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Abstract
This communication presents a comparative analysis of two-dimensional cross flow of non-Newtonian fluid with heat 
and mass transfer is presented in this article. Eyring-Powell fluid is chosen as the main carrier of heat and nano spe-
cies through a uniform horizontal channel. Effects of suction are also taken into account by placing porous walls. Main 
source of the flow is the motion of upper plate that moves with a constant velocity in axial direction. Two different nano 
flows have been formulated by neglecting and, as well as, applying constant pressure gradient, respectively. In addition 
to this, the analytical solution is validated with the numerical solution. Perturbation technique is employed to obtain 
a sustainable solution for the highly nonlinear and coupled differential equations. Further, Range-Kutta method with 
shooting technique is employed to get an approximate solution. It if inferred that both numerical and series solutions 
display a complete agreement.

Keywords  Cross flow · Heat and mass transfers · Approximate analytical solution · Numerical method · Non-Newtonian 
fluid

1  Introduction

It is a well-established fact that Navier–Stokes equations 
do not characterize the flow pattern of non-Newtonian 
fluids, most of the times. Such fluids involve a highly non-
linear relation between stress and strain as compared to 
viscous fluid. To capture the behaviour of non-Newtonian 
fluids, various theoretical models are proposed such as 
Micropolar fluid, Power law fluids, Giesekus fluid, William-
son fluid, Jeffery fluid and Maxwell fluid etc. In addition 
to, these Eyring-Powell fluid model is also one of such 
fluid models that exhibits the non-Newtonian behaviour. 
Eyring-Powell fluid model preference over other non-New-
tonian fluid models for mainly two reasons: (i) the kinetic 
theory of liquids is used to develop the concept instead of 
empirical relation as observed in power-law fluids model. 
(ii) This also characterizes the behaviour of Newtonian 

fluid and non-Newtonian fluid for high and intermediate 
shear rate. This model has various applications in science 
and technology such as, chemical and polymer engineer-
ing processes etc. A brief discussion on this fluid model 
relevant to the different geometries is highlighted in the 
next paragraph.

Finite element method (FDM) is used in [1] to obtain 
the numerical solution of an Eyring-Powell fluid. Numerical 
simulation of the nanofluid is performed in a Riga surface 
intact with porous medium. The magnetized flow of heat 
and mass transfer in affected by thermal radiation. They 
concluded that the velocity profile decreases by increasing 
the modified magnetic number. Similar type of investiga-
tion of Eyring-Powell fluid by Nazeer et al. [2]. The nano 
flow is examined numerically by FEM. It is observed that 
the wall shear rate decreases by increasing the values of 
an Eyring-Powell fluid parameter. Javed et al. [3] apply 
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Keller Box method to get an approximate solution for an 
unsteady flow of Eyring-Powell fluid under the influence of 
magnetic effects. They infer that thermophoresis constrain 
declines the mass transfer profile.

A theoretical study of magnetohydrodynamics (MHD) 
Ering-Powell fluid saturated with porous medium under 
the effects of variable thermal conductivity was reported 
by Salawu et al. [4]. They also discussed the entropy gener-
ation phenomenon and noted that the entropy generation 
can be minimized by radiation. Rahimi et al. [5] have devel-
oped a numerical algorithm of collocation method to solve 
the nonlinear flow problem over a stretching sheet. They 
noted that Eyring-Powell inertial parameter accelerates 
the velocity distribution. Khan et al. [6] present the idea of 
cross flow of Eyring -Powell fluid with entropy generation. 
The homotopy analysis method (HAM) and Runge Kutta 
methods were used to obtain the solution. Ahmad et al. 
[7] used the perturbation theory to discuss the flow of an 
Eyring-Powell fluid through a circular pipe. They also used 
the finite difference method to validate their perturbation 
results and noted a good agreement within both solutions.

