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Abstract
This research aims to determine the presence of antibiotic-resistant genes (ARG) in anaerobic biofilm reactors (ABR) fed 
with household chemical products (HCP) such as laundry detergents and handwash without any influx of antibiotics. 
The ABR comprised a three-chamber design with bottom sludge, a middle chamber containing fluidized PVC spiral, and 
a top chamber with packed coir fiber as a biofilm support medium, respectively. Four different ABRs were simultane-
ously operated for a prolonged period (200 day) and subjected to variations in physicochemical conditions. The ABRs 
fed with HCP exhibited solitary accumulation of log (4.4–7.5) ermC gene copies/g VS whereas, ARG was undetectable 
in glucose fed ABRs indicating that HCP exhibited antimicrobial activities synonyms to Erythromycin. Accumulation of 
Erythromycin-C (ermC) was relatively higher on the biofilm inhabiting PVC support medium and further accentuated by 
effluent recycling to log 7.5 ermC gene copies at a ratio of ermC/16S gene copies of 0.65. Physico-chemical factors such 
as substrate composition, biofilm support medium, and effluent recycling simultaneously elevated the concentration 
of ermC genes. The results indicated that HCP augments the accumulation of ARG in the microbiome, subsequently, 
increasing the risk in ARG transmission from sewage treatment plants to the ecology and humans.

Keywords  Antibiotic resistance genes · Anaerobic biofilm reactor · Erythromycin · Tetracycline · Household chemical 
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1  Introduction

Synthetic chemical compounds are commonly used in 
daily household activities. They are termed as house-
hold chemical products (HCP), xenobiotics, personal care 
products and household consumables etc. The majority 
of HCP are discharged through greywater (GW) channels 
and further categorized based on their mode of actions 
such as; surfactants, mainly used for the removal of dirt; 
antimicrobials, provide non-specific disinfection against 
microbes; photoprotective agents protect against UV radi-
ations; etc. [1]. Irrespective of their intended application, 

majority of HCP and its breakdown products accumulate 
in the environment mostly in water, sludge, and soil [2]. 
HCP inadvertently impede the microbial mode of decom-
position, especially the anaerobes due to their recalcitrant 
and heterocyclic structures [3]. Long-term exposure of 
microbes to HCP is reported to imbibe resistances against 
the microbicidal activities [4]. Such mechanisms feature 
extensively in a pathogen’s resistance against the antibi-
otics by either acquiring or evolving its genomic struc-
ture. These foreign genes imbibing resistances against 
antibiotics are called as antibiotic-resistant genes (ARG) 
[5]. The substantial and uncurtailed usage of antibiotics 
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has led to wide-scale dispersal and accumulation in the 
environment [6]. The non-specific microbicidal activities 
of HCP are somewhat similar to antibiotics, hence, long-
term exposure of nonpathogenic, ecologically innocuous 
microbes to HCP are perceived to develop widespread 
antimicrobial resistance by acquiring or evolving ARG [7]. 
For example, Triclosan, a microbicidal agent present in 
personal hygiene products inhibits microbes by blocking 
the enzyme enoyl-ACP reductase that is responsible for 
fatty acid biosynthesis [8]. Previous studies have shown 
that the dosages of Triclocarban in anaerobic digesters at 
concentrations of 30 mg/kg anaerobic sludge led to an 
increase in mexB gene (e.g. multidrug efflux pump), along 
with the ratio of tetracycline genes to 16S rRNA gene cop-
ies were higher by three orders of magnitude [9]. HCPs 
contain various forms of antimicrobial compounds, hence, 
their discharge through the sewerage channel exposes 
them to the surface waters, microbial consortia of sew-
age treatment plants, and agricultural lands via sludge 
disposal. The role of these antibacterials on increasing 
the antibiotic resistance of the environmentally important 
microbes needs further assessment. Moreover, the level of 
inhibition incurred on anaerobic biofilm digester needs to 
be understood as the biofilm structure is hypothesized to 
resist a relatively higher concentration of HCP compared to 
the sludge-based systems. This research aims to determine 
the occurrence and accumulation of antibiotic-resistant 
genes (ARG) in anaerobic biofilm reactors (ABR) fed with 
simulated greywater (GW) comprising HCP such as laundry 
detergents and handwash without any influx of antibiot-
ics. Besides, explain the plausible scientific basis of ARG 
accumulation with notable reference to the role of phys-
icochemical and biological factors such as substrate com-
position, effluent recycling, PVC biofilm support medium, 
and biofilm structure.

