11), we obtain

I n t h e s e t t i n g o f t h e A M G S m e t h o d
( M1 = D − L,N1 = LT ,M2 = D − LT and N2 = L ), we can
further evaluate this inequality as follows:

Using the triangular inequality ‖�a� − �b�‖ ≤ ‖a − b‖ for
any two vectors a and b of the same dimension, we have

and it holds that

under the assumption of ��(D − L + �̄)−1��‖L‖ < 1 . There-
fore, if

or equivalently

(M1 + �̄)(xk+1 − x∗)

= N1(x
k − x∗) + (�̄ −M2)(

|||x
k||| − |x∗|)

+ N2(
|||x

k+1||| − |x∗|).

(xk+1 − x∗) = (D − L + �̄)−1LT (xk − x∗)

+ (D − L + �̄)−1(�̄ − D + LT)(
|||x

k||| − |x∗|)
+ (D − L + �̄)−1L(

|||x
k+1||| − |x∗|).

(16)

���x
k+1 − x∗���
≤
���(D − L + �̄)−1LT

���
���x

k − x∗���
+
���(D − L + �̄)−1(�̄ − D + LT)

���
���x

k − x∗���
+
���(D − L + �̄)−1L

���
���x

k+1 − x∗���
≤
���(D − L + �̄)−1

���
���L

T���
���x

k − x∗���
+
���(D − L + �̄)−1

���
����̄ − D + LT

���
���x

k − x∗���
+
���(D − L + �̄)−1

���‖L‖
���x

k+1 − x∗���
≤
���(D − L + �̄)−1

���
�‖L‖ + ��D − L − �̄��

����x
k − x∗���

+
���(D − L + �̄)−1

���‖L‖
���x

k+1 − x∗���,

���x
k+1 − x∗���
≤

��(D − L + �̄)−1��
�‖L‖ + ��D − L − �̄��

�

1 − ��(D − L + �̄)−1��‖L‖
���x

k − x∗���

��(D − L + �̄)−1��
�‖L‖ + ��D − L − �̄��

�

1 − ��(D − L + �̄)−1��‖L‖
< 1,

Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

holds, we obtain the convergence of {xk}∞
k=0

 by the fixed-
point theorem and we know that x∗ is the unique point
to which the sequence {xk}∞

k=0
 converges. Note that (17)

implies ��(D − L + �̄)−1��‖L‖ < 1 . 	� ◻

Based on Theorem 2, we obtain the following corollary.

Corollary 1  Let A be a symmetric positive definite matrix, �̄
be a positive diagonal matrix, and A = D − L − LT be a split-
ting of the matrix A such that D is a positive diagonal matrix
and L is a strictly lower triangular matrix. Also, let ‖⋅‖2 be the
spectral matrix norm, �min be the minimum singular value of
the matrix D − L + �̄ , and �max be the maximum singular
value of the matrix D − L − �̄ . Then, if the inequality

holds, the iteration sequence {�k}∞
k=0

⊂ ℝ
m generated

by Method 1 with an arbitrary nonnegative initial vec-
tor �0 ∈ ℝ

m converges to the unique solution �∗ ∈ ℝ
m of

LCP(q,A).

Proof  By applying the spectral norm to (17), we get

From the fact that

holds for any invertible matrix P and its singular values �i ,
we have

Thus,

follows from the assumption and this completes the
proof. 	� ◻

Example 1  The following example gives a case that is appli-
cable to Corollary 1, but is not applicable to Theorem 4.1
in [20]:

(17)2‖L‖ <
���(D − L + �̄)−1

���
−1

− ��D − L − �̄��

2‖L‖2 < 𝜎min − 𝜎max

2‖L‖2 < ���(D − L + �̄)−1
���
−1

2
− ��D − L − �̄��2.

‖‖‖P
−1‖‖‖2 = max

�i
�−1
i

=

(
min
�i

�i

)−1

‖‖‖(D − L + �̄)−1
‖‖‖
−1

2
= 𝜎min

‖‖D − L − �̄‖‖2 = 𝜎max.

2‖L‖2 < 𝜎min − 𝜎max

=
���(D − L + �̄)−1

���
−1

2
− ��D − L − �̄��2

Indeed, ‖L‖2 = 1 , �min =
1

2

�√
65 − 1

�
= 3.5311… , �max = 1

and 2‖L‖2 < 𝜎min − 𝜎max holds. However, it holds that

so 𝜇(�̄) + 2𝜉(�̄) + 2𝜂(�̄) = 1.2653… > 1 and therefore
the example does not fulfill the assumption of Theorem 1.4
in [20].