Motivated the above important studies, in this paper 
we have presented two types of mathematical models of 
cross flow of Eyring Powell fluid with the heat and mass 
transfer analysis. The dimensional form of the partial dif-
ferential equations is transformed into ordinary differential 
equations by using the suitable non-dimensional quanti-
ties. The perturbation theory is used to find the solution 
of velocity, temperature and concentration.

This paper is organized in a manner such that, a concise 
and compact studies relevant to Eyring-Powell are cited in 
the section of introduction. The mathematical modeling 
and formulation of Eyring Powell fluid is developed in 
section two. The solutions of two type of flows namely, 
Plane Couette and Generalized Couette Flow of nano fluids 
are reported with the help of the perturbation theory in 
sections three and four respectively. Such types of flows 
are commonly using in the lubrication technology and 
tribiological problems et. [8]. The physical interpretation 
of the numerical results is explained in section five. The 
conclusions section is added before the references and the 
important references are added at the end of the paper.

2 � Problem formulation of cross flow

A steady state cross flow of Eyring-Powell fluid is described 
in Fig. 1. A Cartesian coordinate system is used for two-
dimensional non-Newtonian fluid through parallel plates 
placed at Z = 2l.

The incompressible flow is “Suction flow” [9] as Eyring-
Powell fluid seeps out of the channel with uniform velocity 
such that w0 < 0 (positive).

To develop the mathematical model of cross flow of 
an Eyring-Powell fluid, we define the extra stress tensor 
[10] given below

Employing Taylor’s series expansion, one can define as

Invoking Eq. (2) in mass conservation and momentum 
conservation equations one gets

Similarly, energy equation along with concentration 
of particles are given as:

The following boundary constraints are imposed for 
heat and mass transfer of Eyring-Powell fluid
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Fig. 1   Cross flow of Eyring-Powell fluid
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Assuming that the nanofluid flow is caused merely, 
due to the motion of top plate while keep the lower wall 
of the channel as rigid. Besides, contribution of pressure 
gradient is neglected. In view of these constraints and 
further considering the following quantities

Equations (3–7) take the following dimensionless form

The boundary conditions in dimensionless form are 
given as

On the other hand, taking the role of constant pressure 
gradient into account and following the above procedure. 
Then the momentum equation takes the form as given 
below.
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3 � Solution of the problem

Since, two different sources of heat and mass transfer of 
nano flows are developed. Therefore, separate solution for 
each case is sought out, which are given as:

3.1 � Plane Couette flow

To achieve an exact form of solution for Eqs. (10)–(12) 
corresponding to boundary conditions (13) is not easy, 
due to highly nonlinearity. Therefore, for a reliable solu-
tion for system of coupled differential equations, pertur-
bation technique is taken into account. We seek a series 
solution of the following form:

where � is known as perturbation parameter and to meet 
convergence 0 < 𝜀 ≪ 1 . In order to tackle with the nonlin-
ear terms, it is most suitable to choose

Invoking Eqs. (15–16) into Eqs. (10–13) and further 
Using the assumption to express velocity of nano fluid, 
transport of temperature and concentration of the 
nano species in terms of power series of �m , such that 
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( m = 0,1, 2…) . Then, one can easily identify the zeroth 
problem subject to boundary conditions as:

The boundary conditions are:

In the same way one can easily identify the first order 
problems corresponding to the boundary conditions are:

The zeroth order solution of Eqs. (17–19) subject to 
boundary conditions given in (20) are obtained as
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now, the first order solutions of velocity of nanofluid, 
heat transport and convection of nano particles are 
obtained below

Replacing Eqs. (25–30) in Eq. (15), the final form of the 
perturbed solutions of nano flow of Eyring-Powell fluid 
transporting heat and mass, up-to first order are given as

(31)

3.2 � Generalized Couette flow

Now, use Eq. (14) instead of Eq. (10), to solve Eqs. (11–12) 
subject to the boundary conditions (13) and adopting the 
same procedure. Then final form of perturbed solution of 
generalized Couette flow is presented as
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The expression of Nusselt number and Sherwood is 
defined by.