2 � Materials and methods

2.1 � Anaerobic biofilm reactor (ABR)

Four different anaerobic biofilm reactors (ABR1–ABR4, 
Fig. 1) with similar dimensions, biofilm support material, 
and a working volume of 10 L were fabricated, operated, 
and optimized as per earlier designs [10]. The top (TC) and 
middle (MC) chamber of ABR were filled with biofilm sup-
port medium namely coir fiber and PVC spiral and respec-
tively. The bottom chamber (BC) was mainly composed of 
sludge. The ABRs (1–4) were commenced with identical 
anaerobic sludge collected from a large scale biowaste (i.e. 
kitchen waste, leaves, and grass) fed anaerobic digester. 
ABR1 and ABR3 were fed with synthetically prepared GW 
constituents simulating a typical household discharge. 

It consisted of food-grade starch (300  mg/L), KH2PO4, 
NH2CONH2, and two of the commonly used commercial 
HCP namely laundry detergents and hand wash gel doses 
at a concentration of 300 mg/L and 150 mg/L respec-
tively. ABR2 and ABR4 were fed with standard substrate 
containing glucose (500 mg/L), micro, and macronutrients 
respectively. The detailed composition of synthetic GW 
and standard substrate have been described earlier [10]. 
The ABR1–ABR3 was operated at constant organic loading 
rates (OLR) of 550 mg/L·day, and hydraulic retention time 
(HRT) of 24 h whereas, ABR4 was subjected to a periodic 
increase in OLR up to 3936 mg/L·day at HRT down to 4 h. 
ABR3 and ABR4 were equipped with effluent recycling 
to enhance the biodegradation rates. The rates of COD 
removal (mg/L·day) in each ABR are as follows; ABR1: 160; 
ABR2: 214; ABR3: 627; ABR4: 3540 [10].

2.2 � Molecular analysis

The microbial samples were collected from ABRs at the 
end of the reactor operation (i.e. 200 days). The micro-
bial sludge samples were randomly grabbed from BCs 
whereas the biofilm samples were randomly scraped from 
the surface of PVC spiral and coir fiber with the help of 
a scalpel. The samples were stored at − 20 °C until analy-
sis. The extraction and purification of DNA, phylogenetic, 
and bioinformatics analysis and qPCR analysis of 16S rRNA 
were conducted as per the methods described earlier [10]. 
Briefly, DNA extraction and purification were performed 
with MO-BIO PowerSoil® DNA isolation kit and OneStep™ 
PCR Inhibitor Removal Kit (Zymo Research) respectively. 
The V4 target region of the 16S rRNA gene was amplified 
with 515F and 806R primers, further sequenced on the Illu-
mina MiSeq platform at ESPSF, Argonne National Labora-
tory, IL, USA. The default software package incorporated 
in QIIME was used for data analysis. The qPCR studies were 
conducted in a Mastercycler thermocycler (Eppendorf 
International, Hamburg, Germany). The DNA samples were 
screened for the qualitative and quantitative estimation 
of four different ARG gene copies namely Erythromycin-
A (ermA), Erythromycin-C (ermC), Tetracycline-Q (tetQ), 
Tetracycline-X (tetX), and 16S rRNA sequences. The prim-
ers for the above-mentioned genes were procured from 
Invitrogen, USA, based on the sequences described in sev-
eral research articles (Table 1). The experiments were con-
ducted in a 96 well PCR plate, each well containing 20 μL 
qPCR mixture composed of KiCqStart SYBR Green qPCR 
ready mix (Sigma-Aldrich), primers, sample templates, 
and Sigma water. The previously prepared stock ARG gene 
copies were used as standards for the qPCR analysis [15]. 
The stock ARGs was diluted in the range of 100–108 cop-
ies/20 μL to generate the standard plot. The minimum and 
maximum detection limits of each gene were determined 
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from the linear range of the standard plot. The qPCR oper-
ating conditions were similar for all the standard ARGs, 
sample genes, and no template control (distilled water, 
NTC) respectively, except for the annealing temperatures, 

that were specific to each ARGs (Supplementary data 1). 
A three-step template amplification procedure with sub-
sequent melting curve analysis was conducted as per the 
methods outlined in the KiCqStart SYBR Green qPCR ready 

