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Abstract
The intention of investigating the alternative cutting tool performance, namely cermet insert to support the usage of 
coated cemented carbide for enhancing the productivity in turning of hard to cut materials such as stainless steels, is 
the rationality of this research. Therefore, the aim of this study is to determine the influence of cutting parameters such 
as cutting speed, feed and depth of cut on surface roughness (Ra) and material removal rate (MRR) during dry turning of 
AISI 316L using cermet insert (GC1525). Experimental tests were carried out according to Taguchi L27 orthogonal array. The 
technique of response surface methodology and analysis of variance were also used to develop the quadratic regression 
model. Four optimization cases were performed using the desirability function to find the optimal cutting parameters 
by targeting Ra and maximizing MRR, unlike other researches that have focused only on minimizing Ra. Based on the 
results, it was found that the most predominant parameter affecting the Ra was the feed with 79.61% of contribution, 
while the MRR was strongly influenced by the depth of cut followed by cutting speed and feed, respectively. Tool wear 
tests were also performed and the results indicated that the tool life of cermet tool was measured as 30 min at cutting 
speed of 340 m/min.
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1  Introduction

Nowadays, one of the important challenges in manufac-
turing industry is to provide workpieces having desired 
quality characteristics in the required quantity and in the 
fastest and most cost-effective way possible. Therefore, the 
improvement on the machining of hard-to-cut materials 
such as stainless steels, titanium alloy, nickel alloys etc.… 
becomes an absolute necessity in the manufacturing pro-
cesses (turning, milling, drilling etc.). Among hard-to-cut 
materials, stainless steels are widely used in many fields 

such as food, medical, chemical, petrochemical, aviation, 
defense etc. industries due to their high mechanical prop-
erties and excellent corrosion resistance. Many researchers 
have tried to improve their machinability in response to 
the diversity of their applications.

Bhattacharya et al. [1] summarized that cutting speed 
was predominant factor that affected the surface finish 
with contribution rate of 83% when studying the effects 
of machining parameters on surface finish during high-
speed machining of AISI 1045 steel with TiC (Titanium 
carbide) and TiN (Titanium nitride)-coated WC (Tungsten 
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carbide) inserts. Çiçek et al. [2] applied the Taguchi method 
to examine the surface roughness in drilling of AISI 316 
stainless steel with M35 HSS (High Speed Steel) twist drills. 
In researchers’ study, the most effective parameter on the 
surface roughness was found as cutting speed with a 
contribution rate of 78.11%. Kaladhar et al. [3] carried out 
machining experiments of AISI 304L austenitic stainless 
steel with a PVD (Physical vapor deposition)-coated cermet 
tool. Researchers highlighted that the feed was the pre-
dominant parameter on the machined surface followed by 
nose radius. In addition, the depth of cut was found as the 
most important parameter influencing the MRR (Material 
removal rate) followed by feed. Marimuthu et al. [4] stud-
ied the effects of cutting conditions during the straight 
turning of AISI 316L by utilizing ANOVA (Analysis of vari-
ance) and Taguchi method. Based on the results, it was 
noted that single-layer coated (Ti. Al) N insert gave better 
performance than the multi-layer coated (TiCN + Al2O3) 
insert. Bouzid et  al. [5] worked on the effects of feed, 
cutting speed and depth of cut on the surface rough-
ness and MRR during dry turning operation of X20Cr13 
(AISI 420) with CVD (chemical vapor deposition)-coated 
carbide insert. Researchers presented that the feed and 
depth of cut were the meaningful parameters affecting 
the surface roughness and MRR, respectively. Kant et al. 
[6] developed a predictive model for minimizing surface 
finish by employing GRA (Gray Relational Analysis) cou-
pled with PCA (Principal Component Analysis) and RSM 
(Response Surface Methodology) during turning of AISI 
1045 steel. ANOVA was utilized to find out the effects of 
depth of cut, cutting velocity and feed on the surface fin-
ish. According to the results, the feed was found as the 
most effective factor to reduce the surface finish followed 
by the depth of cut and cutting speed, respectively. Nur 
et al. [7] conducted a study using coated carbide insert 
to machine AISI 316L under dry turning condition. The 
authors discussed the effects of machining parameters on 
the surface roughness based on RSM method. The results 
showed that the feed had significant influence on surface 
roughness. Selaimia et al. [8] investigated the effects of 
control factors on surface roughness in milling of auste-
nitic stainless steel X2CrNi18-9 (AISI 304L) and optimized 
the results by RSM and desirability approach. According 
to the results, surface roughness was affected by feed. 
Bagaber et al. [9] reported an optimization study using 
RSM in order to achieve minimum surface quality during 
turning of AISI 316 stainless steel. Researchers presented 
that the appropriate selection of machining parameters 
reduced surface quality by 4.71%. Zerti et al. [10] used the 
Taguchi method to minimize some response parameters 
in dry turning of AISI D3. The effects of main cutting edge 
angle, nose radius, cutting speed, feed and depth of cut on 
surface roughness were analyzed and the results showed 

