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Abstract
This work aims at describing the behavior of high-strength reinforced concrete (HSRC) beams under short-term ultimate 
loads with concrete compressive strengths higher than 50 MPa. A plastic approach besides a cross sectional analysis is 
employed to primarily trace the nonlinear response of nineteen HSRC simply supported beams for which experimental 
results are available. This proposed theoretical approach is able to acceptably match the experimental data with minor 
overestimation of flexural moments. Closed-form expressions to evaluate ductility indexes regarding deflections and 
curvatures as well as plastic rotation capacities are also proposed herein. Predictions of the National Brazilian Regulation 
for design of concrete structures NBR6118 in terms of ultimate flexural moments are also computed for comparison. A 
complete assessment of ductility in which plastic rotation capacities are computed for the studied beams is also given. 
It is found that the flexural ductility of a member could be increased with the use of high strength concrete. The use of 
a maximum tension steel ratio to guarantee a minimum flexural of ductility is highlighted.

Keywords  High strength reinforced concrete · Moment–curvature · Plastic analysis · Ductility index

1  Introduction

Design code provisions of reinforced concrete (RC) struc-
tures are permanently revised to better exploit material 
properties and provide ductile designs. High strength 
concrete (HSC) is used worldwide, primarily due to the 
gain in strength, stiffness and durability properties, which 
may lead to an economy in the use of reinforcing bars and 
size of concrete cross sections in multi-storey buildings. 
Although concrete ductility can be partially diminished 
as concrete strength increases, the combined RC member 
can still possess a good level of ductility when a correct 
amount of reinforcement is considered. With this in regard, 
the National Brazilian Regulation NBR6118 (2014) [1] incor-
porates design requirements for HSRC members with con-
crete compressive strengths between 50 and 90 MPa, in 
which an equivalent rectangular stress block for concrete 

in compression is adopted for flexural design. Indeed, the 
rectangular stress block is employed in several design 
codes for which different values of stress factors and ulti-
mate compressive strains are commonly proposed [2].

Furthermore, ductility of RC members, which can be 
expressed in terms of plastic rotation capacities of cross 
sections, maximum steel ratios or neutral axis depths, is 
another issue to be treated here. The technical literature is 
abundant in this aspect. For instance, in [3] a crack-based 
assessment damage method is proposed to study the 
behavior of HSRC beams critical in shear. Therein, hyster-
etic rules are included in the model besides an experimen-
tal campaign. In [4], a two-dimensional lattice model is 
formulated for HSC, in which cyclic analyses are performed 
in columns to prove adequacy of the proposed model in 
relation to experimental data. In [5] an experimental inves-
tigation is accomplished to assess the strain rate effect on 
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HSC under dynamic loading, in which a noticeably rate 
dependency is remarked. In [6] an experimental program 
is carried out to test the performance of HSRC beams 
under quasi-static and blast loads. The main conclusion 
of the study is that the concrete strength does not signifi-
cantly affect the specimen behavior under blast loads. In 
[7] is presented a learning machine to predict compres-
sive strength of HSC, which is certainly a crucial param-
eter to project economy. Compression test on cylindrical 
specimens are conducted for HSC in [8], where an ultimate 
strain of 0.003 as specified by the ACI Committee 318 [9] 
is considered to be conservative. Indeed, experimental 
data supports compressive strains around 0.003 at peak 
stress for concrete strengths ranging from 50 to 91.4 MPa. 
A stress–strain curve for HSC in compression is proposed in 
[10] based upon a fitting procedure of relevant experimen-
tal data from existing sources. The reported minimum and 
maximum peak strain for normal and high-strength con-
crete specimens vary from 0.00228 to 0.000337 for con-
crete strengths between 24.27 and 84 MPa, respectively. 
Therefore, these studies suggest that a value greater than 
0.003 should be used for the ultimate compressive strain 
of concrete.

In [11], parametric studies beside a regression analy-
sis are performed to propose expressions to predict 
flexural ductility factors based on ultimate and yielding 
curvatures for HSRC beams and columns. The proposed 
expressions are mainly based on steel ratios and material 
strengths. Bernardo and Lopes [12] carried out an experi-
mental program to study simply supported beams with 
different tension steel ratios for concrete compressive 
strengths ranging from 62.9 to 105.2 MPa. In their study, 
it is concluded that the evolution of neutral axis depth at 
all load levels is similar to that reported for beams made 
of normal strengths. In [13] an assessment of HSC beams 
with varying tension steel ratios is reported, experimental 
flexural ductility regarding curvature and deflections are 
compared with those obtained from design codes such 
as ACI Committee 318 [9], Canadian Standard Association 
CSA A23.3–04 [14] and New Zealand Concrete Standard 
NZS 3101 [15] for which more conservative results are 
obtained. In [16], the India Standard code of practice for 
plain and reinforced concrete structures is evaluated for 
nine experimental beams made of HSC, also with the 
intention of evaluating stress block parameters.

Undoubtedly the aforementioned issues are intrinsi-
cally related to moment redistribution in indeterminate 
structures for which plastic rotation capacities and ductil-
ity at critical sections are crucial. Interesting studies about 
this topic can be found in [17, 18] and [19], among oth-
ers. Other studies about lightweight-aggregate concrete 
beams for HSC with compressive strengths between 22 
and 63 MPa have also been presented in [20] and [21]. As it 

may be inferred, the current topic is of interest for the sci-
entific community and practitioners. Although extensive 
efforts have been made in the research for HSRC, further 
studies are still needed to verify existing expressions from 
design codes and proposing new ones. Albeit complex 
numerical finite element models may be used to trace the 
nonlinear response of HSRC beams [22], a simple approach 
is presented herein.

