
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

Research Article

Multi‑label classification of line chart images using convolutional
neural networks

Cem Kosemen1  · Derya Birant2 

Received: 15 February 2020 / Accepted: 11 June 2020 / Published online: 19 June 2020
© Springer Nature Switzerland AG 2020

Abstract
In this paper, we propose a new convolutional neural network (CNN) architecture to build a multi-label classifier that
categorizes line chart images according to their characteristics. The class labels are organized in the form of trend prop-
erty (increasing or decreasing) and functional property (linear or exponential). In the proposed method, the Canny edge
detection technique is applied as a data preprocessing step to increase both the classification accuracy and training
speed. In addition, two different multi-label solution approaches are compared: label powerset (LP) and binary relevance
(BR) methods. The experimental studies show that the proposed LP-CNN model achieves 93.75% accuracy, while the
BR-CNN model reaches 92.97% accuracy on the test set, which contains real-world line chart images. The aim of this
study is to build an efficient classifier that can be used for many purposes, such as automatically captioning the chart
images, providing recommendations, redesigning charts, organizing a collection of chart images and developing better
search engines.

Keywords  Line charts · Image classification · Multi-label classification · Convolutional neural networks · Deep learning ·
Machine learning

1  Introduction

Line charts are popular and preferable tools in practice
to represent useful numerical data in documents due to
their many advantages over textual representations such
as better representing ideas, perceivable within a short
time and staying for a long time in memory. As just like
the old saying “a picture is worth a thousand words”, they
are extremely rich and valuable sources of information.
Line charts provide an efficient way to monitor the pro-
gress, such that data can be examined in terms of descrip-
tive scales (high, medium, low), fluctuation (the variation
of the data points) and trend (increasing or decreasing).
These charts have been used in a wide range of areas to
visualize mathematical functions in a coordinate system,
to overview statistics and to give a quick understanding

of changes in the variables. Hence, line charts are fre-
quently embedded objects in many different types of
digital sources such as web pages, books, articles, reports,
research papers, newspapers, magazines, blog posts, and
presentation slides.

Most of the line charts are currently created to be
human-understandable and they are not originally
machine-readable since they are generally in raster image
format. However, during the past decades, there is an
increasing need in many applications for the machine’s
ability to classify and interpret insights presented in line
chart images automatically. When the underlying informa-
tion is not available as textual, it is necessary to extract the
knowledge from a line chart image to utilize this knowl-
edge for further process. The main challenge when deal-
ing with classifying line charts automatically is the variant

 *  Derya Birant, derya@cs.deu.edu.tr; Cem Kosemen, cem.kosemen@bakircay.edu.tr | 1Department of Computer Engineering, Izmir
Bakircay University, Izmir, Turkey. 2Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-3055-y&domain=pdf
http://orcid.org/0000-0002-5410-9672
http://orcid.org/0000-0003-3138-0432

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

visual appearance and structure of the images. Therefore,
it is significantly difficult for machines to classify the line
chart according to their characteristics automatically and
understand the encoded information accurately. The field
of machine learning addresses this problem by utilizing
deep learning methods to extract knowledge from graphic
images. Therefore, in this study, we used a convolutional
neural network (CNN) method as a deep learning technique
to classify line charts to provide valuable knowledge. This
knowledge then will help in automatically captioning/
tagging the chart images, semantic description of the line
chart, providing recommendations, redesigning charts,
organizing a collection of chart images and developing
better search engines.

Since line charts have various different types, they can
be classified from different points of view such as accord-
ing to their periods, shapes or growth rates. In this study,
we focus on the classification of line charts according to
their trend properties (increasing or decreasing) and func-
tional properties (linear or exponential). Since more than
one class label will be assigned to a single line chart at
the same time, this task is a multi-label classification prob-
lem. The case in which one category is assigned to each
instance is called classification, while multi-label classifica-
tion (MLC) is the case when many categories are simulta-
neously assigned to the same instance. In our MLC task, a
CNN model is first built from labeled line chart images in
the training set and then an unseen line chart image can
be correctly categorized according to the model that best
fits it.

