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Abstract
Polyphenols are believed to possess numerous health benefits and can be grouped as phenolic acids, flavonoids or 
non-flavonoids. Research involving the synthesis of nanopolyphenols has attracted interest in the areas of functional 
food, nutraceutical and pharmaceutical development. This is in an effort to overcome current challenges which limit the 
application of polyphenols such as their rapid elimination, low water-solubility, instability at low pH, and their particle 
size. In the synthesis of nanopolyphenols, the type of nanocarrier used, the nanoencapsulation technique employed and 
the type of polymers that constitute the drug delivery system are crucial. For this review, all mentioned factors which 
can influence the therapeutic efficacy of nanopolyphenols were assessed. Their efficacy as anti-diabetic agents was also 
evaluated in 33 publications. Among these were phenolic acid (1), flavonoids (13), non-flavonoids (17) and polyphenol-
rich extracts (2). The most researched polyphenols were quercetin and curcumin. Nanoparticles were the main nano-
carrier and the size of the nanopolyphenols ranged from 15 to 333 nm with encapsulation efficiency and drug loading 
capacities of 56–97.7% and 4.2–53.2%, respectively. The quantity of nanomaterial administered orally ranged from 1 to 
300 mg/kg/day with study durations of 1–70 days. Most studies compared the effect of the nanopolyphenol to its free-
form and, in all but three cases, significantly greater effects of the former were reported. Assessment of the polyphenol 
to understand its properties and the subsequent synthesis of its nanoencapsulated form using suitable nanocarriers, 
polymers and encapsulation techniques can result in effective therapeutic agents for the treatment of diabetes.
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1 Introduction

Phenolics are compounds having one or more aromatic 
rings which possess at least one hydroxyl group. Polyphe-
nols are a group of secondary metabolites with phenolic 
structural features and is a general term used to refer to 
several sub-groups of phenolic compounds. These ubiq-
uitous compounds are the largest group of phytochemi-
cals and have been suggested to play critical roles in the 
growth and reproduction, color, and also the defense 
mechanism of plants against pathogens, parasites and 
predators [1, 2]. These compounds are also stated to be 

beneficial to health and are believed to be the most abun-
dant group of compounds in the diet with an average 
adult being estimated to have a total dietary intake of 1 g 
polyphenol/day [3].

Numerous biological properties have been suggested 
for polyphenols and included among these are antioxi-
dant, antimicrobial, anti-cancer, anti-inflammatory and 
anti-diabetic effects [4–8]. For this review we will how-
ever focus only on their anti-diabetic activity. Polyphe-
nols are believed to be able to confer anti-diabetic effects 
via various mechanisms through their ability to: increase 
insulin secretion, insulin sensitivity and insulin-dependent 
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glucose uptake, inhibit glucose absorption in the intes-
tine by sodium-dependent glucose transporter 1 (SGLT1), 
reduce hepatic glucose output, and influence the gut 
microbiome [9–12]. These effects have been observed in 
basic research using animal models and have been con-
firmed in some clinical trials [13–15].

The ability of dietary polyphenols to regulate glucose 
homeostasis would suggest that they can be used for the 
prevention and management of diabetes. There are how-
ever several challenges in achieving this outcome. While 
positive effects of polyphenols (as it relates to their anti-
diabetic effect in both healthy and diseased subjects), 
have been suggested in numerous basic research and 
clinical trials, this outcome is inconsistent. These incon-
sistencies are due to several factors including: the quantity 
of polyphenols used in vitro and in vivo to demonstrate 
effects are usually significantly higher than the amount 
generally contained in the human diet; and more impor-
tantly, the ability of the compounds to exert their effect 
in target tissues is significantly reduced due to their low 
bioavailability in humans [16, 17]. While there are several 
extrinsic factors which can impact the bioavailability of 
polyphenols such as food matrix, gut microbiota and rapid 
elimination, some of the main challenges include intrinsic 
factors such as their low water-solubility, instability at low 

pH, and the particle size of the compounds [18–20]. The 
synthesis of nanomaterials to improve the bioavailability 
of polyphenols is therefore a trending area of study. Meth-
ods which have been utilized in the preparation of these 
nanosystems are able to impact the physical and chemical 
properties of polyphenols. The focus of this study is there-
fore to review the encapsulation of nanopolyphenols and 
evaluate their efficacy as anti-diabetic agents. The number 
of studies in humans are limited and so the evaluation of 
the anti-diabetic potential of nanopolyphenols was done 
using in vivo diabetic models. The general framework of 
this review is schematically represented in Fig. 1.

2  Classification of polyphenols

Polyphenolic compounds are diverse in chemical struc-
ture and this is one basis on which classification can be 
achieved. The most common variations in the chemical 
skeleton include the degree of oxidation, hydroxyla-
tion, methylation and glycosylation. The main classes of 
polyphenols include phenolic acids, flavonoids and non-
flavonoids with subclasses of the latter including stilbe-
noids, lignans, tannins, and diarylheptanoids (Fig. 2). Less 
common subclasses of non-flavonoid polyphenols include 

Fig. 1  Schematic representa-
tion of the topics covered in 
the review
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polyphenolic amides and anthraquinones. There are sev-
eral accounts of the anti-diabetic effects of each class of 
polyphenol outlined [21–26].

About one-third of dietary polyphenols are phenolic 
acids and these—which can be categorized as hydroxy-
benzoic or hydroxycinnamic acids—are present in both 
their bound and free-forms in plants [27]. Among the ben-
zoic acid derivatives are compounds such as ellagic acid, 
p-hydroxybenzoic acid, protocatechuic acid, vanillic acid 
and gallic acid while among the cinnamic acid derivatives 
are p-coumaric acid, caffeic acid, ferulic acid and sinapic 
acid [27, 28].

Of all the phenolics in our diet, approximately two-
thirds are estimated to be flavonoids [1]. These compounds 
have a general structure that consists of two aromatic rings 
(A and B rings) that are linked by 3 carbons that are usually 
in an oxygenated heterocycle ring, or C ring. Variations in 
the heterocyclic ring can result in several flavonoids and 
these can be categorized as flavonols, flavones, flavanols, 
flavanones, anthocyanidins and isoflavonoids. According 
to Puupponen-Pimiä et al. [29], flavonols and flavones are 
the most common phenolics in plant-based food.

