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Abstract
In this paper, we propose a new convolutional neural network (CNN) architecture to build a multi-label classifier that 
categorizes line chart images according to their characteristics. The class labels are organized in the form of trend prop-
erty (increasing or decreasing) and functional property (linear or exponential). In the proposed method, the Canny edge 
detection technique is applied as a data preprocessing step to increase both the classification accuracy and training 
speed. In addition, two different multi-label solution approaches are compared: label powerset (LP) and binary relevance 
(BR) methods. The experimental studies show that the proposed LP-CNN model achieves 93.75% accuracy, while the 
BR-CNN model reaches 92.97% accuracy on the test set, which contains real-world line chart images. The aim of this 
study is to build an efficient classifier that can be used for many purposes, such as automatically captioning the chart 
images, providing recommendations, redesigning charts, organizing a collection of chart images and developing better 
search engines.

Keywords  Line charts · Image classification · Multi-label classification · Convolutional neural networks · Deep learning · 
Machine learning

1  Introduction

Line charts are popular and preferable tools in practice 
to represent useful numerical data in documents due to 
their many advantages over textual representations such 
as better representing ideas, perceivable within a short 
time and staying for a long time in memory. As just like 
the old saying “a picture is worth a thousand words”, they 
are extremely rich and valuable sources of information. 
Line charts provide an efficient way to monitor the pro-
gress, such that data can be examined in terms of descrip-
tive scales (high, medium, low), fluctuation (the variation 
of the data points) and trend (increasing or decreasing). 
These charts have been used in a wide range of areas to 
visualize mathematical functions in a coordinate system, 
to overview statistics and to give a quick understanding 

of changes in the variables. Hence, line charts are fre-
quently embedded objects in many different types of 
digital sources such as web pages, books, articles, reports, 
research papers, newspapers, magazines, blog posts, and 
presentation slides.

Most of the line charts are currently created to be 
human-understandable and they are not originally 
machine-readable since they are generally in raster image 
format. However, during the past decades, there is an 
increasing need in many applications for the machine’s 
ability to classify and interpret insights presented in line 
chart images automatically. When the underlying informa-
tion is not available as textual, it is necessary to extract the 
knowledge from a line chart image to utilize this knowl-
edge for further process. The main challenge when deal-
ing with classifying line charts automatically is the variant 
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visual appearance and structure of the images. Therefore, 
it is significantly difficult for machines to classify the line 
chart according to their characteristics automatically and 
understand the encoded information accurately. The field 
of machine learning addresses this problem by utilizing 
deep learning methods to extract knowledge from graphic 
images. Therefore, in this study, we used a convolutional 
neural network (CNN) method as a deep learning technique 
to classify line charts to provide valuable knowledge. This 
knowledge then will help in automatically captioning/
tagging the chart images, semantic description of the line 
chart, providing recommendations, redesigning charts, 
organizing a collection of chart images and developing 
better search engines.

Since line charts have various different types, they can 
be classified from different points of view such as accord-
ing to their periods, shapes or growth rates. In this study, 
we focus on the classification of line charts according to 
their trend properties (increasing or decreasing) and func-
tional properties (linear or exponential). Since more than 
one class label will be assigned to a single line chart at 
the same time, this task is a multi-label classification prob-
lem. The case in which one category is assigned to each 
instance is called classification, while multi-label classifica-
tion (MLC) is the case when many categories are simulta-
neously assigned to the same instance. In our MLC task, a 
CNN model is first built from labeled line chart images in 
the training set and then an unseen line chart image can 
be correctly categorized according to the model that best 
fits it.

The novelties and main contributions of this paper can 
be listed as follows. (1) It is the first study that classifies line 
chart images based on their trend (increasing or decreas-
ing) and functional (linear or exponential) properties using 
the CNN method. (2) Previous researches on chart clas-
sification are primarily based on single-label classifica-
tion, while multi-label classification on line charts is not 
well studied. (3) As a data preprocessing step, this paper 
proposes the application of the Canny edge detection 
method to increase the classification performance. (4) 
We also compared two different multi-label classification 
approaches, called label powerset (LP) and binary relevance 
(BR), with CNN on the task of line chart classification for 
the first time. The experimental studies showed that the 
proposed LP-CNN model achieved 93.75% accuracy on the 
test set, which contains real-world line chart images.

The rest of the paper is organized as follows. Section 2 
briefly states the motivation behind this work, in other 
words, the benefits of this study. Section 3 explains the 
previous studies about chart classification. Section  4 
describes the technical details about the proposed CNN 
model, data preprocessing method and multi-label clas-
sification approaches that were compared in this study. 

Section 5 describes the dataset and presents the perfor-
mance results of the proposed CNN model for each multi-
label classification method, named LP-CNN and BR-CNN. 
Finally, the conclusions and possible future works are dis-
cussed in Sect. 6.

2 � Motivation

This study focuses on building an intelligent model that 
can learn visual and graphical features directly from line 
chart images and is able to automatically predict multi-
label classes of line charts. The motivation behind this 
work (the benefits of this study) can be briefly stated as 
follows:

•	 The line chart classification model can be used to auto-
matically captioning and tagging the chart images.

•	 Line chart classification can be an assistant to a recom-
mendation engine. To provide a recommendation for 
users, it is first important to understand the pattern in 
the line chart image. Recommendation strategies can 
be effectively given by considering the information 
extracted from the chart image. Patterns recognized 
from charts can assist the recommendation engine in 
presenting an appropriate choice for users.

•	 Line charts provide a visual assessment of the relation-
ship between two or more variables. However, they 
cannot be noticed by visually impaired users since 
they are in visual picture form. Hence, all people with 
visual impairments have difficulties in information 
access. They can use screen and document readers for 
the textual documents; however, these readers don’t 
interpret the charts, only read the caption commonly 
given under the chart itself. The text below the line 
chart may not enough for the visually impaired users 
to imagine what the visualization actually represents. 
Our method can help people with visual impairments 
to understand the information given in the line chart. 
Hereafter, line chart images will be understood by the 
visually impaired.

•	 Nowadays, major search engines involve images in 
their search results. However, indexed content for line 
charts principally relies on the textual metadata, rather 
than the content of the chart image. The metadata 
generally doesn’t include enough information about 
the chart it represents, hence the search engines may 
not find many useful results from a user query. Search 
engines may overlook many useful query results if they 
don’t consider the actual information represented in 
these charts during the query process. Thence, enrich-
ing the indexing content for line chart images provides 
an additional dimension to search improvement.
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•	 Information extracted from the line charts by our 
method can help in chart redesigning such as ignor-
ing some unnecessary primitives (i.e. grid lines). Hence 
it can assist to improve the chart for more accurate per-
ception.

•	 This study provides a solution for line charts that need 
to be readable and interpretable by computers. For 
example, it is possible to interpret a line graph even if 
for the year for which the data was not available.