In this context, the aim of this work is to give an accu-
rate prediction and ductility assessment of Bernardo and 
Lopes HSRC beams [12] for which detailed comprehension 
is not given. This group of beams constitutes an impor-
tant dataset since nineteen members with a wide range of 
concrete strengths are tested. Previous studies have solely 
advocated to the prediction of ultimate resistant moments 
according to various design codes [23], while in the current 
study a complete picture of the problem is given. Another 
important issue resides in the fact that commonly experi-
mental setups for HSRC beams used in laboratory, con-
sists in testing simply supported beams subjected to two 
symmetrically points loads. This experimental scheme may 
be encountered for instance in the HSRC beams tested by 
Pam et al. [24], Sarkar et al. [25], Bernardo and Lopes [12], 
Mohammadhassani [13], Rashid and Mansur [26], Ashour 
[27], Li and Aoude [28], among others. Therefore, closed-
form expressions to evaluate ductility indexes in this situa-
tion are proposed in this paper. Additionally, some expres-
sions available from literature for estimating ductility 
factors regarding curvatures are revised with the current 
experimental data and approach. Furthermore, provisions 
given by the Brazilian Regulation NBR6118 [1] are verified 
to assess ultimate resistant flexural moments, stress block 
parameters and plastic rotation capacities.

The paper is organized as follows. The numerical 
approach for computation of load–displacement curves 
for HSRC beams based on truly concrete and steel con-
stitutive laws are presented in Sect. 2. A namely simpli-
fied procedure used to provide closed-form expressions 
for ductility assessment are also proposed in this section. 
Finally in Sect.  3, the aforementioned procedures are 
applied to the study of two groups of HSRC beams for 
which experimental results are available.

2 � Numerical approach

In what follows a numerical procedure to compute the 
ultimate responses for HSRC beams is presented.

2.1 � Concrete and steel

Stress–strain constitutive relationship for concrete in 
compression is expressed by means of Eq. (1), which is 
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obtained based on a parabolic curve defined by three 
points, the origin point, the point at which the peak stress 
�cp is firstly attained with its corresponding peak strain �cp 
(e.g. 0.003) and the crushing point at the ultimate strain 
�cu (e.g. 0.0035) as shown in Fig. 1a. The NBR6118 estab-
lishes variable values for  �cu between 0.003 to 0.0026 for 
concrete grades from 50 to 90 MPa, respectively [1]. Mean-
while, other codes such as NZS 3101 [15], ACI Committee 
318 [9] and CSA A23.3–04 [14] define constant values of 
0.003 and 0.0035, respectively, for this parameter. Accord-
ing to [8] the ultimate strain of 0.003 for HSC is conserva-
tive and should be used as the peak strain instead. Indeed, 
Bernardo and Lopes in their theoretical computations 
used �cu = 0.0035 [12].

Contribution of concrete in tension is introduced by 
means of a bilinear strain–stress relationship as depicted 
in Fig. 1b, following the approach of Bazant and Oh [29] 
and stated by Eq. (2).

where Et and Ec are given in MPa,

in which �t is the current tensile strain, �t  is the current 
tensile stress, �tp is the peak tensile stress, Ec is the elastic 
modulus in the first branch and Et is the tangent modulus 
of the descending branch. Otherwise, the stress–strain 
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relationship for reinforcing bars is defined by means of 
a bilinear curve with an elastic perfect plastic behavior 
with a yielding stress �y and elastic modulus Es . Here, an 
average value of �y = 500 MPa is adopted for all computa-
tions unless stated otherwise. In Fig. 2a is displayed the 
equilibrium of internal forces in a typical RC cross section 
employed in the proposed theoretical approach for which 
tensile and parabolic compression stresses are consid-
ered. This approach is general and can be used to trace 
the complete nonlinear behavior of the cross-section by 
prescribing incremental curvatures or compressive strains. 
In Fig. 2b is depicted the current approach used in the NBR 
at failure state, where �c  and � are the stress and depth 
factors associated to the stress block, respectively. Finally, 
in Fig. 2c is shown the corresponding stress distributions 
at various load levels used in this study for the named sim-
plified approach to provide closed-form solutions for the 
evaluation of ductility indexes, as it will be shown later 
in Sect. 2.3. The idea behind this approach is to avoid 
the elaborated computations from Fig. 2a. As it may be 
observed, the triangular and trapezoidal stress diagrams 
represent the cases in which concrete in compression is 
elastic and when this enters to the plastic regime, respec-
tively, based on the procedure presented in [30]. The ulti-
mate stress distribution at nominal failure is then included 
in the procedure by adopting the rectangular stress block 
from Fig. 2b.

2.2 � Load–displacement curves

In the sequel the numerical procedure of the theoretical 
approach, used to trace the load–displacement curves for 
HSRC beams, is presented. The method is based upon the 
construction of moment–curvature diagrams at the sec-
tion level coupled to the principle of virtual work to com-
pute deflections. Comparing to conventional methods, 
contribution of concrete in tension is considered in this 
approach. The procedure is described as follows:

For a given cross section as depicted in Fig. 2a, equi-
librium of internal forces and strain compatibility at 
all fibers is established. Current strain, �cm , at the most 

Fig. 1   Stress–strain relation-
ships: a concrete in compres-
sion; b concrete in tension



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:204 | https://doi.org/10.1007/s42452-021-04190-7

compressive fiber is prescribed to an increasing value 
from zero to �cu = 0.0035. From that value, strains at other 
fibers, e.g. tensile strain �tm  and steel strain �si at the i-th 
steel layer, are computed in the following manner:

and,

where h is the height of the beam, d is the effective 
depth, di is the position of the i-th steel layer measured 
from the top fiber and x is the current neutral axis depth. 
Two additional parameter, namely �t and � as expressed 
in Eqs. (7) and (8) respectively, are then introduced to 
compute the internal resistant forces due to concrete 
in tension and compression. The resulting normal force, 
which is null in the present case, can be expressed by 
means of Eq. (9).

(5)�tm =
||||�cm.

h − x

x

||||

(6)�si = �cm.