Tannins are a subclass of non-flavonoid polyphenols 
and are comprised of both proanthocyanidins, which 
are condensed non-hydrolysable tannins, and hydrolys-
able tannins which are esters of gallic acid, gallotannins, 
ellagic acid and ellagitannins [6, 30]. The lignan subclass of 
non-flavonoids are derived from phenylalanine and, along 
with isoflavone, is one of the major classes of phytoestro-
gens [31]. Common examples of lignans are enterolignans, 

enterodiol, enterolactone and secoisolariciresinol. Stilbe-
noids are hydroxylated derivatives of stilbenes and are 
classified as phytoalexins [32]. The most popular stilbe-
noid is resveratrol. Another non-flavonoid subclass is dia-
rylheptanoids which consists of two aryl groups joined by 
a seven carbon chain. They can be classified into linear and 
cyclic diarylheptanoids; for example, curcumin and myri-
canone, respectively.

3  Nanoencapsulation

3.1  Nanocapsules and nanospheres

Nanomaterials are commonly defined to be of a diam-
eter in the range of 1-100  nm; however, in principle, 
these materials have a length of 1-1000 nm in at least 
one dimension [33]. Nanoencapsulation is defined as the 
technology of packaging nanomaterials of an active ingre-
dient in the form of a solid, liquid, or gas, also known as 
the core or active, within a secondary material, named the 
matrix or shell, to form nanocapsules [34]. A similar tech-
nology can lead to the formation of nanospheres where 
the bioactive compound is uniformly dispersed in a matrix 
system [35]. The core (depending on design) is generally 
released by diffusion or as a response to triggers such as 
shear, pH, or enzyme action, consequently enabling their 
controlled and timed delivery to a targeted site [36, 37]. 
The nanocapsules or nanospheres can be used as a carrier 

Fig. 2  Classification of polyphenols
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for hydrophilic or lipophilic bioactive compounds and are 
shown in Fig. 3.

It is important to note that while nanoencapsulation 
is often used to describe the trapping of bioactive mate-
rials in nanoscale carriers, substances that are not thera-
peutically active can also be encapsulated to determine 
the impact of this process on dynamic behavior, electrical 
properties, phase transitions and so on [38, 39].

3.2  Common polymers constituting nanomaterials

Like the core of the nanomaterial, the external polymeric 
membrane is also of paramount importance in their syn-
thesis. Physicochemical properties of the selected polymer 
play a crucial role on the responsiveness of the nanoma-
terial and so a number of factors have to be taken into 
consideration before deciding on a polymer. These include 
whether the polymer and its degraded products are safe 
and also whether the polymer possesses the necessary 
properties to enable achievement of the drug delivery 
goals; e.g. a suitable controlled release profile [40]. A criti-
cal requirement, as it relates to the safety of the material, is 
the need for the polymer and its degraded products to be 
non-toxic, non-immunogenic, and also to be biodegrad-
able or at least be totally eliminated from the body in a 
short period of time so repeat administration is possible 
without any risk of uncontrolled accumulation [41].

The most commonly used natural biopolymers in the 
preparation of nanoencapsulated materials are chitosan, 
gelatin, sodium alginate and albumin [41–43]. These natu-
ral polymers offer a number of advantages which include 
being biodegradable (thus after the drug is depleted the 
carrier is broken down to components that are readily 
re-absorbed or eliminated); being biocompatible (and 
as a result are non-toxic in humans); allowing for adhe-
sion to target tissues (which helps to enhance residence 
time and consequently the amount of absorbable drug); 

possessing specific receptor recognition; allowing for non-
specific protein adsorption as they provide neutral coating 
with low surface energy; and possessing a high amount 
of hydroxyl groups on their backbone (therefore allowing 
the incorporation of different specific ligands) [44]. Some 
disadvantages associated with natural polymers include a 
great level of variability among those derived from animal 
sources, complex structures, and complicated and costly 
extraction processes [45].

There are many synthetic polymers such as polylactides 
(PLA), polyglycolides (PGA), poly(lactide co-glycolides) 
(PLGA), and poly(vinyl alcohol) (PVA), to name a few. There 
are also copolymers such as poly(lactide)-poly(ethylene 
glycol) (PLA-PEG), and poly(lactide-co-glycolide)-
poly(ethylene glycol) PLGA-PEG. The use of polymeric 
colloidal stabilizers to prevent aggregation is also com-
mon in nanoencapsulation processes and some common 
ones include dextran, polysorbate 20 and polysorbate 80 
[41]. Some advantages associated with the use of these 
synthetic materials include that they offer both greater 
mechanical and chemical stability, increased reproducibil-
ity due to minimized variation between batches, reduced 
nonspecific protein binding, ease of modification, and tun-
able properties [46, 47]. Disadvantages, on the other hand, 
include the possibility of the synthetic polymer being toxic 
and non-degradable and this is coupled with a complex 
and costly production process [45].

Along with the use of natural and synthetic materials in 
the design of nanocarriers, there are a few studies which 
have focused on the use of the bioactive compounds as 
the nanocarrier to develop ‘self-carrying nanodrug deliv-
ery systems’ [48]. This approach aims to develop functional 
carriers and is expected to have better biocompatibility 
than drug delivery systems derived from synthetic mate-
rials and also exhibit intrinsic therapeutic efficacy. The 
functional molecules can be either chemically attached to 
the core or shell or physically bound [49]. The advantages 
derived from this synthesis protocol include increased 
stability and water solubility, the nanocarrier is not sus-
ceptible to compound leakage, and it is also non-toxic 
with a high carrier-to-drug ratio [50, 51]. The formulation 
of these self-carrying natural nanocarriers however pose 
challenges in their synthesis, characterization, purifica-
tion, mass production, and quality control (uniformity and 
reproducibility). They are also more costly to produce and 
these factors, overall, limit their prospects as biomedical 
therapies [48].