•	 There is an increasing demand for intelligent document 
understanding, where chart interpretation is an impor-
tant issue since line charts are frequently embedded 
objects in the documents. Line charts may contain sig-
nificant information that is not mentioned in the text. 
This study focuses on predicting the structure of line 
charts, which is an essential stage of chart interpreta-
tion.

•	 The accuracy of text mining algorithms can be 
improved by associating graphical and textual infor-
mation. For this purpose, understanding of a line chart 
image can be achieved by classifying its graphical 
information on both semantic and logical levels. Our 
approach can help to automatically comprehend the 
knowledge within a text document for text mining 
studies.

•	 Chart recognition is an area of research and as impor-
tant as text recognition to understand the information 
within the document automatically. Our study provides 
transforming its visual contents into computer under-
standable values. It allows us to capture the meaning 
carried by the line chart image in a suitable way.

In this study, an intelligent model was developed to be 
able to automatically classify and interpret insights pre-
sented in line chart images. Briefly, such a classification 
would be useful for many purposes, such as automatically 
captioning/tagging the chart images, semantic descrip-
tion of the line chart, providing recommendations, rede-
signing charts, organizing a collection of chart images and 
developing better search engines.

3 � Related works

Although textual information is still the main source 
of data, there has been a growing trend of introducing 
chart figures to provide information. Charts are widely 
used to present a huge amount of data, emphasize key 
points presented in the text, and illustrate trends or 
changes. An average business computer user generates 
tens of charts and plots each week [1], it means that a 
very huge amount of potentially useful chart images are 
available on information sources. Though it is possible 

to interpret information from a chart representation 
manually by humans, it may become impractical since 
this rapidly increasing availability of chart images. There-
fore, automated methods based on computer devices 
(computer-based processing) are required to extract the 
information present in a chart image.

The previous researches on chart classification pri-
marily focus on identifying different types of charts 
(i.e. bar, pie, line, radar). Mishchenko and Vassilieva [1] 
compared many different machine learning techniques 
for the classification of images by chart type, including 
naive Bayes (NB), J48 decision tree (DT), support vector 
machine (SVM), random forest (RF) and neural network. 
Prasad et al. [2] used SVM and image processing tech-
niques for classifying chart images based on the spatial 
relationships and shapes of their primitives. They consid-
ered 5 chart categories: bar-chart, curve-plot, pie-chart, 
surface-plot, and scatter-plot. They tested their approach 
on 653 images and achieved 84.23% classification accu-
racy. Savva et al. [3] also used SVM to classify 10 differ-
ent types of chart images: area graph, bar chart, curve 
plot, map, pareto chart, pie chart, radar plot, scatter plot, 
tables, and Venn diagram. Their work, named ReVision, 
achieved 80% accuracy on average for multi-class clas-
sification on a 2601 image corpus. Instead of SVM, Jung 
et al. [4] developed a system, named ChartSense, which 
used a deep learning technique to improve the accuracy 
rate of ReVision when classifying 10 different types of 
chart types.

Recently, the CNN technique to classify chart images 
has attracted increasing attention from researchers [5–9]. 
Amara et al. [5] presented a CNN architecture for classi-
fying 11 different chart types and achieved 89.5% accu-
racy over 3377 images. Bajic et al. [6] used the VGG (Visual 
Geometry Group) model, which is one of the well-known 
CNN architectures, and achieved 81.67% accuracy for 10 
chart categories on 541 test images. Another work [7] 
used the CNN technique to predict what type of chart a 
given image is representing (i.e. area, bar, line, pareto, pie 
or radar). Chagas et al. [8] also classified charts by their 
types using different CNN architectures (Resnet-50, VGG-
19, and Inception-V3). According to their results, Resnet-50 
performed the best result with an accuracy of 77.76% on 
the test dataset, which has 2683 chart images collected 
from Google. It showed that CNN outperformed the con-
ventional methods (k-nearest neighbors, NB, RF, and SVM) 
when classifying chart images in terms of their types. Tang 
et al. [9] proposed an approach to classify charts by com-
bining deep belief networks and deep convolutional net-
works. Their proposed approach achieved the accuracy of 
75.4% on a 5-class chart dataset (bar, flow, line, scatter, and 
pie chart). Based on these recent previous studies, in our 
study, we also used CNN as a deep learning method, since 
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it has been proved to be a successful method for recogniz-
ing and classifying chart and graph images.

As shown in Table 1, our work differs from the previous 
works in many respects. First, while many studies [1–9] 
have been focused on the classification of chart images 
by type (i.e. area, bar, line, pie), our study was conducted 
to classify line charts according to their trend (increas-
ing or decreasing) and functional (linear or exponential) 
properties. Second, in the literature, many studies [1–9] 
have been focused on multi-class classification, while a 
study [10] conducted the chart type classification as a 
multi-instance classification problem. Unlike these previ-
ous works, our paper presents an experimental study of 
multi-label classification (MLC) methods (LP and BR) and 
gives suggestions for MLC that are effective for automatic 
chart image interpretation applications.

In the literature, while a wide range of studies [1–11] on 
chart classification cover various types of charts (i.e. area, 
bar, map, line, pie), several studies only cover a single chart 
type such as only pie chart [12], line chart [13] or radar 
chart [14]. In the study [12], a region-based convolutional 
neural network was used to automatically determine the 
type of pie chart (2D or 3D pie chart) depicted in a given 
image. Takagi and Chen [13] focused on classifying broken 
lines in the charts as dotted lines or chain lines. Liu et al. 
[14] proposed a classification technique that expresses 
multi-dimensional data with radar chart.

Classifying chart patterns is a crucial task; hence it has 
been required to be used in many different areas, including 
manufacturing [15], industrial engineering [16], finance 
[17] and civil engineering [18]. Lesanya et al. [16] used 
the neural network technique to automatically classify 
control chart patterns as Downward trend, Upward trend, 
Downward shift, Upward shift, Cycle, and Systematic. Wan 
and Si [17] proposed a rule-based method to classify chart 
patterns in financial time series, such as “Triple Tops”, “Cup 
with Handle”, and “Head-and-Shoulders”. In [18], the charts 
representing the variation of Q index was used to classify 
the shale from “as good” to “very good” category.

The problem of understanding and interpreting charts 
has been addressed in various studies [19, 20]. However, 
instead of the classification task, they only used image 
processing (i.e. edge detection, segmentation, and fea-
ture extraction) and text recognition techniques [i.e. opti-
cal character recognition (OCR)]. Other similar studies [3, 
21] combined both textual information and classification 
output to capture the semantic meaning of the charts. 
Text components such as caption, axis title, legend, and 
data value are firstly located in the chart image and then 
recognized using OCR. Unlike these studies, we didn’t use 
textual information when interpreting a line chart, since 
the underlying information is not generally available as 
textual in many applications and domains. In this study, Ta
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we used machine learning techniques which have been 
proven to be useful in many fields ranging from industrial 
applications [16] to localization problems [22].