(
x − di

x

)
i = 1, 2 in which b is the beam width, Asi is the steel area of the i-th 

layer and �si is the associated steel stress. To calculate the 
resistant flexural moment, two additionally parameters, 
namely �t and � as stated in Eqs. (10) and (11), respectively, 
are used to locate concrete resistant forces as sketched 
in Fig. 2a. With these parameters, the bending moment 
at each cross section can be determined with the aim of 
Eq. (12). In this manner, for each prescribed value of �cm or 
curvature � = �cm∕x , a corresponding resistant moment 
is computed, and thus a moment–curvature diagram can 
be traced.
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Fig. 2   Cross-sectional equilibrium: a numerical approach; b NBR equivalent stress block; c plastic model



Vol.:(0123456789)

SN Applied Sciences (2021) 3:204 | https://doi.org/10.1007/s42452-021-04190-7	 Research Article

Based on computed curvatures and moments, the 
deflection at a given location can be evaluated using the 
principle of virtual work in the following manner.

in which L is the beam length, � is the curvature due to 
applied external load, 

−

M is the bending moment due to a 
unit force applied at the section in which the deflection is 
to be known. For the particular case of a simply supported 
beam submitted to two equal point loads as depicted in 
Fig. 3a, this expression is particularized to compute the 
mid-span deflection using Simpson integration rule with 
eight cross sections, i.e. �1 to �8 . The corresponding curva-
tures are obtained from the moment–curvature diagram 
shown in Fig. 3b, which is built following Eqs. (5)–(12). 
The resulting expression is given in Eq. (14) and will be 
employed for computing the mid-span deflection of Ber-
nardo and Lopes beams [12]. As already mentioned, this 
beam setup is commonly used in most laboratories to test 
flexural beams up to failure load. Hence, this theoretical 
procedure is programmed to automatize computations.
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2.3 � Closed‑form expression for ductility assessment

In this section, simple formulas are presented to evaluate 
ductility indexes regarding deflections and curvatures for 
the arrangement depicted in Fig. 3. The reasoning behind 

this idea is based upon the stress distributions displayed 
in Fig. 2c, in which concrete stresses pass from elastic to 
an elastic plastic stage until finally achieved its ultimate 
nominal failure. As it is known, the degree of ductility of a 
section can be measured by means of its rotation capacity 
at failure, which can be related to ductility indexes regard-
ing deflections or curvatures. The former is defined as the 
ratio of the ultimate deflection �u to the yielding deflection 
�y as �� = �u∕�y , while the latter is defined as the ratio of 
the ultimate curvature �u to the yielding curvature �y  as 
�� = �u∕�y . Here, the yielding quantities are associated to 
the first yielding of any steel bar in the cross section, while 
the ultimate state is identified when the most compressive 
fiber attains its ultimate strain. Both indexes may be evalu-
ated from the numerical procedure explained in the previ-
ous section. However an analytical treatment is also possible 
by integration of Eq. (14). The resulting expressions for flex-
ural ductility indexes are given in Eqs. (15)–(16) in terms of 
curvatures and by means of Eq. (17) in terms of deflections.

in which � = As∕bd and n = Es∕Ec are the steel and modu-
lar ratio with As being the area of the tensile reinforcement, 
b is the section width, d is the effective depth, �c and �  
are the stress block parameters from Fig. 2b, and Ec is the 

(15)�� =
�c .�cp.�.�cu.

[
1 + �.n −

(
2�.n + �2.n2

)0.5]

�.Es.�sy
2

Fig. 3   Simply supported beam: 
a integration scheme along 
beam axis; b Moment- curva-
ture diagram
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elastic modulus of concrete, which can be computed from 
Eq. (4). This formula is suitable when the maximum con-
crete stress have not reached its yielding point as defined 
in Stage 1 from Fig.  2c, i.e. when e < d∕xy − 1 , where 
e = �sy∕�c� and �sy and �c′ are, respectively, the strains of 
steel and concrete at their yielding points, i.e.�cp = Ec ⋅ �c� 
while xy represents the neutral axis depth at yielding. Oth-
erwise, when concrete strain enters into the plastic region 
as established in Stage 2 from Fig. 2c the following equa-
tion can be used.

The two above-mentioned equations are general and 
can be used with any set of stress block parameters  �c and  
� according to any design code, even the NBR6118. These 
parameters may be also evaluated alternatively from �c 
= �∕(2�) and  � = 2� using Eqs. (8) and (11), respectively. 
Indeed, closed-form expressions for �  and � are given 
in the "Appendix" section. With regard to the deflection 
ductility index, it can be also computed directly from 
Eq. (17) introducing a dimensionless parameter k = b∕a , 
where a and b are beam distances defined in Fig. 3a. The 
complete development of Eqs. (15)–(17) is given in the 
"Appendix" section for completeness. For the particular 
case of Bernardo and Lopes beams, a value of k = 0.4 is 
computed, and the deflection ductility index reduces to 
�� = 0.31 + 0.70 �� . This expression is important because 
it correlates both indexes.

The plastic rotation capacity, defined as the rotation 
between adjacent sections of the plastic hinge, may be 
computed from �p = 1.2h.

(
�u − �y

)
 for the particular case 

depicted in Fig. 3, in which 1.2h represent the local plastic 
hinge length of beams with ductile failure according to the 
NBR6118, in which h is the beam height, d ≈ 0.9h and �y 

(16)�� =
2�c .�cp.�.�cu.e.[1 − �.n.e]

�.Es.�sy
2

(17)�� =
3 + �� .

(
1 + 12k + 6k2

)
4 + 12k + 6.k2

is the yielding curvature computed from the "Appendix" 
section.

3 � Numerical study

The previous numerical procedure and closed-form 
expressions are applied to compute the ultimate response 
of the HSRC beams tested by Ashour (2000) [27] and pri-
marily to the beams tested by Bernardo and Lopes [12].

3.1 � Preliminary verification with HSRC beams 
tested by Ashour (2000)

Nine simply supported and singly reinforced HSRC beams 
were tested in [27] using the same testing arrangement 
as depicted in Fig. 3. Table 1 lists the beam dimensions, 
concrete cylinder compressive strength and longitudinal 
reinforcement. The yielding stress of the reinforcing bars 
is 530 MPa. Shear reinforcements are provided along the 
beam length with exception of the constant moment zone 
between concentrated loads. Three flexural reinforcement 
ratios of 1.18, 1.77 and 2.37% are used.