3.3  Nanoencapsulation techniques

Nanomaterials can be made using a range of nanocarriers 
which serve as a transport module for bioactive materi-
als. Pharmaceutical nanocarriers include nanospheres, 

Fig. 3  A representation of the structure of a nanocapsule and a 
nanosphere. The image is in the public domain and is credited to 
the National Institutes of Health/Department of Health and Human 
Services [131]
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nanocapsules, nanoparticles, nanoemulsion, nanoli-
posomes and nanoniosomes (non-ionic surfactant 
vesicles). These nanoscale drug delivery systems can be 
natural or synthetic and can transport either lipophilic or 
hydrophilic molecules. They can be classified based on 
their origin (e.g. lipid-based and biopolymer nanocarri-
ers), their method of preparation (e.g. electrospun and 
electrosprayed nanocarriers) and also based on their 
composition as outlined in Fig. 4 [52, 53]. The use of inor-
ganic nanomaterials such as silica, gold and carbon-based 
nanostructures are being used extensively for drug deliv-
ery in cancer therapy [54]. Some nanocarriers such as solid 
lipid nanoparticles (SLNs) (a polymeric nanocarrier) have 
been further modified over time to improve their stability 
and loading capacity and this resulted in the formation 
of nanostructured lipid carriers (NLCs) [55]. The loading 
capacity of a nanocarrier is the amount of drug loaded per 
unit weight. This is an important parameter which deter-
mines the quantity of drug that can be transported and 
released after administration. As the size of the nanocarrier 
decreases, loading capacity also decreases; henceforth, 
both properties have to be considered in determining the 
quantity of nanocarrier needed for therapeutic efficacy.

Nanocarriers can be made using several nanoencapsu-
lation techniques which can be divided into physical, phys-
icochemical and chemical methods as outlined in Fig. 5. 
These techniques result in variations in the resulting drug 
delivery systems and each has its own advantages and dis-
advantages which have been outlined in several studies 

[41, 56]. Nanoencapsulation techniques used to synthe-
size nanomaterials are either top-down or bottom-up 
approaches. A top-down approach, as its name suggests, 
involves the size reduction and structure shaping of the 
material using specific methods (e.g. emulsification-sol-
vent evaporation) while the bottom-up approach allows 
for the self-assembly and self-organization of molecules to 
yield nanomaterials (e.g. coacervation) [57]. Examples of 
the types of nanomaterials that can be synthesized using 
the categories of nanoencapsulation techniques outlined 
in Fig. 5 are as follows. A supercritical anti-solvent process-
ing technique, which is a physical method of nanoencap-
sulation, can be used for the synthesis of polymeric nano-
particles. This protocol involves the supersaturation and 
solidification of the nanomaterial following exposure to 
another solvent (or multiple solvents) in which the mate-
rial is sparingly soluble. Recovery of the nanomaterial can 
then be achieved by drying. Interfacial polycondensation 
has also been used for the synthesis of polymeric nano-
particles. Interfacial polycondensation which is a chemi-
cal nanoencapsulation technique is a type of irreversible 
polymerization at the interface between an aqueous 
difunctional monomer and an inert immiscible organic sol-
vent containing a complementary difunctional monomer. 
Nanogels, which can result from physicochemical methods 
of nanoencapsulation, are a class of nanoparticles which 
may be synthesized via ionic interactions. This synthesis 
is derived from innate ionic forces and particle–particle 
interactions present in a colloidal system which result in a 

Fig. 4  Types of nanocarriers
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gel network formed by chemical cross-linking [58]. Freeze 
drying is a good technique to improve the long-term sta-
bility of colloidal nanoparticles. This technique lyophilizes 
the nanomaterial and the conditions that will yield pow-
ders that do not aggregate after resuspension and storage 
are most ideal.

The nanoencapsulation technique and delivery system 
used in the development of the nanoscale bioactives are 
able to alter various physicochemical properties of the 
material such as its particle size, size distribution, surface 
area, shape, solubility, encapsulation efficiency and releas-
ing mechanism [57]. As a result of this, careful selection of 
both the type of nanocarrier and the synthesis technique 
is critical.

The release rate of nanopolyphenols is determined by 
a combination of diffusion and erosion mechanisms [57]. 
The materials have low permeability and are absorbed only 
via active transport mechanisms [59]. Given the challenges 
outlined previously which result in the low bioavailability of 
polyphenols, some of the main benefits to be derived from 
the nanoencapsulation of polyphenols include the ability 
of these techniques (if carefully selected) to allow for tar-
geted delivery of the compounds through the modification 
of surface coating or conjugation so the drug is released 

only when it has reached the site in the body where it is 
needed. This not only allows for targeted delivery but also 
allows the rate of delivery to be controlled. These techniques 
also allow for the modification of surface charge which can 
promote cell entry, allow for timed release of the encapsu-
lated polyphenols in the body, extend circulation time of the 
compound through PEGylation and protect the compounds 
from degradation [56, 57].

3.4  Characterization of nanomaterials

The efficacy of a nanomaterial is greatly influenced by its 
physical and chemical properties. Additionally, its surface 
characteristics can influence its functional and physicochem-
ical properties, and ultimately, its application. The charac-
terization of nanomaterials is therefore critical to ensure the 
necessary characteristics which will allow for maximum effi-
cacy and safety are met. There are several characterization 
techniques which can be used to assess different parameters 
of a nanomaterial and those presented in Table 1 are some of 
the most common ones. These techniques vary with regard 
to relative advantages, disadvantages, cost, efficiency, and 
complexity and so careful consideration is necessary when 
selecting one [60, 61].