Nuseelt Number = −��

(1),

(37)Sherwood Number = Φ�(1).

4 � Results

Since, the study deals with two kinds of mechanical cross 
flows, namely; plane Couette flow and generalized Couette 
flow. Therefore, this portion also further subdivided into 
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two sections which relate to the contribution of emerging 
parameters on nano flows of Eyring-Powell fluid such as K1 
first order Eyring-Powell parameter, K2 Reynolds number, K3 
second order Eyring-Powell parameter, Peclet number K4 , 
Brinkman number K5 , third order Eyring-Powell parameter 

K6 , Brownian motion parameter Kb , thermophoresis param-
eter Kt , concentration scale parameter n , Schmidt number 
Sc and dimensionless pressure gradient Γ.

4.1 � Plane Couette flow

Nano flow of Eyring-Powell fluid through horizontal 
channel due to constant motion of the upper plate 
subject to variation in different parameters, is shown in 
Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Figure 2, shows the 
impact of first order Eyring Powell parameter on momen-
tum of nano flow. One can witness that momentum of 
nanofluid gradually, declines with the respect to K1 . On 
the contrary, effect of the suction Reynolds number 
enhances momentum of nano flow as shown in Fig. 3. 
Similarly, nano flow of Eyring-Powell fluid is supported 
by varying second order Eyring-Powell parameter in 
Fig. 4.

Temperature profile of nanoflow against different 
parameter is exhibited in Figs.  5, 6, 7, 8. Variation of 
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Peclet number on temperature of nanofluid is given 
in Fig. 5. In Fig. 6 Brinkman number also contributes to 
enhance the temperature profile of the fluid. Similarly, 
nanofluid is further heated due to first order Eyring-Pow-
ell parameter in Fig. 7. Nevertheless, quite an opposite 
trend in the temperature profile is observed, in Fig. 8 
against K6.

Effects of emerging parameters on concentration of 
nano particles is shown in Figs. 9, 10, 11, 12. It is seen 
that concentration of nano species increases subject to 
rise in concentration scale parameter n in Fig. 9. Simi-
larly, higher concentration of nano particles is observed 
in Fig. 10. It is noted that number density of species rises 
due to increase Brownian motion parameter Kb.

An opposite phenomenon is examined in Fig. 11 when 
numerical value of thermophoretic parameter is variated. 
By enhancing Kt in Fig. 11 concentration of tiny particles 
declines. The contribution of another significant number 
is depicted in the next graph. Schmidt number has the 
same effects on concentration of particles as Kt in Fig. 12.

4.2 � Generalized Couette flow

Unlike the above case nano flow of non-Newtonian fluid 
through the horizontal channel subject to motion of 
upper plate along with the contribution of constant pres-
sure gradient is given in Figs. 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24. The flow behaviour against each pertinent 
parameter does not alter, for the flow is generated mainly, 
by top wall. However, the role of constant pressure gradi-
ent augments its impacts which are evident through the 
graphs. Figure 13 gives the effects first order Eyring Pow-
ell parameter. Like in the previous case, nano fluid finds 
hard to travel through the channel due to shear thicken-
ing effects which add to the physical property of the base 
liquid. In the same way, influence of pressure gradient is 
more prominent near the upper wall of the channel which 
further drifts the nano fluid across the channel. The suction 
Reynolds number brings different enhances effects on the 
velocity of nanofluid. Increase in K2 expedites the nanoflow 
through porous channel in Fig. 14. Basically, rise in suction 
in channel enhances the dimensionless number which 
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ell parameter

K2 0.1, 0.3, 0.5 , 0.7

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Z

W
Z

Fig. 14   Velocity profile for different values of Reynolds number

K3 0, 0.3, 0.6 , 0.9

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Z

W
Z

Fig. 15   Velocity profile for different values of second order Eyring 
Powell parameter

0.2, 0.5 , 0.8, 1.0

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Z

W
Z

Fig. 16   Velocity profile for different values of pressure gradient 
parameter



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2021) 3:213 | https://doi.org/10.1007/s42452-021-04173-8

eventually, makes nanofluid with heat transfer rapid. 
Same increasing behaviour is witnessed for second order 
Eyring-Powell parameter in Fig. 15. Since, the introduction 
of pressure gradient brings promising effects on the flow 
that can be evinced from Fig. 16. Presence of constant 

pressure gradient support nanofluid as increase makes 
the flow faster, gradually against higher pressure gradient.