Table  2 shows the experimental and numerical 
yielding load P and ultimate load Pu. As it can be seen, 
the loads predicted by the numerical (or theoretical) 
approach from Fig. 2a acceptably match the experimen-
tal ones. To check the adequacy of closed-form expres-
sions from Eqs. (15)–(17) to evaluate ductility indexes �� 
and �� , they are compared with those obtained from the 
numerical approach. As it may be observed, the closed-
form expressions reasonably approach the numerical 
approach with less computational effort. This is impor-
tant because a rapid estimation of these indexes can be 
made with the proposed expressions.

(18)�p = 1.33

(
�c .�cp.�.�cu

�.fy
− �yd

)

Table 1   Properties of HSRC 
beams

Beam B (m) H (m) σcy (MPa) As (mm2) D (m) Ρ (%)

B-N2 0.2 0.25 48.6 5.09 0.215 1.18
B-N3 0.2 0.25 48.6 7.63 0.215 1.77
B-N4 0.2 0.25 48.6 10.18 0.215 2.37
B-M2 0.2 0.25 78.5 5.09 0.215 1.18
B-M3 0.2 0.25 78.5 7.63 0.215 1.77
B-M4 0.2 0.25 78.5 10.18 0.215 2.37
B-H2 0.2 0.25 102.4 5.09 0.215 1.18
B-H3 0.2 0.25 102.4 7.63 0.215 1.77
B-H4 0.2 0.25 102.4 10.18 0.215 2.37
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Table 2   Results for HSRC beam Beam Experimental Numerical Closed-form
Eqs. (15)–(17)

Py Pu �� Py Pu �� �� �� ��

B-N2 77.91 90.19 3.39 79.28 83.58 4.70 3.06 4.93 3.13
B-N3 115.35 124.96 2.50 115.14 120.53 2.82 2.02 3.01 2.09
B-N4 145.83 154.34 1.49 149.20 154.45 1.91 1.52 2.09 1.59
B-M2 76.76 89.84 3.88 82.31 86.03 6.59 4.16 6.36 3.91
B-M3 116.53 123.89 2.70 120.29 126.04 4.07 2.72 3.91 2.58
B-M4 151.05 161.22 1.84 157.39 164.26 2.86 2.04 2.74 1.94
B-H2 75.29 88.06 3.71 83.18 86.91 8.69 4.35 8.03 4.81
B-H3 121.67 128.31 2.43 122.82 128.02 5.45 3.45 4.96 3.14
B-H4 156.45 167.60 1.81 160.36 167.79 3.85 2.60 3.48 2.35
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Fig. 4   Load versus mid-span deflection curves
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The Load–deflection curves at mid-span can be seen 
in Fig. 4. As it may be observed, good agreement is found 
for all beams. It is important to comment that in the 
quoted reference, ultimate deflections are associated to 
the points of maximum flexural moments, disregarding 
the points of the descending branch.

3.2 � HSRC beams tested by Bernardo and Lopes 
(2004)

Nineteen simply supported HSRC beams submitted to 
two equal point loads as depicted in Fig. 5 were experi-
mentally tested by Bernardo and Lopes [12]. The beams 
present the same geometry with different tension steel 
ratios and concrete strengths as displayed in Table 3. In 
fact, the beams are grouped in six series A, B, C, D, E and 

Fig. 5   Geometry of simply supported HSRC beams (Units:cm)

Table 3   Properties of HSRC 
beams

Beam b
(m)

h
(m)

σcu
(MPa)

As
(mm2)

d
(m)

ρ
(%)

ρb
(%)

ρ/ρb

A1 0.125 0.270 62.9 452 0.238 1.52 3.44 0.44
A2 0.130 0.270 64.9 628 0.237 2.04 3.36 0.61
A3 0.120 0.270 64.1 628 0.237 2.21 3.32 0.67
A4 0.120 0.270 63.2 804 0.234 2.86 3.10 0.92
A5 0.120 0.270 65.1 804 0.234 2.86 3.19 0.90
B1 0.120 0.264 79.2 452 0.237 1.59 4.33 0.37
B2 0.124 0.270 78.9 628 0.242 2.09 4.08 0.51
B3 0.120 0.270 78.5 628 0.242 2.16 4.06 0.53
C1 0.123 0.270 82.9 628 0.242 2.11 4.29 0.49
C2 0.120 0.270 83.9 628 0.242 2.16 4.34 0.50
C3 0.125 0.270 83.6 804 0.239 2.69 4.10 0.66
C4 0.122 0.275 83.4 804 0.244 2.70 4.09 0.66
D1 0.120 0.270 88.0 402 0.247 1.36 4.32 0.31
D2 0.120 0.270 85.8 1030 0.238 3.61 4.22 0.86
D3 0.120 0.270 86.0 1030 0.238 3.61 4.23 0.85
E1 0.123 0.270 94.6 804 0.239 2.73 4.64 0.59
E2 0.120 0.270 90.2 804 0.239 2.80 4.42 0.63
F1 0.139 0.263 100.3 628 0.230 1.96 5.19 0.38
F2 0.129 0.270 105.2 804 0.234 2.66 5.16 0.52
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F based on increasing concrete strengths and tension 
steel ratios. All specimens are unreinforced beams, i.e. 
�∕�b ≤ 1 , where � and �b are the current and balanced steel 
ratios, so that a ductile failure is enforced. Also, stirrups 
are added outside the central zone to avoid shear failure. 
As the compressive concrete strength is obtained from 
companion cube-shaped specimens of 15 cm × 15 cm, 
the cylinder strengths is recovered by multiplying cube 
strengths by a size factor less than one, as the strengths 
from cube specimens are greater than the cylindrical ones 
[31]. This is because failure mode of cylindrical samples 
better represent the true uniaxial behavior of concrete, so 
that sufficiently large macroscopic homogenized proper-
ties can be used in the analysis. As the two bars of 6 mm in 
diameter in Fig. 5 are placed at the upper part of the beam 
merely for constructional purposes and since their area 
are very small, they can be neglected from computations 
with safety. Research by Evans indicates that cylinder/cube 
strength ratio increases with concrete strength [32]. The 
specimen shape factor depends upon concrete mix com-
position and loading age, which makes it difficult to char-
acterize a single value for all beams. Likewise, the rate of 
loading at testing which may go for hours in a test, intro-
duces another factor between 0.85 and 1.0 to be applied 
due to short-term sustained load [2]. Hence, the in-situ 
peak stress  �cp in the flexural test needs to be correlated 
to either the cylinder strength �cy or cube strength �cu . 
From test results presented by Ibrahim and McGregor for 
HSC [33], it can be seen that the average ratio of �cp to �cy  
is 0.85. For simplicity, the authors recommend a constant 
ratio of 0.9, and by considering that the cylinder strength 
�cy is 0.8 times the cube strength �cu , the in-situ peak stress 
�cp is finally computed as 0.9 × 0.8 �cu = 0.72 �cu [34].