that both feed and cutting insert nose radius were the 
most significant parameters influencing the surface rough-
ness. Mia el al [11] optimized surface roughness by using 
simulated annealing algorithm and recommended to use 
149 m/min cutting speed, 0.10 mm/rev feed rate and 43 
hardness for minimum Ra. In another study conducted by 
Mia el al [12] found that a lower feed rate (0.10 mm/rev), 
a material hardness of 43 HRC and higher cutting speed 
(161 m/min) corroborated the minimum surface rough-
ness when separate DF and genetic algorithm optimiza-
tion methods employed. Bouzid et al. [13] utilized the 
ANOVA and RSM statistical analysis methods to investigate 
the effects of cutting speed, feed and cutting time on sur-
face roughness during turning of AISI 304 stainless steel 
with a CVD-coated carbide tool. The results showed that 
the cutting time was the dominant factor affecting work-
piece surface roughness followed by feed. In the recent 
study of Zerti et al. [14], it was found that the feed rate 
was the predominant parameter that influenced the sur-
face finish. In addition, the depth of cut had a considerable 
effect on material removal rate when studying the effect 
of different machining parameters on some performance 
characteristics in machining of AISI 420 tempered stain-
less steel. Recently, Kaladhar, [15] carried out a machining 
experiments on AISI 304 austenitic stainless steel using 
five different coated tools (GC2025, GC1025, GC1525, 
Kc9229 and TP2500) to understand the evolution of the 
hard coated cutting tools’ performance on surface rough-
ness, flank wear and material removal rate.

Literature shows that several studies on the optimiza-
tion of the turning process have focused on the effects 
of cutting parameters on performance measurements 
such as surface roughness and material removal rate. In 
general, these studies have aimed to minimize surface 
roughness to achieve superior quality. According to their 
results, the lower surface roughness can be obtained 
with a low material removal rate. As a result, a lot of time 
and high costs are required. On the other hand, there is 
a contradiction with the requirements of manufacturing 
industries due to demanding for high material removal 
rate and product quality at the same time. In addition, 
the machinability of AISI 316L austenitic stainless steel 
remains a current subject that deserves to be investi-
gated specially with TiCN-TiN PVD cermet insert. For 
this reason, it is imperative to perform an experimental 
and statistical research study for obtaining practical and 
economic machining solutions, helping the machinists 
in metal cutting industries for better control of surface 
roughness and material removal rate. In this sense, the 
main objective of this study is to optimize the cutting 
parameters in the turning of AISI 316L stainless steel by 
targeting surface roughness and simultaneously provid-
ing maximum material removal rate.
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2 � Materials and turning conditions

In experiments, AISI 316L austenitic stainless steel was 
selected as workpiece material being in a cylindrical rod 
with an axial length of 400 mm and a diameter of 80 mm 
with an average hardness of 197 HV. The chemical compo-
sition of the workpiece material is given in Table 1.

The cutting tools used in this investigation were PVD 
cermet and designated as ISO-CNMG 120408-PF 1525. In 
Table 2, machining parameters and details of cutting tool 
and tool holder can be shown.

The turning experiments were carried out on TOS 
TRENCIN- SN 40C model lathe with spindle power of 
6.6 kW. After turning operations, surface roughness val-
ues (Ra) were measured by using Mitutoyo Surftest-210 
roughness meter which has a diamond point (feeler) with 
a 5-µm radius nose moving linearly along the machined 
surface. The surface roughness measurements were per-
formed on three sections of the machined cylindrical part, 
separated by a 120° angle to avoid dispersion of results. 
In addition, an AltiSurf 500 optical metrology device was 
utilized to better visualize the roughness of the machined 
surface in a 3D representation. Furthermore, the tool wear 
measurements were carried out by means of microscope 
Visual Gage 250. In Fig. 1, the schematic illustration of 
experimental setup is presented. Twenty-seven practical 
tests were conducted based on Taguchi L27 orthogonal 
array as given in Table 3.