4 � Accelerated modulus‑based matrix
splitting iteration methods for interactive
rigid‑body simulation

Since the AMGS method is a general method for LCPs,
it is possible to simply apply the AMGS method to (3).
However, explicit evaluation of A = JM−1JT is inefficient
even though the matrices J and M−1 are sparse. Thus,
such a simple application of the AMGS method is not
practical. To overcome this inefficiency, we modify the
AMGS method so that it does not require the explicit
evaluation of the matrix A . In a similar way to the AMGS
method, we can also modify the AMSOR method for solv-
ing LCPs in the rigid-body simulations.

As already pointed out at above, the direct computa-
tion of A is unfavorable for real-time simulations. Thus,
we should avoid the computations of

∑i−1

j=1
Aij�

k+1
j

 and ∑m

j=i
Aij�

k
j
 in (15), which involve all the off-diagonal ele-

ments of A.
To improve the computational efficiency, we

introduce an intermediate variables �k+1,i ∈ ℝ
m and

vk+1,i ∈ ℝ
n . In particular, vk+1,i stores information of

applied impulse [9, 17]. For i = 1,… ,m , let

where M̂ = M−1JT . By the definitions of A and q , it holds

A =

(
2 1

1 2

)
, D =

(
2 0

0 2

)
, L =

(
0 0

1 0

)
, �̄ =

(
2 0

0 2

)
, 𝛾 = 1

𝜇(�̄) =
���(D − L + �̄)−1(D − L − �̄)

���2 = 0.25

𝜉(�̄) =
���(D − L + �̄)−1LT

���2 =
√
17

16
= 0.2576…

𝜂(�̄) =
���(D − L + �̄)−1L

���2 = 0.25,

(18)�
k+1,i =

(
�k+1
1

… �k+1
i−1

�k
i
… �k

m

)T

(19)vk+1,i = v + M̂�
k+1,i

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

and this leads to

Due to the relation �k =
2

�
xk
+

 , we can compute �k+1,i+1 by

updating only the ith position of �k+1,i,

i−1∑
j=1

Aij�
k+1
j

+

m∑
j=i

Aij�
k
j
+ qi =

(
A�k+1,i

)
i
+ qi

=
(
JM−1JT�k+1,i

)
i
+ (Jv)i + bi =

(
Jvk+1,i

)
i
+ bi

=

m∑
j=1

Jijv
k+1,i

j
+ bi ,

xk+1
i

= xk
i
+ �xk

i
= xk

i

−
�

Aii + ��ii

(
m∑
j=1

Jijv
k+1,i

j
+ bi − 2�ii(x

k
−
)i

)
.

Thus, from (19), we obtain

where M̂∗i is the ith column of M̂.
The following method summarizes the proposed

AMGS method for rigid-body simulations.

Method 2  (the proposed AMGS method for rigid-body
simulations)

Choose a nonnegative vector �0 ∈ ℝ
m as an initial vec-

tor. Generate the iteration sequence {�k}∞
k=0

 by the follow-
ing procedure:

�
k+1,i+1 =

(
�k+1
1

… �k+1
i−1

2

�
(xk+1

+
)i �

k
i+1

… �k
m

)T

.

vk+1,i+1 = vk+1,i + M̂(�k+1,i+1 − �
k+1,i)

= vk+1,i + M̂∗i(�
k+1,i+1

i
− �k+1

i
),

M̂ = M−1JT

v1,1 ← v + M̂λ0

repeat k = 1, 2, . . .
for i = 1, 2, . . . ,m do

xk+1
i ← xk

i − γ
Aii+γΩii

(∑m
j=1 Jijv

k+1,i
j + bi − 2Ωii(xk

−)i
)

λk+1
i ← 2

γ max
{
0, xk+1

i

}

if i = m then
vk+2,1 ← vk+1,i + M̂∗i(λk+1

i − λk
i)

else
vk+1,i+1 ← vk+1,i +M∗i(λk+1

i − λk
i)

until xk satisfies a certain convergence threshold

̂

In Sect. 5, we compare the computational costs of
Method 1 and Method 2, which is an optimized version
of Method 1 for interactive rigid-body simulations. As the
experiments will show, Method 2 achieves considerably
lower computational costs than that of Method 1 in all
cases, and is suitable for interactive rigid-body simulations.