The novelties and main contributions of this paper can
be listed as follows. (1) It is the first study that classifies line
chart images based on their trend (increasing or decreas-
ing) and functional (linear or exponential) properties using
the CNN method. (2) Previous researches on chart clas-
sification are primarily based on single-label classifica-
tion, while multi-label classification on line charts is not
well studied. (3) As a data preprocessing step, this paper
proposes the application of the Canny edge detection
method to increase the classification performance. (4)
We also compared two different multi-label classification
approaches, called label powerset (LP) and binary relevance
(BR), with CNN on the task of line chart classification for
the first time. The experimental studies showed that the
proposed LP-CNN model achieved 93.75% accuracy on the
test set, which contains real-world line chart images.

The rest of the paper is organized as follows. Section 2
briefly states the motivation behind this work, in other
words, the benefits of this study. Section 3 explains the
previous studies about chart classification. Section 4
describes the technical details about the proposed CNN
model, data preprocessing method and multi-label clas-
sification approaches that were compared in this study.

Section 5 describes the dataset and presents the perfor-
mance results of the proposed CNN model for each multi-
label classification method, named LP-CNN and BR-CNN.
Finally, the conclusions and possible future works are dis-
cussed in Sect. 6.

2 � Motivation

This study focuses on building an intelligent model that
can learn visual and graphical features directly from line
chart images and is able to automatically predict multi-
label classes of line charts. The motivation behind this
work (the benefits of this study) can be briefly stated as
follows:

•	 The line chart classification model can be used to auto-
matically captioning and tagging the chart images.

•	 Line chart classification can be an assistant to a recom-
mendation engine. To provide a recommendation for
users, it is first important to understand the pattern in
the line chart image. Recommendation strategies can
be effectively given by considering the information
extracted from the chart image. Patterns recognized
from charts can assist the recommendation engine in
presenting an appropriate choice for users.

•	 Line charts provide a visual assessment of the relation-
ship between two or more variables. However, they
cannot be noticed by visually impaired users since
they are in visual picture form. Hence, all people with
visual impairments have difficulties in information
access. They can use screen and document readers for
the textual documents; however, these readers don’t
interpret the charts, only read the caption commonly
given under the chart itself. The text below the line
chart may not enough for the visually impaired users
to imagine what the visualization actually represents.
Our method can help people with visual impairments
to understand the information given in the line chart.
Hereafter, line chart images will be understood by the
visually impaired.

•	 Nowadays, major search engines involve images in
their search results. However, indexed content for line
charts principally relies on the textual metadata, rather
than the content of the chart image. The metadata
generally doesn’t include enough information about
the chart it represents, hence the search engines may
not find many useful results from a user query. Search
engines may overlook many useful query results if they
don’t consider the actual information represented in
these charts during the query process. Thence, enrich-
ing the indexing content for line chart images provides
an additional dimension to search improvement.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

•	 Information extracted from the line charts by our
method can help in chart redesigning such as ignor-
ing some unnecessary primitives (i.e. grid lines). Hence
it can assist to improve the chart for more accurate per-
ception.

•	 This study provides a solution for line charts that need
to be readable and interpretable by computers. For
example, it is possible to interpret a line graph even if
for the year for which the data was not available.

•	 There is an increasing demand for intelligent document
understanding, where chart interpretation is an impor-
tant issue since line charts are frequently embedded
objects in the documents. Line charts may contain sig-
nificant information that is not mentioned in the text.
This study focuses on predicting the structure of line
charts, which is an essential stage of chart interpreta-
tion.

•	 The accuracy of text mining algorithms can be
improved by associating graphical and textual infor-
mation. For this purpose, understanding of a line chart
image can be achieved by classifying its graphical
information on both semantic and logical levels. Our
approach can help to automatically comprehend the
knowledge within a text document for text mining
studies.

•	 Chart recognition is an area of research and as impor-
tant as text recognition to understand the information
within the document automatically. Our study provides
transforming its visual contents into computer under-
standable values. It allows us to capture the meaning
carried by the line chart image in a suitable way.

In this study, an intelligent model was developed to be
able to automatically classify and interpret insights pre-
sented in line chart images. Briefly, such a classification
would be useful for many purposes, such as automatically
captioning/tagging the chart images, semantic descrip-
tion of the line chart, providing recommendations, rede-
signing charts, organizing a collection of chart images and
developing better search engines.