3 � Analysis results and discussion

3.1 � Analysis of variance (ANOVA)

ANOVA is a widely used statistical method to examine the 
influences of inputs on outputs in manufacturing opera-
tions in terms of signification parameters [9]. To achieve 
this objective, the P value statistical index is used to assess 
this signification. If P-value is less than 5%, this would 
mean the parameter is significant [14]. The analysis was 
performed at a 5% level of significance, i.e., at a 95% con-
fidence level [16]. ANOVA results for surface roughness are 
presented in Table 4. According to Table 4, the most effec-
tive parameter for surface roughness was found as feed 
with contribution rate of 79.61%. This result in consistency 
with previous published works cited by Refs [7, 15]. The 
cutting speed and square term (Vc2) were considered less 
significant with contribution rates of 6.27% and 2.54%, 
respectively.

On the other hand, the analysis indicated that the 
depth of cut, square terms (f2, ap2) and interaction terms 
(Vc*f, Vc*ap and f*ap) had insignificant effects on the sur-
face roughness due to having higher P value than 5%. 
The result of the insignificant effect of ap on Ra was also 
observed by Bagaber et al. [9].

3.2 � Graphical representation of main effects

In Fig. 2, mean effect plot graphs of Ra and MRR were 
given. The mean effect of three selected parameters on 
the output is pictured by a line, while the most significant 
parameter has a steeper slope compared to other param-
eters. As shown in Fig. 2a, the plot for surface roughness 
versus feed displays a significant positive effect from low 
to high level, while the plot for surface roughness against 
cutting speed shows a significant negative effect from low 
to high level.

With regard to depth of cut, the slope of surface 
roughness line exhibits a negative significant effect from 
low-to-medium level, then a positive effect is observed 
from medium-to-high level. In addition, the parcel for 
surface roughness as a function of feed demonstrates 
a higher steep slope compared to cutting speed and 
depth of cut. Hence, it can be highlighted that the feed 
is the most significant parameter influencing the gener-
ated surface roughness than the other parameters. This 
observation was found to be compatible with previous 
published works [7, 12, 17]. That means at highest feed, 
surface roughness enhances and resulted in deteriora-
tion of manufactured surface quality due to the enhance 
in friction amid machined part and tool interface which 
augments the temperature near the cutting zone due to 

Table 1   Chemical composition of the AISI 316L

Composition wt% Composition wt%

C 0.013 Al 0.0028
Si 0.50 Cu 0.373
Mn 1.79 Co 0.163
S 0.031 V 0.074
Cr 16.57 Ca 0.0022
Ni 9.79 Fe 68.3
Mo 2.00

Table 2   Machining conditions

Machining conditions Descriptions

Cutting speed 125–170–260 m/min
Feed 0.08–0.12–0.16 mm/rev
Depth of cut 0.1–0.2–0.3 mm
Cutting condition Dry
Insert geometric form ISO-CNMG 120408
Insert manufacturer and code Sandvik GC1525
Tool holder PSBNR2525 M12
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high strength and high hardness of austenitic stainless 
steel AISI 316L [18].

As shown in Fig. 2b, the plot for material removal rate 
as a function of depth of cut, feed and cutting speed 
indicates a significant positive effect from low-to-high 
level. Furthermore, the parcel for material removal rate 
versus depth of cut presents a greater steep slope com-
pared to feed and cutting speed. Therefore, it can be 

concluded that the depth of cut is the main parameter 
that has the highest impact on material removal rate fol-
lowed by cutting speed and feed. This result was also 
claimed by Refs. [3, 15]. In turning operation, the length 
of contact between tool and workpiece enhances due to 
enhance in depth of cut and feed rate due to the cross 
section of uncut chip thickness is enhanced with depth 
of cut and feed rate, which impacts the MRR [19].
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3.3 � Response surface methodology (RSM)

Experimental studies with adequate preparation are 
essential to achieve the optimal results. Therefore, this 
study incorporates the response surface methodology 

(RSM). RSM is both a collection of mathematical and sta-
tistical approaches that is a useful tool to model and opti-
mize machining parameters [20, 21]. In RSM, an empirical 
model can be established using a second-order polyno-
mial model. This model is called the quadratic model of � 
which is expressed by Eq. (1):

where a0 , ai , aii and aij are the constant term, the coeffi-
cients of the linear terms, quadratic and interactive term, 
respectively. Xi and Xj indicate the independent variables 
(Vc, f and ap). � corresponds to the statistical experimental 
error. k denotes the number of variables (in this work k = 3). 
Finally, � represents the desired machining responses (Ra).