In view of the above-mentioned reasons, in Fig. 6 three 
resulting reduction factors, which correlate directly the in-
situ peak stress to the cube strength of 0.7, 0.8 and 0.9 are 
tested for beams A4 (63.2 MPa) and C2 (83.9 MPa) in order 
to study their influence on the overall behavior. As it may 

be observed, a value of 0.7 can be chosen to fit the experi-
mental response for ultimate loads and deflections. Then, 
the previous value of 0.72 is adequate. Also, it is important 
to comment that ultimate nominal points after peak loads 
are defined based on minor loss of loading carrying capac-
ity as stated in [12].

Load–deflection curves and neutral axis evolution at 
mid-span are depicted in Figs. 7 and 8, respectively, for 
fifteen beams. As a further comparison, in Fig. 7 are also 
plotted the results obtained with the software SAP 2000 
using the concrete constitutive law by CALTRANS in which 
an elastic- plastic model with plastic hinges concentrated 
at the beam ends is used. Normally twenty two-node bar 
elements with one hundred of displacement increments 
are found to be adequate. As it may be observed, the 
proposed approach is able to reproduce acceptably the 
experimental ultimate load and mid-span deflections at 
all cases, proving that the adopted stress–strain consti-
tutive relationship of Eq. (1) is adequate. Regarding the 
neutral axis evolution, its position at the beginning of 
the load ( M∕Mu ≈ 0 with Mu being the flexural moment 
at failure), nearly coincides with the beam mid-height, i.e. 
0.6d ≈ 0.54h , which is in accordance with the uncracked 
behavior of the section at this load level. This position 
remains constant until concrete cracking takes place, and a 
sudden increase of the neutral axis depth is marked. After 
that, the neutral axis depth remains constant until yield-
ing of reinforcing bars occurs, in which again abruptly a 
new expansion of the neutral axis depth takes place. Fur-
ther loading attains the neutral axis position at failure. The 
described procedure is consistent with the experimental 
data, yielding an adequate description at all load levels. 
However, some discrepancy may be expected at final 
stages, i.e. M∕Mu ≈ 1 , as the nominal ultimate strain of 
0.0035 can be exceeded during the test.

A summary of experimental and numerical results 
in terms of load level at first yielding Py and associated 
deflection at mid-span δy, ultimate load at failure Pu and 

Fig. 6   Effect of reduction 
specimen shape and rate load-
ing factors
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Fig. 7   Load versus mid-span deflection curves
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Fig. 8   Evolution of neutral axis depth with bending moment
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associated deflection at mid-span δu, as well as neutral 
axis depth x/d at failure are listed in Table 4. In Fig. 9 is 
displayed the evolution of cracking moment Mcr with the 
degree of reinforcement �1 = (�t − �c)∕�b , where �t , �c and  
�b are the tension, compression and balanced steel ratios, 
respectively. As it may be observed, cracking moment 
is nearly independent of tension longitudinal reinforce-
ment ratio and varies linearly with cube strength as 
Mcr = 0.015.�cubd

2 . From this equation, concrete modulus 
of rupture can be deduced as �r = 0.0657.�cy

1.0634 , indicat-
ing that tensile strength to cylinder compressive strength 
ratio is around 6.6% for HSC.

3.2.1 � Prediction of Brazilian Code NBR6118:2014

The NBR 6118:2014 adopts an equivalent stress 
block for flexural design of HSRC beams. The stress 
b l o c k  p a r a m e t e r s  � = 0.8 − (�cy − 50)∕400  a n d 
�c = 0.85.

[
1 − (�cy − 50)∕200

]
 are displayed in Fig.  2b. 

Both coefficients depend upon the characteristic cylinder 
compressive strength, �cy and they have been applied to 
predict the ultimate resistant moment Mu_NBR for each 
beam. The results are listed in Table 5 besides experimen-
tal moments Mu_exp and those obtained with the numerical 
approach Mu_num from Sect. 2.2. As it can be inferred, the 

Table 4   Ultimate and yielding 
values for load and deflection

a  Not Available

Series Beam Experimental Numerical

Py
(kN)

δy
(mm)

Pu
(kN)

δu
(mm)

x/d Py
(kN)

δy
(mm)

Pu
(kN)

δu
(mm)

x/d

A A1 86.03 12.05 100.55 34.05 0.252 92.47 14.48 97.12 36.51 0.259
A2 119.86 14.48 129.88 26.38 0.297 124.98 15.75 130.03 29.55 0.337
A3 118.25 12.44 129.10 23.91 0.314 124.30 16.20 128.21 27.50 0.370
A4 150.61 18.74 156.96 25.64 0.400 153.20 19.20 153.84 22.77 0.486
A5 138.84 16.88 145.09 22.03 –a 151.96 18.12 154.85 23.25 0.472

B B1 82.60 15.60 95.99 36.68 0.283 93.56 13.71 98.49 42.86 0.210
B2 113.35 14.50 127.33 34.22 0.373 129.84 14.59 135.79 33.11 0.287
B3 110.04 14.41 131.90 36.24 0.260 129.37 14.73 135.16 32.10 0.296