3 � Related works

Although textual information is still the main source
of data, there has been a growing trend of introducing
chart figures to provide information. Charts are widely
used to present a huge amount of data, emphasize key
points presented in the text, and illustrate trends or
changes. An average business computer user generates
tens of charts and plots each week [1], it means that a
very huge amount of potentially useful chart images are
available on information sources. Though it is possible

to interpret information from a chart representation
manually by humans, it may become impractical since
this rapidly increasing availability of chart images. There-
fore, automated methods based on computer devices
(computer-based processing) are required to extract the
information present in a chart image.

The previous researches on chart classification pri-
marily focus on identifying different types of charts
(i.e. bar, pie, line, radar). Mishchenko and Vassilieva [1]
compared many different machine learning techniques
for the classification of images by chart type, including
naive Bayes (NB), J48 decision tree (DT), support vector
machine (SVM), random forest (RF) and neural network.
Prasad et al. [2] used SVM and image processing tech-
niques for classifying chart images based on the spatial
relationships and shapes of their primitives. They consid-
ered 5 chart categories: bar-chart, curve-plot, pie-chart,
surface-plot, and scatter-plot. They tested their approach
on 653 images and achieved 84.23% classification accu-
racy. Savva et al. [3] also used SVM to classify 10 differ-
ent types of chart images: area graph, bar chart, curve
plot, map, pareto chart, pie chart, radar plot, scatter plot,
tables, and Venn diagram. Their work, named ReVision,
achieved 80% accuracy on average for multi-class clas-
sification on a 2601 image corpus. Instead of SVM, Jung
et al. [4] developed a system, named ChartSense, which
used a deep learning technique to improve the accuracy
rate of ReVision when classifying 10 different types of
chart types.

Recently, the CNN technique to classify chart images
has attracted increasing attention from researchers [5–9].
Amara et al. [5] presented a CNN architecture for classi-
fying 11 different chart types and achieved 89.5% accu-
racy over 3377 images. Bajic et al. [6] used the VGG (Visual
Geometry Group) model, which is one of the well-known
CNN architectures, and achieved 81.67% accuracy for 10
chart categories on 541 test images. Another work [7]
used the CNN technique to predict what type of chart a
given image is representing (i.e. area, bar, line, pareto, pie
or radar). Chagas et al. [8] also classified charts by their
types using different CNN architectures (Resnet-50, VGG-
19, and Inception-V3). According to their results, Resnet-50
performed the best result with an accuracy of 77.76% on
the test dataset, which has 2683 chart images collected
from Google. It showed that CNN outperformed the con-
ventional methods (k-nearest neighbors, NB, RF, and SVM)
when classifying chart images in terms of their types. Tang
et al. [9] proposed an approach to classify charts by com-
bining deep belief networks and deep convolutional net-
works. Their proposed approach achieved the accuracy of
75.4% on a 5-class chart dataset (bar, flow, line, scatter, and
pie chart). Based on these recent previous studies, in our
study, we also used CNN as a deep learning method, since

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

it has been proved to be a successful method for recogniz-
ing and classifying chart and graph images.

As shown in Table 1, our work differs from the previous
works in many respects. First, while many studies [1–9]
have been focused on the classification of chart images
by type (i.e. area, bar, line, pie), our study was conducted
to classify line charts according to their trend (increas-
ing or decreasing) and functional (linear or exponential)
properties. Second, in the literature, many studies [1–9]
have been focused on multi-class classification, while a
study [10] conducted the chart type classification as a
multi-instance classification problem. Unlike these previ-
ous works, our paper presents an experimental study of
multi-label classification (MLC) methods (LP and BR) and
gives suggestions for MLC that are effective for automatic
chart image interpretation applications.

In the literature, while a wide range of studies [1–11] on
chart classification cover various types of charts (i.e. area,
bar, map, line, pie), several studies only cover a single chart
type such as only pie chart [12], line chart [13] or radar
chart [14]. In the study [12], a region-based convolutional
neural network was used to automatically determine the
type of pie chart (2D or 3D pie chart) depicted in a given
image. Takagi and Chen [13] focused on classifying broken
lines in the charts as dotted lines or chain lines. Liu et al.
[14] proposed a classification technique that expresses
multi-dimensional data with radar chart.