4 � Materials and methods

4.1 � Multi‑label classification

Standard single-label classification is the task of learn-
ing from a collection of instances that are assigned with 
exactly one label. If there are only two class labels, the 
learning problem is called as a binary classification prob-
lem, whereas, if there are more than two class labels, it 
is then called as a multi-class classification problem. Con-
versely, multi-label classification is a concept of learning 
from a collection of instances where each instance is asso-
ciated with several labels, meaning that an instance can 
belong simultaneously to one or multiple classes.

Let X = Rd be the d-dimensional input feature vector 
and Y = {0, 1}|L| be the target output vector with |L| possible 
labels such that L = {l1, l2, …, ls}. Giving a training dataset 
D = {(x1, y1), (x2, y2), …, (xn, yn)} that contains n instances, 
where each instance xi = [xi1, xi2, …, xid] is a d-dimensional 
vector and yi = [yi1, yi2, …, yi|L|] is the label vector of xi, where 
yij is 1 if xi has the j-th label and 0 otherwise. The goal is 
to build a multi-label classifier function f: X → Y that opti-
mizes evaluation metric(s) and can predict the label vec-
tors for unseen instances.

In the literature, many successful multi-label methods 
used the problem transformation approaches. Problem 
transformation approaches once convert the multi-label 
classification task into a multi-class classification task or 
several binary classification tasks; after that, apply conven-
tional classification algorithms to train them. Two of the 
most common methods for solving a multi-label classifi-
cation problem are label powerset and binary relevance 
methods. The label powerset method transforms a multi-
label dataset into a multi-class dataset, whereas binary 
relevance decomposes a multi-label dataset into several 
binary datasets (one for each label). In this study, we com-
pared these two methods to determine which method 
works better for line chart classification.

4.1.1 � Label powerset method

The label powerset (LP) approach transforms a multi-label 
dataset into a multi-class dataset by considering each 
combination of labels in the dataset as if it were a new 
single label [23]. In other words, the set of labels for each 
instance is combined as a single label, which is the con-
catenation of all the labels associated with this instance. 
After that, a multi-class classifier is constructed, and then 

an unseen observation is assigned to one of those com-
bined labels.

Assume that L+ is label combinations, including each 
possible combination of multiple labels in the training 
dataset as a new label, |L+| ≤ 2|L|. For the ith instance xi, we 
transform the original label vector yi = [yi1, yi2, …, yi|L|] into 
an L-dimensional vector ŷi. If the original label belongs to 
the class yk, the kth component of the new label combi-
nation is assigned to 1, otherwise 0. Each (x, y) pair in the 
multi-label training set is transformed into (x, ŷ), and so, 
the corresponding multi-class training dataset is repre-
sented as {(x1, ŷ1), …, (xi, ŷi), …, (xn, ŷn)}.

The number of combined labels in LP is upper bounded 
by 2|L|, where |L| is the number of labels. When the num-
ber of labels in the training dataset is high, and the data 
size is large, this may lead to computational complexity. 
Moreover, some combined labels can have a few training 
samples, so the resultant dataset can become imbalanced 
and that may negatively affect the classification perfor-
mance. One possible solution for this problem is to prune 
the infrequent combined labels; although this process may 
improve the accuracy, the dataset may lose some of its 
multi-label structure. Furthermore, the LP method is sensi-
tive to the label combinations in the dataset; this means 
that it only learns the label combinations that are present 
in the dataset, which is a kind of over-fitting problem. 
Therefore, if the new observation, which has a new label 
combination not present in the training set, will be classi-
fied; the model will never be able to predict this new com-
bination. These possible problems of LP are not a critical 
issue for our study since we have only two labels, the train-
ing set is balanced and has all possible label combinations.

4.1.2 � Binary relevance method

Binary relevance (BR) is one of the commonly used multi-
label classification approaches [23]. In the BR method, clas-
sifiers are trained based on one-against-all strategy; the 
multi-label problem is transformed into multiple binary 
classification problems equivalent to the number of labels. 
In other words, it deals with the multi-label classification 
problem by constructing one classifier for each class. After 
that, in the training phase, a single-label binary classifica-
tion method is utilized to solve each subtask. In the pre-
diction phase, each binary classifier estimates whether its 
class is relevant for a new unlabeled input observation 
or not, resulting in a set of relevant labels. Although the 
BR method is a straightforward and practical method, a 
common drawback of it is that it ignores the relationship 
between labels since each label is trained independently; 
however, it may not have importance in some multi-label 
learning problems.
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In the BR method, the L-label task is decomposed into L 
independent binary sub-tasks, where the k-th sub-task is 
expressed as, {(x1, y1k), …, (xi, yik), …, (xn, ynk)}. Hence, this 
method individually trains |L| binary classifiers denoted by 
C1, C2, …, C|L|. Each classifier Ci is responsible for predict-
ing the relevance of its corresponding label li∈L by a 0/1 
association such that Ci: X → {0, 1}, where i = 1, …, |L|. If an 
instance contains Lk, it is regarded as a positive instance 
“1”, otherwise as a negative instance”0”. Given an unseen 
observation, the binary predictions are combined to form 
a multi-label target. Hence, an unseen observation xp is 
assigned the prediction (C1 (xp), C2 (xp), …, C|L| (xp))T. The 
computational complexity of BR is linearly dependent on 
|L|.

In this study, two multi-label problem transformation 
methods (LP and BR) were used to determine the bet-
ter one for line chart classification. As shown in Table 2a, 
the class labels of line charts are organized in the form 
of trend (increasing or decreasing) and functional (lin-
ear or exponential) properties. Hence, each instance 
(line chart) is associated with multiple labels. Table 2b 
shows the tabular representation of the multi-class data-
set transformed by the LP method. An instance that is 
assigned with class labels l1 and l2 would receive a single 
combined label l12. For instance, if any data instance (line 
chart in this case) has both linear and increasing labels, 
it is considered as “linearly increasing”. The combination 
of two labels would receive four unique combined labels: 

L+ = {linearly increasing (l11), linearly decreasing (l01), expo-
nentially increasing (l10), and exponentially decreasing 
(l00)}. Table 2c shows the datasets generated by the BR 
method, one for trend label (increasing or not) and the 
other one for function label (linear or not).