Fig. 5  Nanoencapsulation techniques
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4  Efficacy of nanopolyphenols in diabetic 
models

4.1  Study selection

The use of nanoencapsulated polyphenols in the treat-
ment of diabetes was studied using several databases. 
These include PubMed/MEDLINE, CINAHL (EBSCO), Sco-
pus and Web of Science. The search strategy used to 
retrieve literature from PubMed was: ((polyphenol OR 
flavonoids OR flavanones OR flavanone OR flavones OR 
phenols OR flavonols OR kaempferol OR quercetin OR 
catechin OR myricetin OR rutin OR proanthocyanidin 
OR tannins OR resveratrol OR “isoquinoline flavonoid” 
OR flavanolignan OR stilbene OR “phenolic acid” OR 
anthocyanin OR anthocyanidin OR extract) AND (nano 
OR nanoparticle OR nanocapsule OR nanoconjugate 
OR nanocolloid OR nanomicelle OR nanoemulsion OR 
nanocomposite OR nanostructure OR nanoencapsulate 
OR nano-encapsulation) AND (glucose OR glycemia OR 
glycemic OR “blood sugar” OR “glycated hemoglobin” OR 
hba1c OR “glycosylated hemoglobin” OR insulin OR “glu-
cose metabolism disorders” OR “metabolic disorders” OR 
“metabolic profile” OR hyperglycemia OR hyperglycemic 
OR “glucose intolerance” OR diabetes OR t2d OR t1d OR 
“prediabetic state” OR prediabetes)).

The search results were further refined and filtered 
by advanced search options, sorting by relevance and 
limiting search by language (English). References of the 
selected articles were further checked to identify rel-
evant articles. Studies that included other biologically 
active components other than nanopolyphenols were 
included only if the nanopolyphenol was also assessed 
individually. Additionally, the nanoencapsulated mate-
rial had to have a dimension less than 1000 nm to qualify 
as a nanopolyphenol. Data extracted from the resulting 
33 studies include general study characteristics (poly-
phenol type and (sub)class, type of nanocarrier, size of 
the nanomaterial, the main components of the drug 
delivery system, quantity of nanopolyphenol adminis-
tered, the encapsulation and/or drug loading capacity 
and the study duration), and the effect assessed along 
with the efficacy/outcome results (Table 2).

4.2  Nanopolyphenols as anti‑diabetic agents

Several types of polyphenols and nanocarriers have 
been utilized in the synthesis of nanopolyphenols for 
the assessment of their effects in diabetic models. Of 
the 33 studies, outcome measures included the ability 

of the bioactive material to: confer anti-diabetic, hypo-
glycemic, anti-hyperglycemic effects or relieve oxidative 
stress associated with diabetes (n = 20), impact diabetic 
wound healing (n = 2), inhibit diabetic neuropathic pain 
(n = 3) and impact other complications associated with 
diabetes such as inflammation (n = 3), diabetic cardio-
myopathy (n = 2), diabetic cataract or retinopathy (n = 2), 
diabetic nephropathy (n = 1) and diabetes-induced 
learning and memory impairment (n = 1). In all studies, 
streptozotocin-induced diabetic rats were used (Type 
1 DM model, predominantly) with the exception of 2 
studies which used alloxan-induced [62, 63] (Type 1 DM 
model) and 2 others that used sodium arsenite induced 
hyperglycemic rats [64] (Type 2 DM model) and a db/db 
mouse model [65] (Type 2 DM model).

Nanocarriers used were mostly nanoparticles (n = 22), 
while solid lipid nanoparticles/nanostructured lipid car-
riers (n = 4), nanoemulsions (n = 3), nanomicelles (n = 2) 
nanospheres (n = 1) and nanorods (n = 1) were used to a 
lesser extent. None of the included studies outlined in 
Table 2 used a ‘self-carrying nanodrug delivery system’. 
The smallest particle sizes (15 and 17 nm) were obtained 
for nanorods prepared by use of a magnetic field [62] 
and nanospheres prepared by anti-solvent precipita-
tion, respectively [66]. Both natural and synthetic poly-
mers were used in the synthesis of the nanomaterials 
along with polymeric colloidal stabilizers. A few studies 
also incorporated inorganic species such as selenium 
and iron oxide into their matrix to assess for synergistic 
effects [67–69].

The quantity of nanomaterial administered orally 
ranged from 1 to 300 mg/kg/day. Nanopolyphenols were 
also administered via intravenous and topical delivery. 
The encapsulation efficiency and drug loading capacity 
of the prepared nanomaterials were within the range 
of 56–97.7% and 4.2–53.2%, respectively. A decrease in 
particle size resulted in a similar decrease in drug load-
ing capacity in all but one study for which this data was 
available [70]. Study durations ranged from 1 to 70 days 
for drugs administered orally. The effect of the nanopo-
lyphenols was determined in relation to the free-form 
of the drug for 73% of the included studies (n = 24). Effi-
cacy was also determined through comparisons with 
the drug-free nanocarrier (n = 2), different administered 
quantities of the nanopolyphenol (n = 2), other nanoen-
capsulated bioactive materials (n = 2), the effect of the 
nanodrug in treated versus untreated diabetic rats (n = 2) 
and established pharmaceuticals (n = 1). A few studies 
used an experimental design which allowed for compar-
isons on several of the noted premises; however, that 
relating to the effect of the free-form of the drug versus 
its nanoencapsulated counterpart was prioritized.
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4.3  Phenolic acids

Anti-diabetic effects of phenolic acids have been sug-
gested in several studies [71]. Ferulic acid, which is a 
hydroxycinnamic acid, was nanoencapsulated and its 
impact on diabetic wound healing and hypoglycemia 
studied [72]. It was found that nanosized ferulic acid 
(with significantly increased sustained release) was able 
to promote wound healing significantly in diabetic rats 
compared to free-formed ferulic acid. This was effected 
through an increase in wound epithelization and hydroxy-
proline content. Hydroxyproline is a basic component 
of collagen. An increase in hydroxyproline content is an 
indication of increased cellular proliferation and therefore 
increased collagen synthesis [73]. This increase in collagen 
synthesis and turnover provides strength to repaired tis-
sues and stimulates healing; thereby indicating the mech-
anism of action of the nanopolyphenol [74].