3.3.1 � Regression equation

To determine the relationship between cutting param-
eters and performance measurement, a quadratic regres-
sion model was formulated and developed using Minitab 
software. Cutting parameters were defined as Vc, f and ap, 
while the performance measurement was specified as Ra. 
Estimation equation for Ra is expressed by Eq. (2).

The determination coefficient (R2) of the equation 
obtained with the quadratic regression model for Ra was 
estimated at 90.78%. In general, to obtain greater model 

(1)
� = a0 +

k
∑

i=1

aiXi +

k
∑

i = 1

i ≠ j

aijXiXj +

k
∑

i=1

aiiX
2
i
+ �

(2)

Ra = +2.16540 − 0.014150 ∗ Vc − 2.50652 ∗ f

− 3.65231 ∗ ap + 1.50227E − 003 ∗ Vc ∗ f

+ 1.73091E − 003 ∗ Vc ∗ ap + 1.94444 ∗ f ∗ ap

+ 3.16735E − 005 ∗ Vc2 + 46.18056 ∗ f 2

+ 7.88889 ∗ ap2

Table 3   Taguchi L27 experimental design and results

Vc (m/min) f (mm/rev) ap (mm) Ra (µm) MRR (cm3/min)

125 0.08 0.1 0.88 1
125 0.08 0.2 0.43 2
125 0.08 0.3 0.81 3
125 0.12 0.1 1.19 1.5
125 0.12 0.2 0.68 3
125 0.12 0.3 1.19 4.5
125 0.16 0.1 1.41 2
125 0.16 0.2 1.42 4
125 0.16 0.3 1.48 6
170 0.08 0.1 0.51 1.36
170 0.08 0.2 0.51 2.72
170 0.08 0.3 0.56 4.08
170 0.12 0.1 0.74 2.04
170 0.12 0.2 0.89 4.08
170 0.12 0.3 0.77 6.12
170 0.16 0.1 1.28 2.72
170 0.16 0.2 1.33 5.44
170 0.16 0.3 1.17 8.16
260 0.08 0.1 0.49 2.08
260 0.08 0.2 0.47 4.16
260 0.08 0.3 0.47 6.24
260 0.12 0.1 0.74 3.12
260 0.12 0.2 0.79 6.24
260 0.12 0.3 0.79 9.36
260 0.16 0.1 1.18 4.16
260 0.16 0.2 1.23 8.32
260 0.16 0.3 1.27 12.48

Table 4   ANOVA for Ra Source SC DoF MC F value P value Cont. (%) Remark

Model 2.80141 9 2.80141 18.6 0 90.78
Vc 0.19339 1 0.19339 14.04 0.002 6.27 Significant
f 2.45681 1 0.23499 144.55 0 79.61 Significant
ap 0.00042 1 0.00063 0.04 0.848 0.01 Insignificant
Vc * Vc 0.07842 1 0.07842 4.69 0.045 2.54 Significant
f * f 0.03276 1 0.03276 1.96 0.18 1.06 Insignificant
ap * ap 0.03734 1 0.03734 2.23 0.154 1.21 Insignificant
Vc * f 0.00016 1 0.00016 0.01 0.924 0.01 Insignificant
Vc * ap 0.00140 1 0.00140 0.08 0.776 0.05 Insignificant
f * ap 0.00073 1 0.00073 0.04 0.837 0.02 Insignificant
Error 0.28448 17 0.28448 9.22
Total 3.0859 26 100.00
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accuracy, the R2 value should be between 0.8 and 1.0 [22]. 
This result is verified in this study.

The normal residual plot of the Ra model is presented 
in Fig. 3 and it reveals that almost all the residuals follow 
a linear curve, which implies that the proposed model is 
very well aligned with the experimental values. In addi-
tion, Fig. 4 indicates that the empirical model represents a 
satisfactory agreement between measured and predicted 
values of Ra.