4.2 � Image preprocessing

The main challenge in line chart classification is to deal 
with the wild variety of chart styles in terms of structure, 
context, and visual appearance of the charts. Structural 
variability of line charts may be illustrated by “single” and 
“multiple” series charts or 2D and 3D-line charts, where 
they differ dramatically by their structure, but they are 
generally sensed as line charts by the human eye. Context 
variability includes variability of line chart surroundings, 
such as axes, legends, text regions, and grids. Appearance 
variability refers to the variability of colors, fill effects, and 
shadings used for the line chart. For the diverse appear-
ance of line chart images, the following observations are 
generally true: there are text regions in the image; the 
background is sometimes complex; the line has lower con-
trast compared to other components in the image. Differ-
ent line chart images have different and specific features, 
which are not common for natural scenes. One solution 
is to determine some constraints on acceptable chart 
images; however, it is not the desired solution for many 
domains. In addition, the existing images often have low 

Table 2   (a) A tabular representation of a multi-label dataset with d features, n instances, and two labels. (b) The dataset transformed by the 
LP method, each combination of labels is translated into a new class. (c) The datasets generated by the BR method, one for each label

a Dataset transformed by the LP method
b Datasets generated by the BR method

Input features Labels Input features Label

F1 F2 … Fd L1 (Increasing) l2 (Linear) F1 F2 … Fd

(a) Multi-label dataset (b) Multi-class dataseta

x11 x12 … x1d 1 0 x11 x12 … x1d l10

x21 x22 … x2d 0 1 x21 x22 … x2d l01

x31 x32 … x3d 0 0 x31 x32 … x3d l00

… … … … … … … … … … …
xn1 xn2 … xnd 1 1 xn1 xn2 … xnd l11

Input features Label l1 (Increas-
ing)

Input features Label l2 
(Linear)

F1 F2 … Fd F1 F2 … Fd

(c) Binary datasetsb

x11 x12 … x1d 1 x11 x12 … x1d 0
x21 x22 … x2d 0 x21 x22 … x2d 1
x31 x32 … x3d 0 x31 x32 … x3d 0
… … … … … … … … … …
xn1 xn2 … xnd 1 xn1 xn2 … xnd 1
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resolution and degraded by noise and blur. Thus the prob-
lem of line chart image classification requires an advanced 
approach. To overcome these challenges, we used several 
preprocessing techniques as the first step of our approach.

In our approach, first, line chart images are converted 
to greyscale because the colors of lines do not affect its 
shape. Colored images carry redundant data and increase 
training time. In a greyscale image, each pixel of the image 
is stored as a single value instead of three, which is the 
case in RGB images.

In real life, line chart images can be of any size. How-
ever, the images in the dataset should be in a fixed size 
for training them on CNNs. Because of that, images in 
the training and test sets are resized to 120 × 120 pixels 
while preserving their aspect ratio. We determined this 
size value based on trial and error tests. Images with sizes 
larger than 120 × 120 pixels did not increase test accuracy 
and caused much longer training times since the input 
size was increased. Smaller sizes than that also reduced 
classification accuracies.

After resizing images in a fixed size, the Canny edge 
detection method is applied to each of them for extract-
ing characteristic features [24]. Canny edge detector algo-
rithm is used to retrieve useful information from images. It 

also reduces the size of image data by discarding redun-
dant information. Hence, CNN’s training process becomes 
faster and better because it gets fewer data to work on 
and process. In this study, we used the OpenCV library [25] 
for Canny edge detection. Figures 1 and 2 show example 
line charts and their structures before and after applying 
Canny edge detection.

4.3 � Convolutional neural network

Convolutional Neural Networks (CNNs) are a special type 
of deep neural networks and image classification is one of 
the most common applications of this method [26]. The 
CNNs have drawn attention both in the high classifica-
tion performance and in extracting information from the 
image.

Since images have large data size, giving them as an 
input to a deep neural network without extracting their 
distinctive features is not efficient. Convolution operations 
help to solve this problem by only feeding the neural net-
work with useful features of an image [27]. Convolutions 
provide filter operations that are used in image processing 
methods like edge detection or noise reduction. In CNNs, 
distinctive features of images are extracted through con-
volution operations and pooling layers. CNNs learn the 
relevant filter kernels (matrices) for extracting the most 
distinctive features of the given images. Since the line 
chart images may have some noise and distortions, we 
chose CNN as the best solution for the line chart classifica-
tion problem.

After convolution operation extracts the high-level fea-
tures of the image, an actual neural network is fed with 
this output. This layer also called as a fully-connected 
layer or dense layer, and it results in a classification pre-
diction. Since CNN extracted the useful features from the 
images, the fully-connected layer works with fewer data 
and achieves better accuracy results.Fig. 1   Canny edge detection applied on a linearly increasing line 

chart

Fig. 2   Canny edge detection 
applied on an exponentially 
increasing line chart
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4.4 � The proposed approach

Figure 3 illustrates the general structure of the proposed 
approach. In the first step, raw line chart images are pre-
processed by recoloring, resizing and Canny edge detec-
tion methods and then fed into CNN architecture. CNN 
selects only useful features from all available ones by 
the feature extraction process. After that, in the training 
phase, the learning algorithm builds a good model that 
map inputs to correct outputs. The training process may 
be repeated with different parameters until a desired 
classification accuracy level achieved. Once a model is 
constructed, then it is utilized to predict the labels of an 
unseen line chart image.

The proposed methodology yields to work well since it 
has various advantages. First, the Canny edge detection 
technique is used as a data preprocessing step. Canny 
edge detector algorithm retrieves useful information from 
images and reduces the size of the image with discarding 
redundant information (i.e. unnecessary lines and noises). 
Hence, the training process becomes faster and better, 
so it can be possible to get higher accuracies in earlier 
epochs. Second, unlike the simple single label classifiers, 
the proposed method deals with a multi-label classifica-
tion problem. Hence, it provides us a unified framework 
to collaboratively make several predictions. Third, the pro-
posed method is a CNN-based method; hence, it automati-
cally extracts information from images and has generally 
better performance on image classification, compared 

to the traditional classification methods such as decision 
tree, support vector machine, naive Bayes and k-nearest 
neighbors.

Chart image classification that has relied on simple 
features often fails when addressing the data that could 
include many varieties and less common line chart types. 
Therefore, in this study, we used CNN technique not only 
because it has achieved high classification performance 
in many image classification problems but also because 
it can be able to learn representations of images with-
out designing a specific feature extractor. We propose 
to use the CNN approach since it automates the feature 
extraction step as a first step. Motivated by advances in 
deep learning techniques, which have been designed to 
produce considerable results in the field of image clas-
sification, a new CNN architecture is proposed for line 
chart analysis. We designed a simpler version of previous 
successful CNN models like VGG Net [6], Resnet [8] and 
AlexNet [28]. Our model uses 2D convolution layers and 
max-pooling layers followed by dropouts in the feature 
extraction process. The layer structure of the proposed 
CNN model is given in Table 3.

Padding is used to maintain the input and output 
dimensions. Our model applies padding in the first con-
volution layer to reduce data size from (120, 120, 32) to 
(118, 118, 32). Also, in other 2D convolution pairs, the 
first one reduces the data size, while the second 2D con-
volution layer does not change the image size. The same 

Fig. 3   The general structure of the proposed approach
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padding fills the borders of images with zero values to 
prevent data loss when convolution operation applies.

Pooling layers in the convolution process are used for 
reducing the size of the images while keeping its distinc-
tive features. The pooling process helps to avoid overfit-
ting in CNNs by down-sampling the image data. If over-
fitting occurs, the resulting CNN works on training data 
well, but on test data poorly. We used the max-pooling 
method in our model as seen in Table 3.