C C1 109.86 15.93 125.57 33.01 0.380 130.18 14.34 136.45 34.24 0.250
C2 117.11 15.15 135.92 41.81 0.375 130.21 14.42 136.26 33.87 0.278
C3 135.94 18.08 144.89 29.35 0.341 161.26 15.74 167.33 28.65 0.347
C4 138.10 16.72 155.88 30.11 0.300 164.53 15.45 170.68 27.94 0.349

D D1 83.09 16.66 88.44 48.19 0.258 88.63 12.32 93.16 51.92 0.166
D2 168.28 19.26 186.68 39.41 0.530 199.58 17.50 203.80 23.53 0.453
D3 185.37 17.15 195.22 26.28 0.417 199.69 17.53 203.90 23.57 0.452

E E1 144.85 15.96 157.99 25.40 0.394 162.57 15.07 169.90 31.15 0.290
E2 141.09 17.42 157.79 36.11 0.422 161.91 15.50 168.22 29.42 0.337

F F1 105.48 14.13 128.46 40.24 0.365 127.13 14.03 133.12 44.90 0.211
F2 134.18 15.55 158.14 36.17 0.299 162.13 14.82 169.10 35.39 0.274

Fig. 9   Cracking moment 
variation: a with degree of 
reinforcement b with cube 
strength
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mean of the resistant flexural moments predicted by the 
NBR6118 overestimate the experimental ones in average 
by 4%. To better match the experimental results with the 
NBR’s approach, a modified �c∗ coefficient is computed in 
the last column of Table 5. Coefficients �c∗  are generally 
slightly smaller than the original ones and an expression 
like  �c∗ = 0.83.

[
1 − (�cy − 50)∕166

]
 is proposed here. Also, 

a similar trend (not shown here) is encountered for the 
results obtained with the numerical approach. In Table 6 
are reported the mean and standard deviation values 
obtained for the Bernardo and Lopes beams besides other 
results for HSRC beams from literature.

To verify the prediction of other regulations, the ACI 
(2014) [9] and FIB (2010) [35] model code formulations, 
which can be found in [2], are selected here. Table 7 lists 
the ultimate bending moments predicted according to 
these design codes for all studied beams. As it can be seen, 
the obtained bending moment ratios between the experi-
mental moments to the predicted ones are very similar. 

Indeed, the ACI code yields a mean ratio of 0.94 with a 
standard deviation of 0.04, whereas the FIB model yields a 
mean ratio of 0.93 with a standard deviation of 0.039. Both 
models overestimate the experimental moment following 
a similar trend as the NBR6118 [1].

3.2.2 � Assesment of ductility

Values of ductility indexes regarding curvature and 
deflection are listed in Table  8 for all studied beams. 
These results correspond to the numerical approach and 
closed-form expressions from Sect. 2.2 and 2.3, respec-
tively. As it can be checked, both indexes approach 
each other as  �∕�b ≥ 0.5 [13] for each serie. In Fig. 10 is 
shown that curvature ductility index �� decreases with 
both the increasing of the degree of reinforcement �1 
and flexural strength Mu∕bd

2 computed from Sect. 2.2. 
Indeed, the fitted equation �� = 1.23

(
�1
)−1.25

 is pro-
posed here to match the exponential trend in Fig. 10a, 

Table 5   Predicted ultimate 
moments according to 
NBR6118:2014

Beam � �c Mu_NBR
(kN m)

Mu_num
(kN m)

Mu_exp
(kN m)

Mu_exp/Mu_NBR Mu_exp/Mu_num �c
*

A1 0.791 0.835 49.21 48.56 49.65 1.01 1.02 0.843
A2 0.787 0.828 66.12 65.02 64.85 0.98 1.00 0.812
A3 0.789 0.831 65.34 64.11 65.15 1.00 1.02 0.828
A4 0.791 0.834 79.04 76.92 77.95 0.99 1.01 0.823
A5 0.787 0.827 79.36 77.43 72.55 0.91 0.94 0.756
B1 0.757 0.776 49.49 49.25 48.40 0.98 0.98 0.759
B2 0.757 0.777 68.36 67.90 63.60 0.93 0.94 0.723
B3 0.758 0.779 68.08 67.58 66.60 0.98 0.99 0.762
C1 0.749 0.763 68.53 68.23 62.95 0.92 0.92 0.701
C2 0.747 0.759 68.40 68.13 68.50 1.00 1.01 0.760
C3 0.747 0.760 84.12 83.67 73.35 0.87 0.88 0.663
C4 0.748 0.761 85.81 85.34 78.35 0.91 0.92 0.695
D1 0.738 0.745 46.62 46.58 44.60 0.96 0.96 0.712
D2 0.743 0.753 102.43 101.90 93.65 0.91 0.92 0.688
D3 0.742 0.752 102.46 101.95 98.25 0.96 0.96 0.721
E1 0.724 0.721 84.74 84.95 78.95 0.93 0.93 0.671
E2 0.733 0.737 84.16 84.11 79.00 0.94 0.94 0.692
F1 0.712 0.700 66.28 66.56 64.55 0.97 0.97 0.682
F2 0.701 0.682 83.80 84.55 79.30 0.95 0.94 0.646

Table 6   Predictions of ultimate 
moments for HSRC beams

Researchers Number of stud-
ied beams

Range of concrete 
strength (MPa)

Mu_exp/Mu SD

Rashid and Mansur [21] 16 43–126 1.09 0.072
Ashour [22] 9 49–102 1.02 0.032
Sarkar et al. [20] 13 65–91 1.07 0.097
Mohammadhassani et al. [13] 9 67–72 1.14 0.017
Present study 19 53–89 (62.9–105.2) 0.96 0.039
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where the expression proposed by Kwan and Ho [13] 
�� = 10,7