4.1 � Linear complementarity problems with lower
and upper bounds

In this section, we discuss a method for solving LCPs with
lower and upper bounds on � , which often occur in the
formulations of contact constraints with friction [14, 17].
We call such LCPs with lower and upper bounds “Boxed
LCPs (BLCPs)”. Consider the following BLCP:

Here, l ∈ ℝ
m and u ∈ ℝ

m are the lower and the upper
bounds, respectively. Without loss of generality, we
assume 0 ≤ li < ui for each i = 1,… ,m.

We define a projection function of � to the interval l
and u by

BLCP(q, l,u,A)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A� + q = w

l ≤ � ≤ u

for each i = 1,… ,m,

⎧⎪⎨⎪⎩

wi ≥ 0 (𝜆i = li)

wi ≤ 0 (𝜆i = ui)

wi = 0 (li < 𝜆i < ui).

pBLCP(�) = min {max {l,�},u}.

Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

Since l is a nonnegative vector, so is pBLCP(�) . With this
projection, we can give an AMGS method for Boxed LCPs
as follows.

Method 3  (the AMGS method for Boxed LCPS in rigid-
body simulations)

Choose a nonnegative vector �0 ∈ ℝ
m as an initial vec-

tor. Generate the iteration sequence {�k}∞
k=0

 by the follow-
ing procedure:

Fig. 1   A simulation of circles in Pool 1 and Pool 2. Small red points
represent the contact points between the circles, and short red line
segments the normal vectors at the contact points

Fig. 2   A simulation of vertically stacked circles. Small red points
represent the contact points of the circles, and short red line seg-
ments the normal vectors at the contact points

x0 ← γ
2λ

0

λ1 ← λ0

M̂ = M−1JT

v1,1 ← v + M̂λ0

repeat k = 1, 2, . . .
for i = 1, 2, . . . ,m do

xk+1
i ← xk

i − γ
Aii+γΩii

(∑m
j=1 Jijv

k+1,i
j + bi − 2Ωii(xk

−)i
)

λk+1
i ← 2

γ pBLCP(xk+1
i)

if i = m then
vk+2,1 ← vk+1,i + M̂∗i(λk+1

i − λk
i)

else
vk+1,i+1 ← vk+1,i +M∗i(λk+1

i − λk
i)

until xk satisfies a certain convergence threshold

̂

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

Note that BLCP(q, l,u,A) with l = 0 and u being a very
large vector represents the same problem as LCP(q,A) ,
thus Method 3 can be considered as a generalization of
Method 1.

5 � Numerical experiments

In this section, we show numerical results of several
2-dimensional examples to verify the numerical perfor-
mance of the proposed method. All tests were performed
on an Windows 8 computer with Intel Core i7-5500U (2.4
GHz CPU) and 8 GB memory space.

In the numerical experiments, we utilized the warm-
start strategy [9], that is, the final solution obtained in
a simulation step will be used as the first guess of the
solution in the next simulation step. More precisely, let {
�
(t),k

}∞

k=0
 denote the sequence generated for solving

LCP(q(t),A(t)) at a simulation step t. We set the number of
iterations in a single simulation step to 10, that is, �(t),10 is
used as the first guess �(t+1),0 . The initial point of the entire
simulation is set as the zero vector (�(0),0 = 0) . To evaluate
the accuracy of �(t),k , we use a residual function in [2]:

For the AMGS methods, we set � = 2 , and 𝜔̄ is chosen as ∑m

i=1
Dii

m�
 (the average of D11,… ,Dmm divided by � ) based on

preliminary experiments.
For the numerical experiments, we use examples “Pool

1”, “Pool 2” and “Stacking”; in the first two examples, rigid
circles are stuffed into a small space, while, in the last case,
rigid circles are vertically stacked.

Pool 1
Figure 1 displays an example with 221 circles in an area

of 6 meters wide. All the circles have the same mass (2
kilograms) and the same radius (21 centimeters). The coef-
ficients of friction are set to 0.1, and the coefficients of
restitution are set to 0.2. When the coefficient of restitu-
tion is 1, collisions are perfectly elastic (i.e., no energy loss),
and when the coefficient of restitution is 0, collisions are
perfectly inelastic. The gravitational acceleration is set to
9.80665 m/s

2 in the downward direction in the figure.
In Pool 1, the size n in the matrices J ∈ ℝ

m×n and
M ∈ ℝ

n×n is 672, while the size m depend on the simula-
tion step t, since the number of contact points between

(20)RES(�(t),k) =
‖‖‖min{�(t),k ,A�(t),k + q}

‖‖‖.