The dropout method, which randomly drops some 
neurons in the network, prevents overfitting of CNNs 
and helps it to achieve higher test accuracies [29]. We 
used dropouts both after convolution operations and 
dense neuron layer. While dropout rates after max-pool-
ing layers were defined as 25%, the dropout rate of 50% 
was applied after the dense layer.

The loss method basically compares the correct class 
and predicted class to return a score. As a loss function, 
a sparse categorical cross-entropy method was used in 
this study. This method is very popular when performing 
a classification task.

The optimization method is also needed in CNN mod-
els, which minimizes loss value, and it is important for 
the actual learning task. In this study, we selected Adam 
optimizer, which is a type of gradient descent algorithm 
[30].

The rectified linear unit (ReLU) activation function is 
commonly used in CNN models to achieve successful 
results [28]. In this study, ReLU was used with both con-
volution and dense layers. While, for negative inputs, 
ReLU outputs zero; for positive inputs, it returns the 
same input value as an output. ReLU’s mathematical 
function is given in Eq. 1.

The dense (fully-connected) layer works as a multi-layer 
perceptron neural network. The output of the convolu-
tional layer is flattened and then it becomes the input of 
the dense layer. Flattening operation converts a multi-
dimensional data structure to a single-dimensional.

After the dense layer, softmax function [31] was used 
in this study, which is a useful and popular probability 
method and commonly used in classification tasks. Soft-
max function takes a real number value set and turns a 

(1)f (x) = max(0, x)

probability for each value. The output shape of the soft-
max layer should be the same as the number of classes, 
which is 4 in this study. Each class has a probability value 
between 0 and 1, and they all sum up to 1. The math-
ematical formulation of the softmax function is given 
in Eq. 2

where the function takes a vector of K real numbers as 
input and applies the exponential function to each ele-
ment zi of the input vector z and normalizes them by divid-
ing by the sum of all these exponentials.

The pseudo-code of the proposed approach is pre-
sented in Algorithm 1. First, training and test sets are 
taken from the data repository. After that, two data 
preprocessing techniques (resizing and Canny edge 
detection) are applied to these datasets. The rest of the 
algorithm is mainly divided into two main parts: the 
implementation of the label powerset method and the 
binary relevance method. Each part individually contains 
data building, training, and prediction phases.

(2)softmax
�

zi
�

=
ezi

∑K

j=1
e
zj

for i = 1, 2,… , K

Table 3   Proposed CNN model

Layer type Output shape Trainable parameters

Conv2D (120, 120, 32) 320
Conv2D (118, 118, 32) 9248
MaxPooling2D (59, 59, 32) 0
Dropout (25%) (59, 59, 32) 0
Conv2D (59, 59, 64) 18,496
Conv2D (57, 57, 64) 36,928
MaxPooling2D (28, 28, 64) 0
Dropout (25%) (28, 28, 64) 0
Conv2D (28, 28, 64) 36,928
Conv2D (26, 26, 64) 36,928
MaxPooling2D (13, 13, 64) 0
Dropout (25%) (13, 13, 64) 0
Flatten (10,816) 0
Dense (512) 5,538,304
Dropout (50%) (512) 0
Dense (Softmax) (4) 2052
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5 � Experimental studies

In this study, different ways of addressing multi-label line 
chart classification problem are compared: label-powerset 
(LP) and binary relevance (BR).

5.1 � Dataset description

In this study, the proposed model was used to discriminate 
between two labeled classes (trend and function), each of 
which has two features “increasing” and “decreasing”, and 
“linear” and “exponential”, respectively. Whereas, in the BR 
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method, separate datasets were generated for each label; 
in the LP method, the labels were transformed as; “linearly 
increasing”, “linearly decreasing”, “exponentially increasing” 
and “exponentially decreasing”. The basic shapes of these 
line chart types are shown in Fig. 4.

A linear chart has a straight-line shape in its graphical 
representation. It increases or decreases with a constant 
rate of change. A linear function forms a linear chart if 
visualized, and the function has a mathematical form as 
indicated in Eq. 3. If the constant a is positive, the function 
is named as “linearly increasing”; whenever a has a nega-
tive value, the function is called as “linearly decreasing”.

An exponential chart is structured as nonlinear and has 
curved lines. It has a mathematical form as indicated in 
Eq. 4. If the constant b is greater than 1, the function is 
labeled as “exponentially increasing”; whenever b has a 
value between 0 and 1, the function is called as “exponen-
tially decreasing”.

(3)f (x) = ax + b

(4)f (x) = abx

The training dataset should have a wide variety of line 
charts with different visual features, so the trained model 
can be able to make successful predictions on real-life 
images. Since a special image corpus is not available for 
this specific purpose, a computer-generated training 
dataset was used in this study. Here, we used Matplotlib 
plotting library in Python in order to generate the images 
in the training set. The markers and line styles were deter-
mined randomly by using a large number of different visu-
alization methods available in Matplotlib. The widths of 
the lines were chosen randomly within a specified range. 
The other graphic features such as legend, grid style, value 
intervals in x and y axes were also chosen randomly.

With our plot generator Python script, we generated 
400 line chart images for each class which makes 1600 
training image samples in total. Since it contains an equal 
number of samples from each class, the training dataset 
is balanced. Several sample images from the generated 
training dataset are shown in Fig. 5.

Test data used in this work was collected from image 
search engines on the Internet, mainly from Google. In 
total, we gathered 320 test images, containing 80 images 
from each line chart class. The only constraint for selecting 

Fig. 4   Basic shapes of line 
charts
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these test images is that the image should contain a single 
line series with a coordinate system. However, they can be 
in any size or they might have different line styles. Several 
sample images from the test dataset are given in Fig. 6. An 
additional validation set was not used on this work since 
such an approach would require a large dataset to be 
split further to generate a validation set. This would either 
result in a smaller test set or an even smaller training set.

5.2 � Experimental settings

In this study, both LP and BR multi-label classification 
approaches were tested with our CNN model on the same 
dataset. From here onwards, the abbreviation of the multi-
label method followed by the abbreviation of the learning 
technique is used to refer to the related approach. For exam-
ple, LP-CNN refers to the LP method with the learning tech-
nique CNN. Each multi-label approach and learning tech-
nique is treated as an independent classifier. In other words, 
LP-CNN and BR-CNN are different multi-label classifiers.

The LP-CNN and BR-CNN methods were evaluated by 
means of line chart classification in terms of classification 
performance. These methods were explored and compared 
to each other. When evaluating the classification perfor-
mance of the methods, we considered the most commonly 
used metrics such as train and test accuracies, precision, 
recall, and F1-Score. Accuracy means how well the model 
predicts given input data. While the train accuracy metric is 

the accuracy of the CNN model over the training set, the test 
accuracy metric is calculated on the test set. Train loss and 
test loss values are of loss function outputs over the training 
and test sets. Precision is the proportion of correct results in 
all the returned results. Recall, also called sensitivity, is the 
proportion of the correct predictions to the total number of 
correct results that could have been returned. F1-Score is the 
harmonic mean of precision and recall. All formulas of these 
metrics are given in the equations Eqs. 5–8, respectively.