4.4  Flavonoids

There are 6 subclasses of compounds within the category 
of flavonoids as outlined in Fig. 2. Of these subclasses, 
included among the resulting 33 studies are flavanone 
(n = 1), flavones (n = 2), flavonols (n = 9) and one study 
which used a mixture of compounds from 2 different 
subclasses (flavonol and isoflavone) (Table 2). While the 
structures of these flavonoids are similar, structure–activ-
ity relationship causes changes to the chemical structure 
at particular regions to significantly impact functional-
ity. The type of sugar moiety attached and the degree of 
hydroxylation and glycosylation (among other factors) can 
therefore influence the efficacy of the flavonoid [75]. This 
was corroborated by Sarian et al. [23] who outlined that 
the total number and configuration of hydroxyl groups 
existing on the compounds increased the antioxidant and 
anti-diabetic effects of flavonoids.

4.4.1  Flavanone and flavone

The flavanone studied was naringenin [76] while the fla-
vones included baicalin and scutellarin [77, 78]. A glu-
cose lowering effect was obtained for naringenin and 
baicalin; however, scutellarin did not produce a similar 
effect in neither its free nor nanoencapsulated form. This 
effect of naringenin may be due to its ability to suppress 
the absorption of glucose from the intestine of diabetic 
rats [79]. While a hypoglycemic effect of scutellarin was 
not reported, in its nanoencapsulated form it caused an 
increase in cellular uptake and a two-threefold increase in 
bioavailability. Furthermore, the nanoencapsulated scutel-
larin also down-regulated both central retinal artery resis-
tivity index and the expression of angiogenesis proteins 

which promote abnormal retinal blood vessel growth and 
contribute to diabetes-related vision loss. Other effects 
obtained for naringenin and baicalin included increasing 
and regenerating the structural complexity of Langer-
hans cells, and lowering glycated hemoglobin (HbA1c); 
respectively.

4.4.2  Flavonol

Compounds studied among the flavonols included 
myricitrin, rutin and quercetin. While the effect of nano-
myricitrin was not determined by comparison to its free-
form, a clear increase in efficacy was seen with an increase 
in the concentration of the nanodrug [80]. The resulting 
outcomes included antioxidant and anti-diabetic effects 
which were evidenced by an increase in the activity of the 
endogenous antioxidant enzymes superoxide dismutase 
(SOD) and catalase (CAT); and through hypoglycemic 
effects. Nanoencapsulated rutin effectively improved 
wound contraction in diabetic foot ulcer rats by causing 
significant wound contraction when applied topically [81]. 
There was also increased antioxidants and hydroxyproline 
content in the rats treated with the nanoencapsulated 
drug compared to the rats treated with the free-form of 
the drug (on the 16th day). Oxidative stress is implicated 
in the progression of diabetic complications including 
diabetic foot ulcer and so an increase in antioxidants can 
reduce progression. Efficient regeneration of dermal tis-
sues, capillary vessels and thickness of granulation tissues 
was also noted in rats treated with rutin nanoparticles.

Quercetin was the most researched flavonol with a total 
of 7 of the included 33 studies focusing on this polyphenol. 
The nanoencapsulated form of the drug varied between 
nanospheres, nanomicelle, nanorods, and nanoparticles. 
The effects of nanoquercetin were determined by com-
parison to its free-form in 5 studies [68, 70, 82–84]. Of the 
remaining studies, one compared different concentrations 
of the nanoencapsulated drug [66], and in the other, the 
effects of the nanodrug were determined in treated versus 
untreated diabetic rats [62]. A decrease in glucose concen-
tration was observed after administration of the nanoen-
capsulated quercetin in all instances. An increase in the 
activity of the endogenous antioxidant enzymes SOD, CAT 
and glutathione (GSH) was also obtained for several stud-
ies and this resulted in a concomitant reduction in oxida-
tive stress [62, 66, 82, 83].

Accounts of other activities of nanoencapsulated 
quercetin included a decrease in aspartate transaminase 
(AST), alkaline phosphatase (ALP), alanine transaminase 
(ALT), glucose 6-phosphatase (G6Pase), fructose bispho-
sphatase (FBPase), downregulation of intercellular adhe-
sion molecular-1 (ICAM-1) expression; amelioration of 
lipid peroxidation; and protein carbonylation [62, 70, 
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84]. The glucose metabolic enzymes G6Pase and FBPase, 
and the liver enzymes AST, ALP and ALT showed higher 
activity in diabetic subjects than their normoglycemic 
counterparts. Changes in the activity of liver enzymes 
can be a normal physiological phenomenon; however, 
it may also reflect potential liver injury [85]. Elevation 
of liver enzyme activity can be due to leakage of the 
enzymes from liver cytosol into the bloodstream due 
to hepatic injury. The administration of nanoquercetin 
restored the activities of both the glucose metabolic and 
liver enzymes towards normal via mechanisms includ-
ing its radical scavenging abilities and also its ability to 
protect tissue function [62].

An improvement in memory performance and dia-
betic nephropathy by nanoquercetin were also com-
municated in one study each [68, 70]. Oxidative stress 
plays a crucial role in the development of diabetes and is 
also involved in neuronal damage and cognitive decline 
[86]. Quercetin is able to confer antioxidant effects, due 
to the presence of two pharmacophores inside its struc-
ture, and thereby reduce oxidative stress [87]. Quercetin 
also reduces neuro-inflammation by inhibiting the NF-κB 
pathway and reducing pro-inflammatory cytokines such 
as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and 
IL-6 which are associated with impaired cognition [88, 
89]. Other properties of quercetin which enable its posi-
tive impact on memory performance include its ability to 
increase the expression of cAMP response element-bind-
ing protein (CREB) (since a reduction in the expression of 
this protein in the brain of diabetics can result in cogni-
tive decline), and its inhibitory effects on acetylcholine 
esterase (AChE) which can result in cognitive dysfunction 
if induced in diabetic brains [90, 91].