3.3.2 � Influence of cutting parameters on Ra and MRR

The surface roughness, as observed in the ANOVA result, 
was mainly affected by the feed. Figure 5a illustrates the 

effect of feed, depth of cut and cutting speed on Ra, where 
Ra increased considerably when feed increased from 0.08 
to 0.12 mm/rev with a percentage of 65.75%. Consequently, 
this increment can be interpreted by the generation of heli-
cal grooves yielded by the relative motion between work-
piece and tool. As soon as these grooves were deeper and 
wider, the feed assumed higher values [23, 24]. In addition, 
it is important to mention that the Ra increased to a maxi-
mum of about 104.93% with an increment in feed from 0.12 
to 0.16 mm/rev. This can be explained by the soft ferrite 
phase which in machining of ductile material such as AISI 
316L caused a long tool-chip contact area on the rake face. 
Therefore, the increment in tool-chip contact area gener-
ated higher temperature and increased the shear stress as 
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compared to the increment in feed [11, 25]. In the cutting 
zone, the increment in temperature and the excess of shear 
stress increased the plastic deformation of the material, 
which led to an increment in the volume of chips removed 
[25].

In Fig. 5b, the effects of depth of cut, feed and cutting 
speed on MRR were illustrated. Based on the results, MRR 
was low at small depth of cut. Then, MRR increased as the 
depth of cut increased from 0.1 to 0.3 mm with 200% due to 
the deeper penetration of the workpiece by the tool induced 
the increment in chip section, resulting a raising in the vol-
ume of chips removed. In this study, the material removal 
rate (MRR) is presented by Eq. (3) [26]:

3.4 � Confirmation tests

The main objective of the confirmation tests is to vali-
date and compare the final results obtained in this phase 
with the initial results in order to check the adequacy 
of the constructed model of Ra. To achieve this objec-
tive, five tests were performed using different cutting 
conditions as seen in Table 5. Table 6 and Fig. 6 present 
the results of the confirmation experiments. It can be 
claimed that the estimated error which is found not 
to exceed 10% is negligible. Almost similar deviations 

(3)MRR = Vc ∗ f ∗ ap

Fig. 4   Comparison between 
measured and predicted 
values of Ra
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of error values in predicting Ra can be found in Refs 
[27–29].

4 � Multi‑objective optimization

Traditionally, surface roughness represents manufactur-
ing quality. The minimum value of surface roughness 
therefore indicates the good quality of surface finish. 
For this purpose, lower surface roughness is required to 
obtain optimal conditions. On the other hand, the mate-
rial removal rate is one of the important productivity 
characteristics of the manufacturing process, particu-
larly in terms of increasing production rate and reducing 
cost [30]. Generally, higher MRR is always privileged in 
machining processes to improve products quantity and 
reduce the operating cost, simultaneously.

However, as shown in Table 3, lower values for surface 
roughness were obtained with low MRR values. Obvi-
ously, there is a contradiction between these criteria. 
Industrially, as required by the design drawing of some 
machined parts, it should be noted that a certain interval 
of surface roughness values can be accepted to provide 
good surface quality, lower cost and high gain at the 
same time.

To achieve an optimal production rate, it is essential to 
ensure a proper selection of cutting parameters. Therefore, 
it is necessary to optimize the machining parameters to 
obtain high-quality products with a relatively high pro-
duction rate.

Among the different optimization approaches availa-
ble, one of them is the desirability function approach (DF) 
approach. Due to its simplicity, efficiency and sufficiently, 
it has been widely used in the literature [14, 31, 32]. This 
approach is also used in the current study. The equations 
to calculate the desirability value are referenced in [14, 33]. 
In DF, the operating condition with the highest desirability 
value is considered as the optimal solution [34].

Four cases of optimization were studied during experi-
mentation phase. In all cases, the surface roughness was 
considered as the target, while the maximum material 
removal rate was preferred. The desired objectives and 
the variation interval of cutting parameters for the four 
cases and their optimal solution are given in Tables 7 and 
8, respectively.

For the first optimization case, the optimal cutting 
parameters were found as the cutting speed of 260 m/min, 
feed of 0.117 mm/rev and depth of cut of 0.3 mm for the 
targeted surface roughness of 0.8 µm while the obtained 
output responses were material removal rate of 9.245 cm3/
min and desirability of 0.845.