The proposed CNN model was implemented with 
Python programming language using Keras and Tensor-
Flow frameworks. The Keras is a deep learning and neu-
ral network library that runs on top of the TensorFlow 
machine learning library. Keras also supports prototyping 
CNNs. In all experiments, a basic personal computer was 
used for training the CNNs and obtaining the performance 
results. This computer uses Windows 10 64-bit operating 

(5)Accuracy =
true positives+true negatives

total data

(6)Precision =
true positives

true positives+false positives

(7)Recall =
true positives

true positives+false negatives

(8)F1 Score = 2 ×
precision×recall

precision+recall

Fig. 5   Sample images from the training set

Fig. 6   Sample images from the test set
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system with Intel Core i7-8750H 2.20 GHz processor and 
16 GB of RAM.

Since the quality of a classification model critically 
depends on its hyperparameter configuration, we deter-
mined the optimum values for input parameters. The 
learning rate was set to 0.001 in our experiments. The 
batch size was the same as the number of training sam-
ples. Rather than limiting the training phase to a specific 
number of epochs, the training was set to expire when 
validation checks were reached. In order to prevent from 
overfitting problem, the validation checks were triggered 
according to the increases on the train and test accuracies 
and the decreases on the train and test error rates. Zero-
padding was preferred over other alternative methods 
such as mirror-padding and linear-padding since these 
methods sometimes cause spurious effects in the matri-
ces. Among alternative pooling techniques such as aver-
age or median pooling, we preferred max-pooling, since 
this improves convergence speed and also increases gen-
eralization due to position invariance over larger regions. 
While dropout rates after max-pooling layers were defined 
as 25%, the dropout rate of 50% was applied after the 
dense layer.

5.3 � Experimental results

This paper introduces an extensive comparison of the 
multi-label classification approaches for line chart 
categorization.

5.3.1 � Results of the LP‑CNN method

The training process of the LP-CNN method across four 
combined labels reached its best test accuracy on the 
45th epoch with a value of 93.75% as shown in Table 4. An 
epoch is defined as one training pass using all the training 
samples in the dataset. Thus, one epoch corresponds to 
all training samples being fed to the CNN. Training is per-
formed on an epoch-by-epoch basis until the user-defined 
stopping criteria like the number of steps or targeted error 
minimization are satisfied. With respect to experimental 
results given in Table 4, it is possible to say that both test 
accuracy and train accuracy results reached very successful 
percentage values (> 93%).

Figure 7 shows the train and test accuracy and loss val-
ues obtained at the end of each epoch. Hence, the effect of 
epoch numbers is analyzed distinctly at each step. In this 
way, it can be easily determined the optimal epoch value 
by observing both train and test accuracies. The higher 
number of epochs usually results in high classification 
performance; when the accuracy reaches to its highest 
value, it remains the same or may drop due to overfitting. 

The generalization performance of the model increases 
with increasing epoch until remains almost constant, as 
was generally noted in the previous studies. Train loss con-
verges to zero as the number of epochs increases. After 
around 9 epochs, the training accuracy remains almost 
constant at about 99%, and training lost is very closely 
fixed to 0 value. It is observed from the experiments that 
the LP-CNN method is more easily stalled at flat regions 
during training. Train accuracy always shows better per-
formance than the test accuracy, however, the two metrics 
usually follow each other closely. Initially, the test accuracy 
is continuously increased; after 5 epochs it achieves high 
values (about 90%) and then shows small fluctuations until 
it reaches the best accuracy of 93.75% at the 45th epoch. 
The key observation is the jump in the test losses, and a 
drop in the corresponding test accuracies. As the epoch 
progresses, the gap between the train loss and test loss 
sometimes increases, however, sometimes tends to be 
close. This instability is probably related to the variety of 
the structure, context, and visual appearance of the real-
world line charts in the test set. For example, it may be 
relevant to the varieties of line chart surroundings such 
as legends, axes, text regions, and grids, or the variety of 
colors, fill effects, and shadings used for the line chart. The 
diversity of line chart images is sometimes observed when 
there are text regions in the image or background is com-
plex or the line has a lower contrast compared to other 
components in the image.

The confusion matrix given in Table 5 shows the predic-
tion performance of the LP-CNN method on the test set for 
each class individually. A confusion matrix has two-dimen-
sions, the row dimension represents the actual classes of 
the objects, whereas the column dimension represents 
the classifier predicts. In the confusion matrix, the cell Mij 
represents the number of examples actually belonging to 
class Ci, but that are classified as class Cj. It is observed from 
the confusion matrix that the model generally had no diffi-
culty in identifying all classes. For instance, 76 of 80 “expo-
nentially decreasing” line charts were predicted correctly; 
however, only 4 of them were labeled as “linearly increas-
ing” by the constructed model, which are false predic-
tions. According to the confusion matrix, three instances 
were classified incorrectly as an “exponentially increasing”, 
instead of “linearly decreasing”. It can be deduced from the 
confusion matrix that the best performance on the test set 
was achieved on “exponentially increasing” class detection 

Table 4   LP-CNN method classification performance results

Epoch Train accuracy Train loss Test accuracy Test loss

LP-CNN method
45 0.998750 0.008740 0.937500 0.466359
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with accuracy 98.75%, where the classifier misclassified 
only one case for this class.

For assessing the LP-CNN method in more detail, Fig. 8 
shows the precision, recall and F1-Score values obtained 
for each class on the test set. Higher numbers in this figure 
mean the LP-CNN method is more successful in the classifi-
cation task for the corresponding class label. While the pre-
cision values are ranging from 0.8902 to 0.9863, the recall 
values are changing between 0.9 and 0.9875. Although 
both of them are very promising results with very high 
values; the recall scores are generally higher (so better) 
than the precision scores. For instance, the precision value 
for the “linearly increasing” class label is 0.8902 as a result 
of 73/82, where the value 73 is the correct prediction 
score for this class and 82 is the total count of predictions 

labeled as “linearly increasing”. Likewise, the recall score 
for the same class is 0.9125 as a result of 73/80, where the 
values 73 and 80 are the number correct predictions and 
the number of instances for this class respectively. Among 
all class labels, LP-CNN achieved the best precision score 
(0.9863) on the “linearly decreasing” class label. When 
F1-Score value is close to 1, this means that the predic-
tion result is close to ground truth. From this perspective, 
it is possible to say that the model built by LP-CNN has 
good generalization ability to variabilities in the input line 
charts, so it can be effectively used to predict them well.