As it relates to the effect of nanoquercetin on diabetic 
nephropathy, it was stated that the quercetin nanopar-
ticle complex can attenuate diabetic nephropathy by 
down-regulating the expression level of ICAM-1 (which 
may play a role in the development of diabetes and dia-
betic nephropathy) on endothelium [70, 92]. Along with 
these therapeutic effects of nanoencapsulated querce-
tin, significant increase in bioavailability (of 1676%) and 
significantly lower drug doses of the nanodrug produced 
greater effects than its free-form.

The isoflavonoid, puerarin, was administered in com-
bination with rutin in the only study that used two dif-
ferent subclasses of polyphenols [69]. These compounds 
were able to demonstrate multiple anti-diabetic effects 
and increase pancreatic function and glucose utilization. 
These outcomes could be due to the previously outlined 
effects of rutin in addition to the ability of puerarin to 
elevate insulin expression and maintain metabolic 
homeostasis in STZ-diabetogenic mice [93].

4.5  Non‑flavonoids

Polyphenols of a non-flavonoid classification were the 
subject of 19 of the 33 included studies. The groups of 
polyphenols included isoquinoline flavonoid (n = 3), fla-
vanolignan (n = 1), stilbene (n = 1), diarylheptanoid (n = 11), 
anthraquinone (n = 1) and a crude polyphenol-rich extract 
(n = 2).

4.5.1  Isoquinoline flavonoid, flavanolignan and stilbene

The major pharmacological targets of the nanoencapsu-
lated non-flavonoid polyphenols were the same as those 
of the nanoflavonoids outlined previously; that is, blood 
glucose levels, antioxidant status by determination of SOD, 
CAT and GSH levels, HbA1c, and the activity of the liver 
enzymes AST, ALT and ALP. The isoquinoline flavonoid 
(berberine) [65, 67, 94], the flavanolignan (sylibin) [95], and 
the stilbene (resveratrol) [96], impacted these pharmaco-
logical targets in a similar way as the flavonoids (Table 2). 
Additionally, nanoencapsulated berberine prepared in 
a nanostructured lipid carrier (NLC) and another which 
existed as a freeze dried nanoemulsion both resulted in 
increased oral bioavailability while the former also caused 
an increased sustained release. The berberine NLC was 
compared to both its free-form and a selenium-coated 
NLC berberine and a synergistic relationship was found 
between berberine and selenium.

4.5.2  Diarylheptanoid

The diarylheptanoid, curcumin, was the most studied non-
flavonoid. Comparison of the effect of the nanoencapsu-
lated polyphenol was done with the polyphenol-void 
nanocarrier, other bioactives/pharmaceuticals, and also 
with its free-form. The biological effects and conditions 
assessed included anti-diabetic and antioxidant activity 
[63, 97, 98], diabetic neuropathic pain [99, 100], diabetic 
cardiomyopathy [101, 102], inflammation [103–105], and 
cataract in a diabetic rat model [106]. It was reported 
that nanoencapsulated curcumin produced anti-diabetic 
effects by increasing the number of insulin positive cells 
and the gene expression of insulin, alleviating STZ-induced 
β-cell damage and increasing the upregulation of the tran-
scription factors pancreatic and duodenal homeobox 1 
(Pdx-1), which play a critical role in pancreatic develop-
ment, and NKx6.1 which is required for the development 
of β-cells [97, 98]. One possible mechanism through 
which these effects could have been produced include 
curcumin inhibiting phosphodiesterases (PDEs) which 
degrade cyclic adenosine monophosphate (cAMP) [107]. 
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This allows for the intracellular production of cAMP and 
a consequent enhancement of pancreatic β-cell function 
and insulin secretion.

Nanocurcumin produced desirable results against dia-
betic neuropathic pain by decreasing the upregulated 
IL-1β and connexin43 (Cx43) expression, decreasing 
phosphorylated-protein kinase B (p-Akt), decreasing the 
upregulation of the P2Y12 receptor on satellite glial cells 
(SGCs), decreasing neuro-inflammation and increasing 
antioxidant defence [99, 100]. The upregulated expres-
sion of IL-1β and Cx43 contributes to the induction and/
or maintenance of pain [108, 109]. The impact of nanoen-
capsulated curcumin on these proteins explains possible 
mechanisms through which neuropathic pain can be 
reduced. P2Y12 and p-Akt are involved in the initiation and 
maintenance of neuropathic pain [110, 111]. A reduction 
of their activity therefore alleviates pain.

The effect of nanocurcumin on diabetic cardiomyopa-
thy was evidenced through a reduction in AST. There were 
however non-significant effects on glucose and insulin 
compared to untreated diabetic rats [102]. Increases in the 
following parameters were also reported: hydrogen sulfide 
 (H2S), CaSR, CSE and CaM [101]. Diabetic cardiomyopathy 
is a type of cardiovascular damage in diabetic patients 
that is independent of the coexistence of ischemic heart 
disease or hypertension. Damage to the heart muscle 
enhances the release of AST in diabetic subjects; therefore, 
a reduction in AST by nanocurcumin is indicative of a posi-
tive effect. Intracellular calcium is involved in several vital 
biochemical processes and an increase in its concentration 
can enhance the activity of CaM and regulate a variety of 
physiological functions. In turn,  Ca2+/CaM can regulate the 
activity of CSE and the formation of  H2S [102]. Exogenous 
 H2S improves cardiac function and attenuates cardiac 
hypertrophy and myocardial fibrosis in diabetic mice via 
the forkhead box protein O1 (FOXO1) pathway [112]. This 
protein plays important roles in the regulation of gluco-
neogenesis and glycogenolysis by insulin signaling; hence, 
by increasing exogenous  H2S, protective effects against 
diabetic cardiomyopathy are attained.

For the studies which assessed the anti-inflammatory 
effects of nanoencapsulated curcumin [103–105], the 
drug showed strong anti-inflammatory effects by inhibit-
ing C-reactive protein (CRP), IL-6 and TNF-α release. Nano-
curcumin also ameliorated negative changes in NF-ҡB 
(which plays a role in many inflammatory processes), 
hepatic COX-2 (an enzyme responsible for inflammation), 
and hepatic peroxisome proliferator activated receptor 
(PPAR)-γ (which inhibits the expression of inflammatory 
cytokines), while lowering 8-oxo-20-deoxyguanosine 
[113]. This oxidized derivative of deoxyguanosine is a bio-
marker of oxidative damage and its concentrations are 
elevated in diabetic subjects. A reduction of this clinical 

marker by nanocurcumin is therefore an indication of anti-
diabetic effects.