In the second optimization case, the optimal cutting 
parameters were found as the cutting speed of 260 m/min, 
feed of 0.136 mm/rev and depth of cut of 0.3 mm for the 
targeted surface roughness of 1 µm while the achieved 

Table 5   Cutting conditions used for conformation experiments

Test No Vc m/min f mm/rev ap mm

01 140 0.11 0.15
02 140 0.14 0.15
03 180 0.14 0.25
04 200 0.11 0.25
05 200 0.14 0.15

Table 6   Confirmation experiments for Ra

Test N° Surface roughness (Ra)

Measured Predicted Error (%)

01 0.74 0.81 9.46
02 1.01 1.09 7.92
03 0.99 0.96 3.03
04 0.70 0.63 10
05 0.98 0.91 7.14

Fig. 6   Confirmation experi-
ments for Ra



Vol.:(0123456789)

SN Applied Sciences (2020) 2:1360 | https://doi.org/10.1007/s42452-020-3167-4	 Research Article

output responses were material removal rate of 8.589 cm3/
min and desirability of 0.913.

In regard to the third optimization case, the optimal 
cutting parameters were obtained as the cutting speed 
of 260 m/min, feed of 0.152 mm/rev and depth of cut of 
0.3 mm for the targeted surface roughness of 1.2 µm while 
the obtained output responses were material removal rate 
of 11.806 cm3/min and desirability of 0.968.

In the interest of the fourth optimization case, the opti-
mal cutting parameters were found as the cutting speed of 
260 m/min, feed of 0.16 mm/rev and depth of cut of 0.3 mm 
for the targeted surface roughness of 1.3 µm whereas the 
acquired output responses were material removal rate of 
12.346 cm3/min and desirability of 0.988.

The desirability bar graphs for each optimum solution is 
given in Fig. 7. The parameter settings were presented in the 

first 3 bars, and the target and optimal anticipated response 
values were illustrated in the remaining bars.

5 � Evolution of flank wear with machining 
time

The flank wear (VB) is often chosen as a practical tool 
life criterion, which has an admissible value of 0.3 mm 
for turning operation according to IS0 3685 standard. 
Beyond this value, wear accelerates sharply which induce 
losing cutting performances of the tool. As a result, mod-
ifying both the surface finish and dimensional accuracy 
[35]. The flank wear was measured in respect to machin-
ing time under cutting speed of 340  m/min, feed of 
0.08 mm/rev and depth of cut of 0.2 mm as depicted 

Table 7   Conditions and goals 
for the four optimization cases

Conditions Unit Goal Lower limit Upper limit Lower 
weight

Upper 
weight

Vc m/min In interval 125 260 1 1
f mm/rev In interval 0.08 0.16 1 1
ap mm In interval 0.1 0.3 1 1
Ra µm In target 0.43 1.48 1 1
MRR cm3/mm Maximize 1 12.48 1 1
Case 1
Ra µm In target = 0.8 0.43 1.48 1 1
MRR cm3/mm 1 12.48 1 1
Case 2
Ra µm In target = 1 0.43 1.48 1 1
MRR cm3/mm 1 12.48 1 1
Case 3
Ra µm In target = 1.2 0.43 1.48 1 1
MRR cm3/mm 1 12.48 1 1
Case 4
Ra µm In target = 1.3 0.43 1.48 1 1
MRR cm3/mm 1 12.48 1 1

Table 8   Summary of solutions 
achieved for the four 
optimization cases

Solutions

Number Vc (mm/min) f (mm/rev) ap (mm) Ra MRR Desirability

Case 1 1 260 0.117 0.3 0.8 9.245 0.845 Selected
Case 2 1 260 0.136 0.3 1 10.623 0.913 Selected
Case 3 1 260 0.152 0.3 1.2 11.806 0.968 Selected
Case 4 1 260 0.16 0.3 1.3 12.346 0.988 Selected
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Fig. 7   Desirability bar-graph for the four optimization case