Fig. 1   Four different anaerobic 
biofilm reactors (ABR1-ABR4) 
for the treatment of GW and 
standard substrate. BC, MC and 
TC represents bottom cham-
ber, middle chamber and top 
chamber respectively
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Table 1   The sequence of qPCR primers, annealing temperatures, and detection range

Genes Primer Sequence (5′-3′) Annealing 
Temp (°C)

Detection range 
(copies/20 µL)

R2 Efficiency (%) References

Erm A Fwd AGT​CAG​GCT​AAA​TAT​AGC​TATC​ 63 102–107 0.995–0.997 89–93 [11]
Rev CAA​GAA​CAA​TCA​ATA​CAG​AGT​CTA​C

Erm C Fwd AAT​CGT​GGA​ATA​CGG​GTT​TGC​ 63 102–107 0991–0.995 90–95 [11]
Rev CGT​CAA​TTC​CTG​CAT​GTT​TTA​AGG​

Tet Q Fwd AGA​ATC​TGC​TGT​TTG​CCA​GTG​ 63 101–107 0.990–0.997 101–108 [11]
Rev CGG​AGT​GTC​AAT​GAT​ATT​GCA​

Tet X Fwd CAA​TAA​TTG​GTG​GTG​GAC​CC 60 100–108 0.992–0.994 110–114 [12, 13]
Rev TTC​TTA​CCT​TGG​ACA​TCC​CG

16S BACT1369F CGG​TGA​ATA​CGT​TCY​CGG​ 56 102–108 0.991–0.996 102–105 [14]
PROK1492R GGW​TAC​CTT​GTT​ACG​ACT​T
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mix. The qPCR amplicons of ARG standards and ABR sam-
ples were verified and compared a blank (distilled water) 
with the help of a 0.8% agarose gel electrophoresis con-
taining agarose gel loading dye by Fisher BioReagents. 
Thereafter, DNA bands were stained with SYBR gold 
DMSO dye supplied by Fisher BioReagents followed by its 
visualization in a UV illuminator and image captured by a 
compact digital camera. The 16S rRNA gene copies of the 
ABRs have been described previously [10]. The total solids 
(TS) and volatile solids (VS) of the biofilm and sludge were 
estimated as per the standard methods [16].

3 � Results and discussion

The HCP comprises a mixture of complex polyaromatic 
compounds that hinder microbial degradation, especially 
under anaerobic conditions. Hence, long-term exposure 
of microbes to these compounds has been reported to 
alter their genetic structure, which eventually leads to 
the development of resistance and modification of met-
abolic pathways to decompose those compounds [7]. 
The extracted DNA from microbial samples (biofilm and 
sludge) of ABRs were analyzed for the presence of four 
different ARG namely ermA, ermC, tetQ, tetX. The research 
specifically targeted the tet and erm classes of ARGs due to 
their ubiquitous presence in sludge, sediments, and all var-
iants of wastewater treatment plants [17]. These classes of 
ARG’s have also been reported to sustain and augment in 
the anaerobic digesters. Moreover, the majority of antimi-
crobial constituents in HCP possess a non-specific mode of 
action akin to erythromycin and tetracycline [18]. The qPCR 
results in Fig. 2, revealed the presence of only ermC gene 
copies, in GW fed reactors ABR1 and ABR3. On the con-
trary, ARG was undetected in glucose-fed reactors ABR2 
and ABR4. The accumulated quantity of ermC gene copies 
in ABR1 and ABR 3 varied in the range of 7.5–4.4 log ermC 