The efficacy of curcumin nanoparticles in delaying dia-
betes-induced cataract in rats was the focus of one study 
[106]. Efficacy was determined by comparing the activity 
of the nanoencapsulated drug to its free-form. It was com-
municated that both the nano and free-form of curcumin 
failed to reduce glucose and increase insulin levels; how-
ever, an effect against osmotic stress caused by hypergly-
cemia was observed. A delay in the progression of diabetic 
cataract was also attributed to the ability of nanocurcumin 
to mediate the biochemical pathways of disease progres-
sion such as protein insolubilization, the polyol pathway 
(a contributor to diabetic retinopathy), protein glycation, 
and crystallin distribution.

4.5.3  Anthraquinone

The sole anthraquinone polyphenol reported among the 
included studies was emodin [114]. Nanoencapsulated 
emodin was assessed for its effect against diabetic neuro-
pathic pain. The effects reported include a decrease in the 
upregulation of purinoceptor 3 (P2X3) receptor and TNF-α 
protein, and a reduction of the phosphorylation and acti-
vation of extracellular signal-regulated protein kinases 1 
and 2 (ERK1/2). A reduction in the activity of these proteins 
result in a decline in diabetic neuropathic pain since P2X3 
is involved in acute, inflammatory, neuropathic, visceral 
and cancer pain; TNF-α plays a role in the peripheral medi-
ation of neuropathic pain; and ERK (which are activated 
in spinal glial cells and lead to the synthesis of proinflam-
matory/pronociceptive mediators) can enhance and pro-
long pain [115–117]. There are other studies, however, for 
which different roles have been reported for ERK1/2. These 
include controlling the phosphorylation and protein level 
of CREB and positively impacting glucose-mediated β-cell 
survival [118]. Given these roles, a reduction of ERK1/2 
could therefore influence the negative effect of nanocur-
cumin on glucose and insulin levels.

4.5.4  Crude polyphenol extract

The crude polyphenol extract of java plums was nanoen-
capsulated and their antioxidant and hypoglycemic effects 
determined [64, 119]. Compared to the free-form of the 
drug, it was found that the polymeric nanoparticles were 
able to effect changes in lowering blood glucose, choles-
terol, creatinine, serum and pancreatic advanced oxida-
tion protein products (AOPP). Additionally, there were 
reductions in renal thiobarbituric acid reactive substances 
(TBARS) levels, β-N-acetylglucosaminidase (NAG) activity 
and HbA1c, and nanosized drugs were able to pass the 
blood-brain-barrier.
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5  Discussion

Polyphenols are ubiquitous in nature and have numer-
ous proposed health benefits. The low bioavailability of 
polyphenols however poses a great challenge in their 
therapeutic efficacy. Nanotechnology has proved to be 
a promising field which can allay these challenges by 
improving bioavailability and allowing for targeted drug 
delivery and sustained drug release while lowering the 
required drug dose. The utilization of nanotechnology 
potentiates the beneficial effects of polyphenols in dia-
betes treatment in vivo via several mechanisms. Of the 
24 studies that compared the activity of the nanoencap-
sulated polyphenol to its free-form, it was found that 
effects were significantly greater for the former in all but 
one study [68] where similar effects were reported for 
both forms of the drug for selected parameters and in 
two other instances where both forms failed to reduce 
blood glucose concentrations [78, 106].

The polyphenols studied were found to be effective 
as hypoglycemic, anti-hyperglycemic, anti-diabetic and 
antioxidant agents while also producing positive effects 
in diabetic wound-healing, diabetic neuropathic pain, 
diabetic retinopathy and cataract, diabetic nephropathy, 
diabetic cardiomyopathy, and diabetes-induced learning 
and memory impairment.

There were great variations among the type of poly-
phenol, the nanocarrier and nanoencapsulation tech-
nique used, the size of the nanomaterials, the drug 
delivery system, the dose of nanopolyphenol adminis-
tered, the encapsulation efficiency and loading capacity 
of the resulting nanomaterials and the study duration. 
With these variations, superior anti-diabetic effects of 
the nanopolyphenols were still evident in all but 4 of the 
33 included studies [68, 78, 101, 106]. Of these 4 stud-
ies, 3 compared the efficacy of the nanodrug to its free-
form while the other did a comparison with untreated 
diabetic rats.

The design of a suitable drug delivery system requires 
the properties of the polyphenol to be taken into con-
sideration. Different polyphenol subgroups can differ 
significantly in chemical stability [2]. Resveratrol, for 
example, is sensitive to pH, and so degradation increases 
significantly above pH 6.8 [120] while the highest degra-
dation of quercetin is at pH 2 at 60 °C [121]. The process-
ing conditions and environment are therefore depend-
ent on sound knowledge of the polyphenols to ensure 
their efficacy is unaltered.

The variations seen in the drug delivery systems 
used are of note due to the integral role they play in 
the advancement of drug delivery technology and the 
fact that they are tailored to exert distinct biological 

functions [122]. Environmentally-responsive polymers, 
or smart polymers, are a class of materials composed 
of a diversity of linear and branched (co)polymers or 
cross-linked polymer networks that are able to undergo 
a dramatic physical or chemical change in response to 
an external stimulus [123]. The polymeric systems can 
be activated by physical stimuli (such as temperature, 
ultrasound, light, and magnetic and electrical fields) 
or chemical stimuli (such as pH, redox potential, ionic 
strength, and chemical agents) and these systems have 
been the focus of several research [40, 123].