Fig. 8   Evolution of flank wear 
(VB) versus machining time for 
GC1525 insert
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in Fig.  8. The results showed that the admissible VB 
value as illustrated by the horizontal line in Fig. 8 was 
reached after 30 min of machining time. A microscope 
analysis clearly indicates that, there is worn flank face 
of the cutting insert tested under the selected condi-
tion. With increase in machining time, the VB increases 
rapidly when turning of difficult to cut materials. Simi-
lar observation was highlighted by Yallese et al. [36]. As 
the cutting insert works, the temperature at the cutting 
zone grows due to the contact surface between the 
main cutting edge (on the flank face) and undeformed 

chip thickness and also due to the relative tool work-
piece sliding which generated intensive friction during 
cutting process [37]. Consequently, that leads to occur 
adherence and welding chips to rake face of the cutting 
insert. As a result, an acceleration of abrasion and diffu-
sion wear mechanisms [23, 38].
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Fig. 9   3D surface topography
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6 � 3D surface topography

Surface topographies of AISI 316L austenitic stainless steel 
are given in Fig. 9 after dry turning at a constant cutting 
speed of 260 m/min and depth of cut of 0.2 mm and two 
feed values as 0.08 mm/rev and 0.16 mm/rev. A better visu-
alization of the machined surface (Fig. 9a) indicated that 
the surface had uniform summits that were considerably 
higher than the depth of single grooves. Increasing feed 
from 0.08 mm/rev to 0.16 mm/rev (Fig. 9b) generated an 
increment in surface roughness indicated on a legend bar. 
As shown in Fig. 9a, b, the important point to be noted is 
that for smaller feed (f = 0.08 mm/rev), the surface rough-
ness is Ra = 0.630 µm and for higher feed (f = 0.16 mm/rev), 
Ra = 1.63 µm. As a consequent, deeper grooves at high 
feed were observed than those at lower feed. An incre-
ment in feed caused sharp peaks, dales and ridges on the 
generated surfaces. These peaks indicated that the metal 
was torn off due to its ductility at high feeds leading to 
deterioration of machined surface [39]. This observation 
result complies with findings extracted by Krolczyk [40], 
they noticed, that the more increasing feed, the more 
grooves, dales and peaks appear to be evidence on the 
investigated material surface.

7 � Conclusion

In this study, the effect and optimization of turning param-
eters (cutting speed, feed rate and depth of cut) on gen-
erated surface roughness and material removal rate was 
presented when dry turning of AISI 316L austenitic stain-
less steel using PVD-coated cermet insert. Importantly, the 
experiments were followed by statistical analysis using 
RSM and ANOVA to establish a model for predicting Ra for 
the selected parameters such as Vc, f and ap. The following 
outcomes can be drawn based on the research findings.

Analysis of variance (ANOVA) clearly acknowledged that 
the feed rate is the most important parameter influencing 
the generated surface roughness with contribution rate 
of 79.01%. Whereas, the depth of cut is chiefly recognized 
as the principal parameter affecting the material removal 
rat, the second was cutting speed, followed by feed rate.

An appropriate model was developed for predicting 
surface roughness by utilizing response surface method-
ology (RSM) with the accuracy of 90.81%. The model was 
tested and results were encouraging with an estimated 
error values which are found not to exceed 10%.

Regression results showed that most of the data points 
are fallen close to the straight line pattern and there is a 
good closeness between the estimated values and the 
observed one. Hence, the yielded model could be useful 

for metal cutting industries for prediction Ra in dry turning 
of AISI 316L using cermet inserts.

The desirability function approach (DF) for multi-objec-
tive optimization was applied to find a good compromise 
between surface roughness and material removal rate, 
which means obtaining high-quality products with a rel-
atively high productivity rate. In the current study, four 
optimization cases were acknowledged. It is important to 
note that the fourth optimization case provided high qual-
ity of surface roughness (Ra = 1.3 µm) with a high mate-
rial removal rate (MRR = 12.346 cm3/min) and maximum 
desirability value (DF = 0.988). This result can be in agree-
ment with the requirements needed in most industrial 
applications.

The tool life of the PVD-coated cermet tool was deter-
mined as 30 min within the authorized limits.

The visualization of the 3D surface topography allowed 
precise observation of the peaks, dales and ridges on the 
machined surface for the AISI 316L austenitic stainless 
steel.

Cermet insert can be recommended for finish turning 
of stainless steel AISI 316L at cutting parameters ranging 
from cutting speed of (125–260) m/min, feed of (0.08–0.16) 
mm/rev and depth of cut of (0.1–0.3) mm.
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