In addition to hold-out validation, the fivefold cross-
validation technique was also performed to evaluate the 
performance of the LP-CNN method. In this technique, the 
dataset is divided into five disjoint subsets of almost equal 

Fig. 7   LP-CNN learning process
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Table 5   Confusion matrix of 
the LP-CNN model

Class Predicted classes

Linearly increasing Linearly decreasing Exponentially 
increasing

Expo-
nentially 
decreasing

Actual classes
Linearly increasing 73 (91.25%) 0 0 7
Linearly decreasing 5 72 (90.00%) 3 0
Exponentially increasing 0 1 79 (98.75%) 0
Exponentially decreasing 4 0 0 76 (95.00%)

Fig. 8   Precision, recall and 
F1-Score values obtained from 
the LP-CNN model on the test 
set
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size. In each fold, a subset is kept away, while the remain-
ing subsets are used for training. The classifiers achieved 
the following accuracies at each fold respectively; 91.25% 
on 60th epoch, 90.62% on 90th epoch, 86.25% on 81st 
epoch, 90.62% on 60th epoch, and 88.44% on 49th epoch. 
The final result can be reported as 89.44%, which is the 
average of five runs.

5.3.2 � Results of the BR‑CNN method

In this experiment, the binary relevance multi-label clas-
sification approach was tested with the CNN model on 
the same test dataset. The BR-CNN method has two main 
steps: the first step determines whether the function type 
of the line chart is linear or exponential, and the second 
step predicts whether the values in the line chart are 
increasing or decreasing (trend). Hence, two classifiers, 
named as function classifier and trend classifier, are trained 
and then their outcomes are combined together to obtain 
the final prediction.

In the first part of the BR-CNN method, the function 
classifier was built by considering only one label attribute 
of the multi-label data as the target attribute. The linear 
line charts were labeled as 1, while others were assigned 
to 0. The constructed “function classifier” was tested on 
the real-world line chart images. As shown in Table 6, the 
trained model reached its best test accuracy (87.81%) on 
the test set at the 120th epoch.

In the second part of the BR-CNN method, the trend 
classifier was built by considering only related label attrib-
ute as the target. The line charts with increasing trend 
were labeled as 1, while others were assigned to 0. The 
constructed “trend classifier” was tested on the real-world 
line chart images. As shown in Table 7, the trained model 
reached its best test accuracy (98.13%) on the test set after 
19 epochs.

The average test accuracy score of two classifiers 
(function classifier and trend classifier) was calculated as 
92.97%, which is the final test accuracy output of the BR-
CNN method.

Figures 9 and 10 show the train and test accuracy and 
loss values obtained at the end of each epoch during the 
learning processes of function and trend classifiers, respec-
tively. Hence, the effect of epoch numbers is analyzed dis-
tinctly at each step. In this way, it can be easily determined 

the optimal epoch value by observing both train and test 
accuracies. Train loss converges to zero as the number of 
epochs increases. The generalization performances of 
the models improve with increasing epoch until remains 
almost constant. It is observed from the experiments that 
the BR-CNN method is more easily stalled at flat regions 
during the training of trend classifier. Train accuracy always 
shows a better performance than the test accuracy, how-
ever, the two metrics usually follow each other closely. 
Initially, the test accuracies are continuously increased; 
after a few epochs, they achieve high values and then 
show small fluctuations until they reach to their best 
accuracies (98.13% for the trend classifier and 87.81% for 
the function classifier). The key observation is the jump in 
the test losses. As the epoch progresses, the gap between 
the train loss and test loss sometimes increases; however, 
sometimes tends to be close. This instability is probably 
related to the variety of the structure, context, and visual 
appearance of the real-world line charts in the test set. For 
example, it may be relevant to the varieties of line chart 
surroundings such as legends, axes, text regions, and grids, 
or the variety of colors, fill effects, and shadings used for 
the line chart.

Since the BR-CNN method builds a separate classifier for 
each class label, Table 8 shows two confusion matrices, the 
first one for function classifier (linear or exponential) and 
the second one for trend classifier (increasing or decreas-
ing). It is observed from the confusion matrices that the 
models generally had no difficulty in identifying all classes. 
For instance, 96.25% of increasing-trend line charts were 
predicted correctly; however, only 6 out of 160 charts were 
classified incorrectly. It can be deduced from the confusion 
matrices that the trend classifier has better performance 
on the test set, compared to the function classifier.

Figure 11 shows the precision, recall and F1-score val-
ues obtained by the BR-CNN method for each class on 
the test set. Higher numbers in this figure mean the BR-
CNN method is more successful in the classification task 
for the corresponding class label. While the precision val-
ues are ranging from 0.9088 to 0.9530, the recall values 
are changing between 0.9031 and 0.9562. Although both 
of them are very promising results with very high values; 
the recall scores are higher (so better) than the precision 
scores for linear charts; while the opposite case is true for 
exponential charts. Among all class labels, the BR-CNN 

Table 6   Function (linear or exponential) classifier performance 
results

Epoch Train accuracy Train loss Test accuracy Test loss

BR-CNN method
120 1.000000 0.000015 0.878125 1.390342

Table 7   Trend (increasing or decreasing) classifier performance 
results

Epoch Train accuracy Train loss Test accuracy Test loss

BR-CNN method
19 1.000000 0.000384 0.981250 0.874668
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method achieved the best score (0.9562) on the “expo-
nentially increasing” class label. When F1-Score value is 
close to 1, this means that the prediction result is close 
to ground truth. From this perspective, it is possible to 
say that the model built by BR-CNN has good generaliza-
tion ability (> 0.92) to variabilities in the input line charts, 
so it can be effectively used to predict them well.

5.3.3 � Comparison of LP‑CNN and BR‑CNN Methods

Figure  12 shows the comparison of the LP-CNN and 
BR-CNN methods in terms of classification accuracy. 

Regarding the test accuracy results, LP-CNN (93.75%) 
slightly outperformed BR-CNN (92.97%) as illustrated in 
Fig. 12. This would suggest that the model built by LP-CNN 
has a better chance of being generalized beyond the train-
ing data. However, two methods can be alternatively used 
since the difference in the accuracy is small.

Furthermore, the LP-CNN and BR-CNN models were 
compared with the AlexNet [28] which is one of the most 
popular and efficient architectures that have been widely 
used to address problems in image classification. Accord-
ing to the results given in Fig. 12, it can be concluded 
that both LP-CNN and BR-CNN models outperformed 

Fig. 9   BR-CNN learning 
process of function classifier 
(linear or exponential)
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Fig. 10   BR-CNN learning pro-
cess of trend classifier (increas-
ing or decreasing)
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Table 8   Confusion matrices of the BR-CNN models

Class Predicted classes

Exponential Linear

Actual classes
Exponential 135 (84.38%) 25
Linear 14 146 (91.25%)

Class Predicted classes

Increasing Decreasing

Actual classes
Increasing 154 (96.25%) 6
Decreasing 0 160 (100.00%)
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the AlexNet model in terms of classification accuracy. The 
results also show that the LP-CNN method approximately 
increased accuracy by 10% with respect to AlexNet in the 
experiment. While the LP-CNN method reached its best 
test accuracy (93.75%) on the 45th epoch, the AlexNet 
achieves its best performance (84.37%) on the 80th epoch. 
Thus, the experimental results indicate that the classifier 
built by the LP-CNN method can classify line chart images 
more effectively according to their trend and functional 
properties, compared to classifiers constructed by BR-CNN 
and AlexNet.