Depending on the type of external stimuli, that is, 
whether physical or chemical, the effect induced on the 
polymer system can directly modulate the energy level 
of the polymer/solvent system and induce a polymer 
response at some critical energy level or it can induce a 
response by altering molecular interactions between poly-
mer and solvent or between polymer chains, respectively. 
The resulting behavioral change on the polymer system 
can include transitions in solubility, hydrophilic-hydro-
phobic balance, and conformation [124]. The majority 
of responsive polymers for drug delivery can be broadly 
categorized as hydrogels, micelles, polyplexes, or polymer-
drug conjugates [123]. Of the drug delivery systems out-
lined in Table 2, there were two nanomicelles and several 
polymer-drug conjugates with great variations among the 
latter. While PEG is not a smart polymer, it can be grafted 
with other polymers such as poly(methacrylic acid) to 
form a responsive-polymer [123, 125]. Two more popular 
responsive polymers are polyacrylic acid (PAA) (carbopol) 
which was used in one of the included study and is a pH 
sensitive smart polymer; and the commercially available 
 Pluronic® (non-proprietary name “poloxamer”) which is a 
nonionic tri-block copolymer consisting of a central hydro-
phobic polypropylene oxide (PPO) block flanked by hydro-
philic polyethylene oxide (PEO) blocks; that is, PEO-PPO-
PEO [126].  Pluronics® were used in seven of the included 
studies, as outlined in Table 2, and are temperature sensi-
tive smart polymers. All studies that used a smart poly-
mer reported positive results. The mechanism of action 
of different types of smart polymers however varies and 
since their physical and chemical properties impact their 
utilization, care should be taken in selecting a suitable one.

5.1  Challenges and future prospects

The application of nanotechnology in medicine can sig-
nificantly impact human health as it relates to the preven-
tion, diagnosis, and treatment of diseases. The use of this 
technology aims to increase therapeutic efficacy, decrease 
the therapeutically effective dose, and/or reduce the risk 
of systemic side effects. Achieving these outcomes how-
ever present several challenges. These can be categorized 
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as biological challenges, challenges associated with bio-
compatibility and safety, large-scale manufacturing, intel-
lectual property (IP), government regulations, and over-
all cost-effectiveness in comparison to current therapies 
[127].

Some challenges associated with the biological prop-
erties, biocompatibility and safety of nanopolyphenols 
include inadequate understanding of the interaction of 
nanomaterials with tissues and cells, limited understand-
ing of the biological interaction of these materials with 
the biological environment in the body of patients, inade-
quate information on the degree of accumulation of nano-
medicines in target organs, tissues, and cells, the need for 
the development of more specialized toxicological studies 
for nanomedicines, and required structural stability of the 
nanomaterials following in vivo administration [127, 128]. 
Potential challenges arising from the large-scale manu-
facture of nanopolyphenols and the cost-effectiveness 
of their production include difficulties in their large-scale 
production according to GMP standards to ensure quality 
control and reproducibility in physicochemical properties 
on a batch-to-batch basis [129]. Additionally, the cost of 
the raw materials involved in the synthesis of nanopoly-
phenols are also obstacles for their scale-up and manu-
facture. In order to compensate for the high costs of the 
development and manufacture of these nanomedicine 
products, the clinical therapeutic effect of the drugs has 
to be much more advanced than conventional therapeu-
tics [128]. Intellectual property and government regulation 
associated challenges include a lack of clear regulatory 
guidelines specific for nanoparticulate nanomedicines, 
and the complexity of nanomedicine patents and IP [127].

Approaches to use nanotechnology in the particle 
design and formulation of nanomedicines derived from 
polyphenols are beginning to expand the nutraceutical 
and pharmaceutical markets. These growing nanomedi-
cine industries are expected to have a significant impact 
on the economy and medical care of the society. Currently, 
nanomedicines are used unanimously to improve the lives 
of patients suffering from a number of illnesses and this 
review has outlined the efficacy of nanopolyphenols as 
anti-diabetic agents. The safety of these drug delivery sys-
tems is therefore critical. Presently, a significant number of 
research has been conducted using smart polymers in the 
synthesis of nanopolyphenols. Smart polymers that have 
been approved by the US Food and Drug Administration 
as a safe drug delivery system (e.g.  Pluronics®) should be 
carefully selected and used in the design of nanomaterials. 
Most of the polymers used in the drug delivery systems 
of the included studies are synthetic in origin and while 
their short-term use in vivo is regarded as being safe and 
non-toxic, the effect of prolonged exposure of large quan-
tities in human subjects is not known [130]. Nanomaterials 

which are comprised of inorganic species are also of con-
cern as it relates to possible toxic effects. Self-carrying nan-
odrug delivery systems which functionalize the nanocar-
rier by utilizing the polyphenol as the nanocarrier would 
eliminate the possibility of toxicity from a nanocarrier and 
should therefore be further explored.

6  Conclusion

The nanoencapsulation of polyphenols can be achieved 
using polymeric, vesicular or inorganic nanocarriers. Sev-
eral physical, chemical, physicochemical and a few other 
nanoencapsulation techniques are also available. The 
groups of polyphenols studied included phenolic acids 
(hydroxycinnamic acid), flavonoids (flavonol, flavone, fla-
vanone and isoflavone) and non-flavonoids (isoquinoline 
flavonoid, flavanolignan, stilbene, diarylheptanoid and 
anthraquinone). The most studied polyphenols were the 
flavonol, quercetin, and the diarylheptanoid, curcumin. 
Anti-diabetic effects were noted for all groups of poly-
phenols and several studies reported significantly higher 
effects for the nanopolyphenol compared to its free-form.

It can be concluded that the diversity of processes 
involved in the manufacture and analysis of nanopolyphe-
nols impacts them differently. This in turn influences their 
physical nature, chemical behavior, biological interactions, 
analytical properties and efficacy which consequently may 
introduce some constraints to their applications. With a 
deeper understanding of the physicochemical properties 
of polyphenols, the use of smart polymers in the develop-
ment of cost-effective and efficient self-carrying nanodrug 
delivery systems, and the stabilization of nanomaterials 
to facilitate site-specific targeting, nanoencapsulated 
polyphenols can play a critical role in the push towards 
safer and more effective therapeutics to counter the rise 
of lifestyle diseases.
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