gene copies/ gVS. Chronologically, the ermC gene copies 
was highest in ABR3-MC followed by ABR3-BC, ABR3-TC, 
ABR1-MC and ABR1-TC (Fig. 2). The results were also sub-
stantiated by analyzing the melting curve of the ampli-
fied genes with respect to the standards and confirmed by 
running the qPCR amplified genes in gel electrophoresis. 
The melting curves of the amplified ermC genes in ABR1 
and ABR3 were identical to the standards within the range 
of 1 °C (Supplementary data 1) indicating an absence of 
experimental bias. Furthermore, parallel gel electrophore-
sis band patterns of the qPCR amplicons observed only in 
ABR1, ABR3, and ermC standards confirmed the presence 
of ermC genes in the samples ruling out any experimental 
anomalies (Fig. 3). Results indicated that the concentration 
of ermC gene copies was higher in ABR3 with respect to 
ABR1, although, both ABR1 and ABR3 were fed uniformly 
at equivalent OLR and HCP constituents (Fig. 2). These dif-
ferences may be attributed to effluent recycling, as it is 
known to increase contact and simultaneously enhance 
the rates of substrate degradation and lead to selective 
accumulation of distinctive microbial species especially 
α-Proteobacteria sp., (Fig. 5) [10]. Moreover, the MC with 
PVC biofilm support contained a relatively higher quantity 
of ermC genes in both ABR1 (7.5 log gene copies/g VS) and 
ABR3 (4.8 log gene copies/g VS), hence, the synergistic role 
of PVC support media and biofilm structure in selective 
enrichment of the ARG accumulating microbe is plausible 
and cannot be ruled out. However, this research set up 
and methodology has inadequate scientific evidence to 
prove this hypothesis could not be taken up and will be 
addressed in future research. The ratio of ermC/16S gene 
copies varies in the range of 0.45–0.65 with the highest 
value determined in ABR3-MC (Fig. 4). The aforementioned 
ratio of 0.45–0.65, corresponds to group III and IV, ARG 
abundance levels in the environment reported in human 
feces, STP influents, feces, and wastewater from livestock 
farms respectively [6]. The higher ratio of ermC/16S gene 
copies as evidenced in this study suggests that a larger 
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Fig. 3   The gel electrophoresis image of the qPCR amplified ermC 
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the standards. The ermC genes amplicon size was 293 bp [11]
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fraction of the microbiome inhabiting ABR1 and ABR3 may 
be responsible for the magnification and accumulation of 
ermC [including the species belonging to the dominant 
classes, (Fig. 5)].

The presence of the ermC gene in GW fed ABRs depict 
the ability of microbial species to tolerate the antibiotic 
Erythromycin. Erythromycin inhibits protein synthesis in 
bacteria by binding to the 23 s subunit of the ribosome 
preventing the elongation of the amino acid chain [19]. 
The GW constituents, however, did not contain any known 
influx of antibiotics, hence, the accumulation of ermC can 
be solely attributed to the presence of HCP constituents 
in GW such as Triclosan, Triclorocarban, surfactants (LAS/
SDBS). The result indicates that HCP constituents possess 
a specific mode of microcidal activity analogous to the 
antimicrobial activity of Erythromycin that would have 