Thermal profile is depicted in Figs. 17, 18, 19, 20. Couple 
stresses in the fluid give rise to Peclet number which leads 

K4 1, 2, 3, 4

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Z

Z

Fig. 17   Temperature profile for different values of Peclet
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Fig. 18   Temperature profile for different values of Brinkman num-
ber
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Fig. 19   Temperature profile for different values first order Eyring 
Powell parameter
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Fig. 20   Temperature profile for different values of third order 
Eyring Powell parameter
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Fig. 21   Concentration profile for different values of concentration 
scale parameter
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Fig. 22   Concentration profile for different values of Brownian 
motion parameter
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to higher temperature correspondingly, as to be seen in 
Fig. 17. In Fig. 18 Brinkman number augments heat in the 
system by intensifying viscous dissipation. Nevertheless, 
increase in friction between the molecules generates some 
extra heat, as K1 is varied Fig. 19. Unlike above dimension-
less quantities reduction in heat subject to K6 is examined 
in Fig. 20.

Concentration profile nano particles against the four 
significant quantities is given in Figs. 21, 22, 23, 24. Con-
centration scale parameter n increases the saturation of 
nano particles near the upper portion of the channel 
as to be seen in Fig. 21. By increasing Brownian motion 

parameter Kb nano particles start moving haphazardly in 
channel. During the process collisions take place which 
not only rises the temperature, but also increases the con-
centration as observed in Fig. 22. Thermophoretic param-
eter reacts differently in Fig. 23. Higher thermophoretic 
force causes the reduction in concentration of nano spe-
cies. At last, in Fig. 24 mass transfer attenuates for higher 
Schmidt number.

5 � Discussion

Since, the velocity of Eyring-Powell fluid reduces against 
increase in K1 . Increase in the concerned parameter causes 
additional shear thickness effects which hampers the flow 
velocity. Flow enhances due to suction Reynolds num-
ber. It is important to know that rise in Reynolds number 
reduces the viscosity of fluid. This translates to an increase 
in nano flow of Eyring-Powell fluid by aggravating inertial 
forces. Presence of constant pressure gradient support 
nanofluid as increase makes the flow faster, gradually 
against higher pressure gradient. Temperature profile of 
increases against Peclet number. Higher values of dimen-
sionless number aggravate the couple stresses in the base 
liquid which generate extra heat into the system. Brink-
man number also enhances the temperature profile of the 
fluid. Higher Brinkman number signifies that effects of vis-
cous dissipation are more dominant as compared to heat 
transported by molecular conduction. More heat emerges 
in the system due to first order Eyring-Powell parameter 
as the flow is resisted by K1 . This intensifies the force of 
friction between adjacent fluid particles and temperature 
rises. Effects of emerging parameters on concentration of 
nano particles reveals that uncertain movement of tiny 
particles allow them to collide with each other. This colli-
sion not only rises the temperature, but also accumulates 
the particles beyond the lower plate. However, strong ther-
mophoretic force entice to move from a region of higher 
temperature to region of lower region in the horizontal 
channel. Therefore, number density of nano particles 
declines along axial direction of the channel for Kt and 
Same Schmidt number.
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Fig. 23   Concentration profile for different values of thermophoresis 
parameter
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Fig. 24   Concentration profile for different values Schmidt number

Table 1   Comparison of current 
findings with previous results 
[11]

Gupta and Massoudi Present

Γ K
5 W

�

(0) W
�

(1) �
�

(0) �
�

(0) W
�

(0) W
�

(1) �
�

(0) �
�

(1)