Fig. 3   Residuals of the sequence generated in the 100th simulation
step for Pool 1

Fig. 4   Residuals of the sequence generated in the 100th simulation
step for Pool 2

Fig. 5   Residuals of the sequence generated in the 100th simulation
step for Stacking

Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

the circles changes as the simulation proceeds. During the
entire simulation, the average of m is 516.

Pool 2
The most part of this example is same as Pool 1, but the

masses of the circles increases linearly from 1.0 kilograms

Table 1   The iteration number and the computation time to reach
10−4

Pool 1

Iteration Time (s)

PGS method 1452 0.042

Method 1[1
�
D] 766 1.251

Method 2[𝜔̄E
m

] 1522 0.055

Method 2[1
�
D] 766 0.023

Pool 2

Iteration Time (s)

PGS method 1359 0.042

Method 1[1
�
D] 744 1.428

Method 2[𝜔̄E
m

] 1393 0.048

Method 2[1
�
D] 744 0.028

Stacking

Iteration Time (s)

PGS method 16186 0.162

Method 1[1
�
D] 7754 0.293

Method 2[𝜔̄E
m

] 16431 0.183

Method 2[1
�
D] 7754 0.066

Fig. 6   The residuals in the entire simulation of Pool 1

Fig. 7   The residuals in the entire simulation of Pool 2

to 3.0 kilograms in accordance with their initial heights
from the ground; circles in higher positions have larger
masses than those in lower positions, and the mass of the
heaviest circles (the top circles) are three times of that of
the lightest circles (the bottom circles). This is expected
that the convergence will be slower, since it is hard for the
lower (lighter) circles to support higher (heavier) circles.
The sizes n and m of the matrices are the same as Pool 1.

Stacking
Figure 2 displays a simple example with 30 vertically

stacked circles of 18-centimeter radius. All circles have the
same masses (1.0 kilograms), and the coefficients of resti-
tution are set to 0.2. The coefficients of friction are set to
0.1, but no frictional forces are produced because of the
arrangement of the circles. The sizes of n and m (average)
are 48 and 14, respectively.

5.1 � Convergence in each simulation step

In each simulation step t, we execute only 10 iterations
and we move to the next simulation step t + 1 with the
first guess �(t+1),0 = �

(t),10 . In this subsection, we execute
more iterations to compare the convergence of the PGS
method and the proposed AMGS methods in each simula-
tion step. The average values of 𝜔̄ in the numerical experi-
ments are 1.928, 1.086, and 3.872 in Pool 1, Pool 2 and
Stacking, respectively.

For Pool 1, Fig. 3 plots RES(�(100),k) for k = 1,… , 200 of
the PGS method, Method 2 with � = 𝜔̄Em (shortly,
Method 2[𝜔̄Em ]) and Method 2 with � =

1

�
D (shortly,

Method 2[1
�
D]). The horizontal axis is the iteration number

k of RES(�(100),k) . In a similar way, Figs. 4 and 5 show

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

Table 2   The computation time for 1000 simulation steps

Pool 1

Time (s)

PGS method 2.639
Method 2[0.1D] 2.083
Method 2[0.2D] 1.974
Method 2[0.3D] 2.051
Method 2[0.4D] 1.996
Method 2[0.5D] 1.968
Method 2[0.6D] 2.022

Pool 2

Time (s)

PGS method 2.093
Method 2[0.1D] 1.921
Method 2[0.2D] 1.907
Method 2[0.3D] 1.849
Method 2[0.4D] 1.904
Method 2[0.5D] 1.915
Method 2[0.6D] 1.915

Stacking

Time (s)

PGS method 0.095
Method 2[0.1D] 0.099
Method 2[0.2D] 0.081
Method 2[0.3D] 0.085
Method 2[0.4D] 0.085
Method 2[0.5D] 0.089
Method 2[0.6D] 0.082

Fig. 8   The residuals in the entire simulation of Stacking

RES(�(100),k) of Pool 2 and Stacking, respectively. We chose
the 100th simulation step, since the early steps contained
a lot of noise and the warm-start strategy did not work
effectively there.