led to the selective accumulation of ermC amongst several 
other ARGs. Heterogeneity in the microbiome of waste-
water treating bioreactors/ digesters makes it extremely 
difficult to single out the species accumulating ermC. 
However, based on the results obtained from α-diversity 
of the microbiome (Khuntia et al. 2019) and available lit-
erature the following postulations are proposed, (i). HCP 
constituents in GW possess a bactericidal action similar to 
that of Erythromycin that may have compelled the bacte-
ria to modify its genetic sequences to develop a resistance 
mechanism against Erythromycin, (ii). The results exhibited 
a significantly higher ratio of ermC/16S gene copies (i.e. 
0.45–0.65) implying that the dominant microbial popula-
tion in ABR1 and ABR3 must have been the carrier and 
proliferator of ermC (Fig. 5). A distinctive microbial popu-
lation subsisted in ABR1 and ABR3 mostly dominated by 
the species belonging to the class of α-Proteobacteria, 
Γ-Proteobacteria, Synergistia, Actinobacteria, Bacteroidia, 
Clostridia, Anaerolineae, etc., whereas, significantly lower 
in ABR2 and ABR4 hypothesizing their collective role in 
the accumulation of ermC (Fig. 5). These results corre-
spond to the reported study of the presence of ARG in α, 
β, and Γ classes of Proteobacteria [20]. In ABR3, the genus 
Arthrobacter was the most dominant, followed by genus 
Kocuria whereas in R1 the genus Actinomyces was fol-
lowed by genus Corynebacterium respectively. It was also 
observed that these species were mainly concentrated in 
the MC (PVC substratum) of both ABR1 and ABR3. Several 
Actinomycetes sp., such as Saccharopolyspora erythraea 
sp., Arthrobacter sp., have been reported to inhibit both 
gram-positive and gram-negative bacteria by producing 
aminoglycoside-modifying enzymes (AME) [21]. AME also 
imbibes resistance to Actinomycetes sp., against a wide 
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range of antibiotics [21]. Moreover, Erythromycin and its 
derivatives are fermentation products of Actinomycetes 
sp., such as Saccharopolyspora erythraea sp., Arthrobacter 
sp.[22]. Woo et al. [23], hypothesized that the ARG of Actin-
omycetes sp., were responsible for being the origin of ARG 
in pathogenic bacteria. In contrast, the total population 
of class Actinobacteria in ABR1 and ABR3 does not exceed 
2.5%, hence, the role of other classes of microbes in accu-
mulating ermC cannot be ruled out. (iii) The accumulation 
of ermC was relatively more prominent in MC of ABR1 and 
ABR3 indicating the plausible role of biofilms and PVC sub-
stratum. The biofilm structure offers a unique advantage 
to the microbes to defend itself against the recalcitrant 
chemicals and antibiotics in the following ways, (a). The 
defiant physical matrix prevents the penetration of antimi-
crobial compounds, (b). Production of antibiotics and cell-
wall modifying enzymes, (c). Release of extracellular DNA, 
(d). Transcriptional regulators, (e). Horizontal gene transfer, 
(f ). Hypermutation, (g). Persister cells, etc. Conclusive evi-
dence about the exact role of ermC genes in the biofilm 
and decomposition of HCP compounds in GW could not 
be drawn from this research. Moreover, the Actinomycetes 
sp., as a carrier of ermC genes is speculative, which would 
require further research to validate the hypothesis.

This study has revealed that long-term exposure of envi-
ronmentally benign microbes to HCP, leads to the accu-
mulation and proliferation of ARG, even in the absence of 
antibiotics. This phenomenon could be hypothesized as 
an alternative mechanism acquired by microbes to per-
sist under a higher concentration of antimicrobial com-
pounds such as HCP [24]. The situation can be alarming as 
the worldwide use of HCP especially for personal hygiene 
(e.g. handwash, surface sterilizers, disinfectants) has been 
increasing, furthermore, after the outbreak of SARS-CoV-2 
pandemic, resulting in higher HCP concentrations in sew-
age. Hence, the microbial treatment of HCP ladened 
sewage would augment the ARG resistance. Addition-
ally, the environmental discharge of treated sewage and 
ARG acquired sewage sludge could imbibe unacquainted 
resistance in benign microbes against antibiotics. Eventu-
ally, increasing the risk in the subsequent transmission of 
ARG from natural environments to humans and animals 
[6]. Effluent discharged from wastewater treatment plants 
in the river have been reported to simultaneously increase 
the ARG concentration and alter the bacterial communi-
ties [25].

4 � Conclusion

The HCP constituents in GW feed led to selective accu-
mulation of log 4.4–7.5 ermC gene copies/g VS in ABR1 
and ABR3 respectively. On the other hand, ARG was 

undetectable in glucose fed reactors ABR2 and ABR4. The 
concentration of ermC gene copies was pronounced in 
ABR3 due to effluent recycling. A relatively higher concen-
tration of ermC was present in the biofilm inhabiting PVC 
support medium in both ABR1 (log 4.4 gene copies/g VS) 
and ABR3 (log 7.5 gene copies/g VS). The ratio of ermC/16S 
gene copies was 0.45–0.65 that was typical of microbiome 
occupying human feces, STP influents, feces, and waste-
water from livestock farm. A distinct microbial population 
and diversity in ABR1 and ABR3 especially belonging to 
the class of α-Proteobacteria, Γ-Proteobacteria, Synergis-
tia, and its absence in ABR2 and ABR4, is speculated for 
the accumulation and proliferation of ermC. This research 
demonstrated that HCP augments the accumulation of 
ARG in the microbiome, subsequently, increasing the risk 
in ARG transmission from sewage treatment plants to the 
ecology and humans.
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