2 0 0.9990 −0.9980 1.0000 1.0000 0.9990 −0.9980 1.0000 1.0000
– 2 0.9990 −0.9980 1.3343 0.6687 0.9990 −0.9980 1.3343 0.6687
3 0 1.4985 −1.4970 1.0000 1.0000 1.4985 −1.4970 1.0000 1.0000
– 2 1.4985 −1.4970 1.7493 0.2545 1.4985 −1.4970 1.7493 0.2545
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6 � Comparison with previous study

Numerical data obtained by using Range-Kutta method 
with shooting technique is compared with the one 
obtained by Gupta and Massoudi [11], for the case of uni-
form viscosity model in Table 1. The previous study dis-
cussed the generalized second grade fluid between two 
heated walls for the case of Newtonian and non-Newto-
nian (m ≠ 0) fluid under the consideration of constant 
and variable viscosity models. For comparison purpose, 
we have presented the values of velocity and tempera-
ture gradients against the variation of pressure gradi-
ent and viscous dissipation parameters for limiting case (
K3 = m = 0

)
 in Table 1 and noted that the obtained solu-

tions are in full coherence with the solutions obtained by 
Gupta and Massoudi [11]. However, numerical values of 
Nusselt number against different parameters are tabulated 

in Table 2. It is noted that more heat transfer rate is signifi-
cant for the case of plane Couette nanofluid flow. On the 
other hand, transfer is nano species more prominent for 
the case of Generalized Couette flow. Variation of Sher-
wood number against Schmidt number, Brownian motion 
parameter and thermophoresis parameter in Table 3. The 
data indicates that Sherwood number attains higher 
numerical values corresponding to Schmidt number and 
thermophoresis parameter. However, Sherwood number 
reduces against Brownian motion parameter. Eventually, 
Generalized Couette flow generates greater Sherwood 
number as compared to plane Couette flow with respect 
to each dimensionless quantity.

7 � Conclusions

An incompressible flow of Eyring-Powell fluid is investi-
gated through a porous channel. The two dimensional 
nano fluid is caused by the uniform motion of upper 
surface in axial direction and due to the constant suc-
tion velocity in transverse direction. A set of highly non-
linear and coupled differential equations that describes 
the heat and mass transfer of non-Newtonian fluid is 
obtained with the help of “Perturbation method”. The 
analytic solution is further compared with numerical 
solution as well, and found both solution in great agree-
ment. Parametric study reveals that nano flow Eyring-
Powell fluid due to moving plate and constant pressure 
gradient is more prominent than merely moving wall 
flow. It is noted that effects of constant pressure gradi-
ent on nano flow are more prominent away from the 
lower wall of the channel. Moreover, viscous dissipation 
introduces additional heat into the system whereas, heat 
expunges due to third Eyring-Powell parameter. Finally, 
thermophoretic force and Brownian motion act differ-
ently on particle concentration.
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Table 2   Variation of Nusselt Number versus different parameters

Parameters Nusselt number

K
1

K
4

K
5

Plane Couette flow Generalized 
Couette 
flow

0.1 1 4 0.19263 0.15283

0.4 1 4 0.35770 0.30535

0.7 1 4 0.53401 0.47199

0.5 0.4 0.48452 0.42821

0.8 0.44223 0.38571

1.2 0.38699 0.33219

0.5 3 0.28417 0.24174

3.5 0.38003 0.33053

4 0.47589 0.41931

Table 3   Variation of Sherwood number versus different parameters

Variation of parameters Sherwood number

Sc K
b

K
t

Plane Couette flow Generalized 
Couette 
flow

0.3 0.3 0.5 0.62139 1.42754

0.4 1.38479 3.64246

0.5 2.37394 10.3441

0.35 0.2 0.5 1.47000 3.47252

0.4 0.73500 1.73626

0.6 0.49000 1.15750

0.3 0.2 0.39200 0.92600

0.4 0.78400 1.85201

0.6 1.17600 2.77802
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