From Figs. 3, 4, and 5 , we observe that Method 2 attains
better convergence than the PGS method in most cases.

Table 1 reports the iteration number k and the com-
putation time in seconds of each method to reach
RES(�(100),k) < 10−4 . Since the standard AMGS method
cannot directly handle contacts with frictions, coefficients
of friction are set to 0 only for this experiment. Also, the
computation time for the 30 circles in Stacking (Fig. 2) was
too short to measure (shorter than 0.001 s), therefore we
used 150 circles instead of 30 circles. Method 1 computes
the coefficient matrix A explicitly, and we observe that
Method 1 is the slowest in Table 1. This computation time
is insufficient for real-time simulations.

In the comparison between Method 2[𝜔̄Em ] and
Method 2[1

�
D ], we can see that Method 2[1

�
D ] achieves bet-

ter convergences than Method 2[𝜔̄Em ]. Furthermore,
Method 2[1

�
D ] achieves the smallest number of iterations

and computation times in all three cases.

5.2 � Convergence in entire simulation

In this subsection, we report the computational errors
RES(�(t),10) along with the progress of simulation steps
t ≥ 60 . We removed the first 60 steps from the figure, since
the early steps contained much noise. In the previous sub-
section, we observed that Method 2[1

�
D ] is superior to

Method 1 and Method 2[𝜔̄Em ] in each simulation step.
Thus, we use only Method 2[�D ] in this subsection, chang-
ing the value of �.

In Fig. 6, the horizontal axis is the simulation step t, and
the vertical axis is the residual RES(�(t),10) . From Fig. 6, we
observe that Method 2 converges faster than the PGS
method for t ≥ 300 . Among different values of � , � = 0.2
shows the fastest convergence in the figure.

The result of Pool 2 illustrated in Fig. 7 indicates that
there are no clear differences of the convergence speed
between the PGS method and the AMGS method with
various values of � , but when � = 0.1 , the simulation is
unstable during about the first 100 simulation steps.

From Fig. 8 for Stacking, in a similar way to Pool 1, we
can again observe that the AMGS method with the smaller
� gives the faster convergence, and the AMGS method
with � = 0.6 still converges faster than the PGS method.

Finally, Table 2 shows the entire computation time for
1,000 simulation steps, with 200 iterations for each step,
that is, we computed �(1000),200 . The entire computation
time is shorter in the proposed method than in the PGS

Vol.:(0123456789)

SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8	 Research Article

method. As mentioned in Table 1, the convergence
rate is better in the proposed method (Method 2[�D ])
than in the PGS method, in other words, the proposed
method simulates the circles more accurately than the
PGS method. Therefore, the proposed method has the
advantages for interactive rigid-body simulations.

6 � Conclusion

We presented a numerical method based on the AMGS
method for interactive rigid-body simulations. We
established the convergence theorem of the AMGS
method for the case the matrix A is positive definite
and � = �D with 𝛼 > 0 . This case was examined in the
numerical experiments, and we observed that the pro-
posed method attained the better accuracy than the
PGS method and the computation time of the proposed
method was shorter than that of a simple application of
the AMGS method.

In practical cases, however, determining a proper value
of � is not simple. The numerical results showed that a
smaller value of � gave a better convergence, but it is also
shown that a too small value of � results in an unstable
behavior. An approach that adaptively determines the
value of � may resolve this problem, and we leave a dis-
cussion on such an approach as a future task of this paper.
Further numerical experiments in 3-dimensional spaces
that take frictions into consideration will be another topic
of our future studies. Related to computing frictions cor-
rectly, applying the proposed method to more general
form of LCPs, such as NCPs and HLCPs, will also be an inter-
esting extension of this paper.

Funding  This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards 

Conflict of interest  On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

Availability of data and material  All data generated or analysed dur-
ing this study are included in the article.

Code Availability  Not applicable

Disclosure of potential conflicts of interest  On behalf of all authors,
the corresponding author states that there is no conflict of interest.