(
�1
)−1,25(

�cp
)−0,45

(�y∕460)
−0,25 is also plotted 

for comparison. Furthermore, in Fig. 10b is shown that 

ductility of the member increases with concrete strength 
at a given flexural strength, flexural ductility diminishes 
with flexural strength and flexural strength increases with 
concrete strength at a given ductility. In Figs. 11a, b are 
displayed the evolution of �� with the degree of reinforce-
ment �1 and neutral axis depth x∕d at failure, respectively, 
obtained with the present numerical approach. As it may 
be observed, the following expressions �� = 1.13(�)−1.1 
and  �� = 0.55(x∕d)−1.125 are proposed to match the expo-
nential trend. The advantage of proposing simple expres-
sions is to avoid the construction of moment–curvature 
diagrams. In Fig. 11c is compared the evolution of �� for 
various approaches from Table 8. As it may be observed 
the closed-form expression from Eq. (17) by using ana-
lytical values for �  and � from the "Appendix" section, 
compares well with the exact numerical approach given 
in Sect. 2.2. Some discrepancies are encountered due to 
the adopted stress–strain law for concrete in compression 
in each approach and because Eq. (17) dismiss concrete 
contribution in tension. Furthermore, it may be useful to 
group beams with similar tension reinforcement ratio to 
visualize the effect of concrete compressive strength in 
the overall response of the beams as depicted in Fig. 11d. 
For instance, series (A1, B1, D1, F1), (A2, A3, B2, B3, C1, C2), 
(A4, A5, C3, C4, E1, E2, F2) and (D2, D3) have average steel 
ratios of  � = 1.6%, 2.1%, 2.8% and 3.6%, respectively. As it 
can be seen, ductility decreases with increasing steel ratio 
and increases with concrete strength for a given steel ratio.

Table 7   Predictions of ultimate moments for other main codes

Beam Mu_ACI
(kN.m)

Mu_FIB
(kN.m)

Mu_exp
(kN.m)

Mu_exp/Mu_ACI Mu_exp/Mu_FIB

A1 49.29 49.90 49.65 1.01 1.00
A2 66.33 67.36 64.85 0.98 0.96
A3 65.55 66.71 65.15 0.99 0.98
A4 79.32 81.30 77.95 0.98 0.96
A5 79.75 81.57 72.55 0.91 0.89
B1 49.84 50.10 48.4 0.97 0.97
B2 69.01 69.51 63.6 0.92 0.92
B3 68.74 69.27 66.6 0.97 0.96
C1 69.30 69.65 62.95 0.91 0.90
C2 69.21 69.54 68.5 0.99 0.99
C3 85.38 85.91 73.35 0.86 0.85
C4 87.10 87.66 78.35 0.90 0.89
D1 47.00 47.08 44.6 0.95 0.95
D2 104.74 105.45 93.65 0.89 0.89
D3 104.78 105.48 98.25 0.94 0.93
E1 86.47 86.44 78.95 0.91 0.91
E2 85.75 85.94 79 0.92 0.92
F1 67.33 67.17 65.55 0.97 0.98
F2 85.83 85.34 79.3 0.92 0.93

Table 8   Ductility indexes Beam �∕�
b

Experimental Numerical Closed-form

�� �� �� ��

Eqs. (15)–(16)
��

Eq. (17)

A1 0.44 2.83 3.59 2.54 3.56 2.77
A2 0.61 1.82 2.47 1.87 2.55 2.08
A3 0.67 1.92 2.35 1.69 2.28 1.88
A4 0.92 1.37 1.47 1.23 1.61 1.42
A5 0.90 1.31 1.55 1.28 1.66 1.46
B1 0.37 2.35 4.41 3.10 4.33 3.31
B2 0.51 2.36 2.76 2.25 3.07 2.43
B3 0.53 2.51 2.93 2.12 2.93 2.34
C1 0.49 2.07 3.18 2.37 3.20 2.53
C2 0.50 2.76 3.18 2.33 3.15 2.49
C3 0.66 1.62 2.39 1.82 2.38 1.95
C4 0.66 1.80 2.33 1.81 2.36 1.94
D1 0.31 2.89 6.02 4.15 5.87 4.37
D2 0.86 2.05 1.60 1.34 1.67 1.46
D3 0.85 1.53 1.62 1.34 1.67 1.46
E1 0.59 1.59 2.66 2.00 2.67 2.16
E2 0.63 2.07 2.45 1.88 2.46 2.01
F1 0.38 2.85 4.31 3.35 4.33 3.31
F2 0.52 2.33 3.14 2.35 3.11 2.46
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Fig. 10   Variation of curva-
ture ductility index: a with 
reinforcement degree; b with 
flexural strength
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The evolution of plastic rotation capacity  �p with non-
dimensional neutral axis depth at failure is displayed in 
Fig. 12a according to Eq. (18). As it may be observed, a 
clear tendency to an exponential trend is marked. Also, it is 
important to highlight that the current value of  �p can be 
interpreted as the area of a rectangle with dimensions of 
1.2h and 

(
�u − �y

)
 in accordance to the moment diagram 

displayed in Fig. 3a, in which flexural moments between 
point loads are constant, i.e. a constant distribution of cur-
vatures is admitted at this zone. As already mentioned, 1.2h 
represents the nominal local plastic hinge length which 
occurs at the central zone of the beams as established in 
the experimental report. Nonetheless, the common case 
in buildings corresponds to a simply supported beam 
subjected to a single point load at mid-span, represent-
ing an interior support of a continuous beam between 
points of contraflexure, for which moment redistributions 
are expected at high loads. In this condition, the plastic 
rotation capacity will correspond to half of the area of the 
previous rectangle, i.e. a triangular moment diagram with 
a linear distribution of curvatures is formed instead of a 
rectangular one. Indeed, plastic rotation capacity curves 
labeled NBR6118 (50  MPa) and NBR6118 (90  MPa) in 
Fig. 12b for �y = 500 MPa and cylinder strengths of 50 MPa 
and 90 MPa, respectively, are provided in [36] based on 
NBR specifications. To compatibilize comparison, it is sup-
posed that the current data corresponds to a fictitious 
beam under a single concentrated load for which the plas-
tic rotation capacity is �p

∗ = 0.5�p . The resulting point is 
then plotted in Fig. 12b to show the tendency. Apparently, 
the adopted plastic hinge length in the NBR code seems to 
be adequate for the present case because the computed 
points are closer to the curve labeled NBR6118 (90 MPa). 
Furthermore, it is verified that all points are located at the 
descending branch of the curve, indicating a nominal duc-
tile failure due to concrete crushing.