In addition to classification accuracy, we also compared 
the LP-CNN, BR-CNN, and AlexNet models in terms of 
F1-Score because of aggregating recall and precision into 
a single measure. Table 9 shows the F1-Scores obtained 
for each model and each multi-label class individually. In 
all cases, the LP-CNN and BR-CNN models provide better 
classification accuracy than the AlexNet model. On aver-
age, the LP-CNN model has the best performance with the 
93.76% F1-Score value.

Although the LP-CNN method has higher F1-Scores, the 
obtained results should be validated by the statistical tests 
to ensure the significance of differences among the methods 
on the datasets. Here, the null hypothesis (H0) for the statisti-
cal test is that there are no performance differences among 
the methods on the datasets; otherwise, the alternative 
hypothesis (H1) is present when there are performance dif-
ferences among the methods. The p value is defined as the 
probability under the null hypothesis of obtaining results 
and with a small p value (p value <= 0.05), we reject the null 
hypothesis (H0), so the relationship between the results is 

significantly different. For verification, we used three well-
known non-parametric statistical tests by multiple group 
comparisons (all vs. all): Friedman Test [32], Friedman aligned 
ranks test [33] and Quade Test [34]. The p values obtained 
from these statistical tests are 0.00659, 0.04979 and 0.04930, 
respectively. Thereby, it is possible to say that the results are 
statistically significant since all p values are smaller than the 
significance level (0.05). Thus, it can be concluded that the 
differences between the performances of the examined 
methods are unlikely to occur by chance.

It should be noted that the classification accuracy is not 
the only issue in constructing a prediction model. The com-
putational complexity should also be taken into considera-
tion. The computational time of a multi-label problem can 
be evaluated in terms of the number of epochs. While the LP-
CNN method reached the highest test accuracy value on the 
45th epoch, the BR-CNN method achieved its best results 
after the 120 epochs. Increasing the epoch number will likely 
improve the classification accuracy of the model, but also 
increases the cost of time. Moreover, the consideration of 

Fig. 11   Precision, recall and 
F1-Score values obtained from 
the BR-CNN model on the test 
set
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Fig. 12   Comparison of LP-CNN, 
BR-CNN, and AlexNet models 
in terms of classification 
accuracy
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Table 9   The F1-Scores of the CNN models

Dataset F1-Scores (%)

LP-CNN BR-CNN AlexNet

Linearly increasing 90.12 93.15 73.85
Linearly decreasing 94.12 93.19 90.67
Exponentially increasing 97.53 92.73 81.28
Exponentially decreasing 93.25 92.77 90.17
Avg. 93.76 92.96 83.99
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a large number of epochs usually involves the necessity to 
increase the required computing resources.

When the number of labels in the training set is low 
such as two, like in this study, the LP-CNN method can 
be usually run faster than the BR-CNN method. The rea-
son behind this is that LP-CNN builds only one classifier, 
instead of individual classifiers for each class like BR-CNN. 
It deals with the multi-label problem as a multi-class prob-
lem, by concatenating the multiple labels that present in 
the dataset as one combined-label when constructing 
the classification model. Meanwhile, the BR-CNN method 
is slightly slower, since it should construct a collection of 
binary classifiers (one for each label) to deal with a multi-
label problem. Increasing the number of training pro-
cess increases the execution time of the method. How-
ever, this advantage of the LP-CNN method can be lost 
when the number of labels |L| in the training set is high, 
since, in this case, the number of the combined labels is 
upper bounded by 2|L| and this may lead to computational 
complexity.

It can be deduced from the experiments that higher 
classification rates can be achieved with the LP-CNN 
method for the line chart classification problem, rather 
than the BR-CNN method. The reason behind this is that 
the BR-CNN method ignores the relation between labels 
since each label is trained independently. However, the 
achievement of LP-CNN over BR-CNN can be changed 
depending on many factors, such as the number of labels, 
the application domain, and the structure underlying the 
training set.

6 � Conclusion and future works

As an effective information transmitting way, line charts 
are widely used in many different sources (i.e. books, 
research papers, reports, newspapers) to visualize math-
ematical functions, to represent statistics datum and to 
gain a better understanding of changes. Line charts can 
provide additional information, may not be mentioned in 
the text, to allow readers to make their own inferences. 
However, the information given in line charts cannot 
automatically interpretable by the machines since they 
are generally in raster image format. Therefore, an intel-
ligent model should be developed to be able to automati-
cally classify and interpret insights presented in line chart 
images. Based on this motivation, in this study, we funda-
mentally focus on line chart classification which is formed 
as a multi-label classification task. Multi-label classification 
is concerned with a collection of training samples where 
each sample is assigned with several labels. In this study, 
the class labels are organized in the form of trend property 
(increasing or decreasing) and functional property (linear 

or exponential). We selected these properties because an 
essential stage in line chart image interpretation is to iden-
tify the trend and functional properties. However, classify-
ing line chart images is a difficult task itself, due to the wild 
variety of chart styles.

In this paper, we propose a convolutional neural net-
work (CNN) architecture to build a multi-label classifier 
that categorizes line chart images according to their char-
acteristics. As a data preprocessing step, the Canny edge 
detection method was applied to decrease the training 
time and prevent the overfitting of the learning process. 
In addition, this paper presents the comparison of two 
multi-label classification approaches for line chart cat-
egorization: label powerset (LP) and binary relevance (BR) 
approaches.

In the experimental studies, the LP-CNN and BR-CNN 
methods were compared in terms of many different per-
formance evaluation metrics such as accuracy, precision, 
recall, and F1-Score. While the training set consists of com-
puter-generated line chart images, the benchmark test 
set is a collection of real-world line chart images, mainly 
obtained via Google image search. Both training and test 
sets are exactly balanced, so we have the same number of 
line chart images for each class. The experimental stud-
ies showed that the proposed LP-CNN model achieved 
93.75% accuracy on the test set, which contains real-
world line chart images. Hence, the constructed model 
can be effectively employed for classifying multi-labeled 
line chart images based on their characteristics with high 
accuracies.

In the future, more effort may be put to handle more 
complex line charts such as 3D charts and multiple series 
charts. In addition to linear and exponential shaped line 
charts, other different forms may be added, i.e. sinusoidal 
shaped charts. Line charts with changing trends, for exam-
ple, a linear chart starting with an increase followed by a 
decrease, can also be inspected. In addition to LP and BR, 
other existing multi-label classification approaches such 
as classifier chains can be applied to extend the work. Fur-
thermore, more attention can be given to the data pre-
processing step, such as employing feature selection and 
feature weighting strategy.
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