Research involving Human Participants and/or Animals  Not applicable

Informed consent  Not applicable

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

	 1.	 Anitescu M, Potra FA (1997) Formulating dynamic multi-rigid-
body contact problems with friction as solvable linear comple-
mentarity problems. Nonlinear Dyn 14(3):231–247

	 2.	 Bai ZZ (2010) Modulus-based matrix splitting iteration meth-
ods for linear complementarity problems. Numer Linear Algebra
Appl 17(6):917–933

	 3.	 Baraff D (1993) Non-penetrating rigid body simulation. In: Euro-
graphics ’93 State of the art reports

	 4.	 Baraff D (1994) Fast contact force computation for nonpenetrat-
ing rigid bodies. In: Proceedings of the 21st annual conference
on computer graphics and interactive techniques. ACM, pp
23–34

	 5.	 Bender J, Erleben K, Trinkle J (2014) Interactive simulation of
rigid body dynamics in computer graphics. In: Computer Graph-
ics Forum, vol 33. Wiley Online Library, pp 246–270

	 6.	 Bender J, Müller M, Macklin M (2015) Position-based simulation
methods in computer graphics. In: Eurographics (tutorials), p 8

	 7.	 Bender J, Müller M, Otaduy M.A, Teschner M, Macklin M (2014)
A survey on position-based simulation methods in computer
graphics. In: Computer graphics forum, vol 33. Wiley Online
Library, pp 228–251

	 8.	 Deul C, Charrier P, Bender J (2016) Position-based rigid-body
dynamics. Comput Anim Virtual Worlds 27(2):103–112

	 9.	 Erleben K (2004) Stable, robust, and versatile multibody dynam-
ics animation. Unpublished Ph. D. Thesis, University of Copen-
hagen, Copenhagen

	10.	 Erleben K, Sporring J, Henriksen K, Dohlmann H (2005) Physics-
based animation. Charles River Media Hingham

	11.	 Mezzadri F (2019) On the equivalence between some projected
and modulus-based splitting methods for linear complementa-
rity problems. Calcolo 56(4):41

	12.	 Mezzadri F, Galligani E (2020) Modulus-based matrix splitting
methods for horizontal linear complementarity problems.
Numer Algor 83(1):201–219

	13.	 Nakaoka S, Hattori S, Kanehiro F, Kajita S, Hirukawa H (2007)
Constraint-based dynamics simulator for humanoid robots with
shock absorbing mechanisms. In: IROS 2007 (IEEE/RSJ interna-
tional conference on intelligent robots and systems, 2007). IEEE,
pp 3641–3647

	14.	 Poulsen M, Abel S.M.N, Erleben K (2010) Heuristic convergence
rate improvements of the projected gauss-seidel method for
frictional contact problems. In: 18th international conference
in Central Europe on computer graphics, visualization and com-
puter vision. Václav Skala-Union Agency, pp 135–142

	15.	 Stewart DE, Trinkle JC (1996) An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and coulomb
friction. Int J Numer Meth Eng 39(15):2673–2691

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:266 | https://doi.org/10.1007/s42452-021-04238-8

	16.	 Tang X, Paluszny A, Zimmerman RW (2014) An impulse-based
energy tracking method for collision resolution. Comput Meth-
ods Appl Mech Eng 278:160–185

	17.	 Tonge R, Benevolenski F, Voroshilov A (2012) Mass splitting for
jitter-free parallel rigid body simulation. ACM Trans Graph (TOG)
31(4):105

	18.	 Xie J, Chakraborty N (2016) Rigid body dynamic simulation with
line and surface contact. In: 2016 IEEE international conference
on simulation, modeling, and programming for autonomous
robots (SIMPAR). IEEE, pp 9–15

	19.	 Zheng H, Vong S (2020) On convergence of the modulus-
based matrix splitting iteration method for horizontal linear

complementarity problems of h+-matrices. Appl Math Comput
369:124890

	20.	 Zheng N, Yin JF (2013) Accelerated modulus-based matrix split-
ting iteration methods for linear complementarity problem.
Numer Algor 64(2):245–262

Publisher’s Note  Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

	An improved convergence based on accelerated modulus-based Gauss–Seidel method for interactive rigid body simulations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Linear complementarity problem with velocity-based constraints
	2.2 Projected Gauss–Seidel method
	2.3 Accelerated modulus-based Gauss–Seidel method

	3 Convergence theorem
	4 Accelerated modulus-based matrix splitting iteration methods for interactive rigid-body simulation
	4.1 Linear complementarity problems with lower and upper bounds

	5 Numerical experiments
	5.1 Convergence in each simulation step
	5.2 Convergence in entire simulation

	6 Conclusion
	References