4 � Conclusion

In this work a analytical and numerical approach are 
proposed to study the overall behavior of high strength 
reinforced concrete beams. A common setup scheme of 
a simply supported beam loaded up to failure load under 
two symmetric point loads is studied here. Primarily 
experimental results of nineteen HSRC beams are com-
pared with those obtained with the current approach in 
terms of failure load and evolution of neutral axis depth. 
Then, after validation of the numerical approach analyti-
cal formulas are proposed to evaluate ductility indexes 
regarding deflections and curvatures, all of which closely 
match the results from rigorous procedures based on 
moment–curvature diagrams. In this context, the follow-
ing conclusions can be drawn for the HSRC beams tested 
by Bernardo and Lopes [12] from this study.

Ductility index decreases as tension reinforcement 
ratio augments, suggesting that a maximum steel ratio 
should be imposed to guaratee a minimum level of duc-
tility. For instance, the beams named D2 and D3 are the 
most reinforced ones with tension steel ratios of 3.61%. 
Both beams are almost identical in all aspects; however 
their experimental deflection ductility indexes are 2.05 
and 1.53, respectively. Meanwhile, the theoretical one 
is close to 1.4, which may be considered small. Hence, 
steel ratios as high as 3.6% can represent an upper limit. 
In fact, the maximum prescribed steel ratio for beams 
in the NBR6118 is 4% in order to guarantee a minimum 
level of ductility.

The mean of ultimate resistant moments predicted by 
the NBR6118 for the studied group of beams overesti-
mate the experimental ones in average by 4%, being on 
the unsafe side. A similar trend has been found for the 
ACI and FIB model codes. Also, it has been shown that 
flexural ductility can increase with HSC at a given flexural 
strength. Also, ductility increases with concrete strength 
for a given steel ratio. All these findings indicate that 

Fig. 12   Plastic rotation capac-
ity for Bernardo and Lopes 
beams: a close-form expres-
sion; b NBR6118 curves
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the brittle behavior of HSC itself can be counterbalanced 
with a proper amount of reinforcement in the resulting 
member.

Proposed formulas for ductility indexes regarding 
deflections and curvatures are in close agreement with 
those obtained from more elaborated numerical pro-
cedures based on moment–curvature diagrams. These 
expressions will permit to make a rapid evaluation of 
these indexes under the studied configuration, which 
is the most used in laboratory. Preliminary, it has been 
found that the proposed model based on a constant 
ultimate compressive strain and peak stress is able to 
acceptably match the experimental flexural moments 
and neutral axis depth at all load levels, avoiding in this 
manner the use of variable parameters as suggested by 
some codes of practice. However, this issue may depend 
upon each case and more studies are needed in this 
respect.
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Appendix

Here is presented the deduction of the closed-form 
expressions for ductility indexes regarding deflections 
and curvatures presented in Sect. 2.3. From Stage 1 in 
Fig. 2c in which concrete is linear elastic, the linearity of 
strain distribution with �sy =  �s2  is invoked as,

in which x = xy is the neutral axis depth. Equilibrium of 
axial forces is applied.

(19)
�cm

xy
=

�sy

d − xy

The following equation is obtained by combining pre-
vious equations,

With the nonnegative solution,

The curvature is then obtained as,

Finally, the theoretical yielding moment My is given 
by,

For the other case in which concrete enters into 
the plastic part as sketched in Stage 2 from Fig. 2c. By 
geometry,

By strain compatibility,

And equilibrium of axial forces with �cp = Ec ⋅ �c�

The solution is,

The curvature is obtained with xy = d − e ⋅ x1 with 
e = �sy∕�c�

The theoretical yielding moment My is given by,

(20)
1

2
⋅ b ⋅ xy ⋅ Ec ⋅ �cm − As2 ⋅ �y = 0

(21)x2
y
+ 2d ⋅ � ⋅ n ⋅ xy − 2d2

⋅ � ⋅ n = 0

(22)xy = d ⋅

[(
n2 ⋅ �2 + 2 ⋅ � ⋅ n

)1∕2
− � ⋅ n

]

(23)

�y =
�sy∕d

1 − xy∕d
=

�sy

d ⋅

[
1 + � ⋅ n −

(
n2 ⋅ �2 + 2 ⋅ � ⋅ n

)1∕2]

(24)My = �y ⋅

[
As2 ⋅

(
d − xy

)
+

b ⋅ x3
y

3n
⋅

1

d − xy

]

(25)x1 + x2 = xy

(26)
�c�

x1
=

�sy

d − xy

(27)b ⋅ x2 ⋅ �cp +
1

2
⋅ b ⋅ x1 ⋅ �cp − As2 ⋅ �y = 0

(28)x1 =
2d ⋅ (1 − � ⋅ n ⋅ e)

2e + 1

(29)�y =
�sy∕d

1 − xy∕d
=

�sy ⋅ (2e + 1)

2e ⋅ d[1 − � ⋅ n ⋅ e]

(30)My = �y ⋅ As2 ⋅
(
d − xy

)
+ b ⋅ �cp

[
x2
y

2
−

x2
1

6

]
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At the end, the yielding deflexion at mid-span is 
obtained by means of Eq. (14) given by the following 
expresion,

in which �y may be computed from Eq. (23) or Eq. 
(29). Now, regarding the ultimate limit state in which 
an equivalent rectangular block is used [Stage 3 from 
Fig. 2c] and by considering equilibrium of axial forces.

The curvature at failure is,

The theoretical ultimate moment Mu is,

The ultimate deflection is given by,

With these expressions at hand is possible to compute 
ductility indexes  �� = �u∕�y and �� = �u∕�y as given from 
Eqs. (15)–(17). Also, the plastic rotation capacity can be 
computed from Eq. (18). Additionally, the stress param-
eters from analytical evaluation of Eqs. (8) and (11) in con-
junction with Eq. (1) are given by,

with,

This means that the current expressions are general and 
can be used with any value of �cu and �cp.
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