Classifying chart patterns is a crucial task; hence it has
been required to be used in many different areas, including
manufacturing [15], industrial engineering [16], finance
[17] and civil engineering [18]. Lesanya et al. [16] used
the neural network technique to automatically classify
control chart patterns as Downward trend, Upward trend,
Downward shift, Upward shift, Cycle, and Systematic. Wan
and Si [17] proposed a rule-based method to classify chart
patterns in financial time series, such as “Triple Tops”, “Cup
with Handle”, and “Head-and-Shoulders”. In [18], the charts
representing the variation of Q index was used to classify
the shale from “as good” to “very good” category.

The problem of understanding and interpreting charts
has been addressed in various studies [19, 20]. However,
instead of the classification task, they only used image
processing (i.e. edge detection, segmentation, and fea-
ture extraction) and text recognition techniques [i.e. opti-
cal character recognition (OCR)]. Other similar studies [3,
21] combined both textual information and classification
output to capture the semantic meaning of the charts.
Text components such as caption, axis title, legend, and
data value are firstly located in the chart image and then
recognized using OCR. Unlike these studies, we didn’t use
textual information when interpreting a line chart, since
the underlying information is not generally available as
textual in many applications and domains. In this study, Ta

bl
e 

1  
C

om
pa

ris
on

 o
f o

ur
 s

tu
dy

 w
ith

 th
e

pr
ev

io
us

 s
tu

di
es

Re
fs

.
Ye

ar
s

Cl

as
s

Ch
ar

t t
yp

e
A

lg
or

ith
m

s
M

ul
ti-

cl
as

s
M

ul
ti-

in
st

an
ce

M
ul

ti-
la

be
l

Ac
cu

ra
cy

 (%
)

A
re

a
Ba

r
Li

ne
M

ap
Pa

re
to

Pi
e

Ra
da

r
Sc

at
te

r
Ta

bl
e

Ve
nn

O
th

er
s

CN
N

SV
M

O
th

er
s

[6
]

20
19

10
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
81

.6
7

[8
]

20
18

10
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
77

.7
6

[4
]

20
17

10
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
91

.3
0

[5
]

20
17

11
✓

✓
✓

✓
✓

✓
✓

✓
89

.5
0

[7
]

20
17

10
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
70

.0
0

[9
]

20
16

5
✓

✓
✓

✓
✓

✓
✓

✓
✓

75
.4

0
[1

]
20

11
5

✓
✓

✓
✓

✓
✓

✓
✓

90
.0

0
[3

]
20

11
10

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

80
.0

0
[2

]
20

07
5

✓
✓

✓
✓

✓
✓

84
.2

3
[1

0]
20

07
5

✓
✓

✓
✓

✓
✓

76
.7

6
O

ur
 s

tu
dy

4
✓

✓
✓

93
.7

5

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

we used machine learning techniques which have been
proven to be useful in many fields ranging from industrial
applications [16] to localization problems [22].

4 � Materials and methods

4.1 � Multi‑label classification

Standard single-label classification is the task of learn-
ing from a collection of instances that are assigned with
exactly one label. If there are only two class labels, the
learning problem is called as a binary classification prob-
lem, whereas, if there are more than two class labels, it
is then called as a multi-class classification problem. Con-
versely, multi-label classification is a concept of learning
from a collection of instances where each instance is asso-
ciated with several labels, meaning that an instance can
belong simultaneously to one or multiple classes.

Let X = Rd be the d-dimensional input feature vector
and Y = {0, 1}|L| be the target output vector with |L| possible
labels such that L = {l1, l2, …, ls}. Giving a training dataset
D = {(x1, y1), (x2, y2), …, (xn, yn)} that contains n instances,
where each instance xi = [xi1, xi2, …, xid] is a d-dimensional
vector and yi = [yi1, yi2, …, yi|L|] is the label vector of xi, where
yij is 1 if xi has the j-th label and 0 otherwise. The goal is
to build a multi-label classifier function f: X → Y that opti-
mizes evaluation metric(s) and can predict the label vec-
tors for unseen instances.

In the literature, many successful multi-label methods
used the problem transformation approaches. Problem
transformation approaches once convert the multi-label
classification task into a multi-class classification task or
several binary classification tasks; after that, apply conven-
tional classification algorithms to train them. Two of the
most common methods for solving a multi-label classifi-
cation problem are label powerset and binary relevance
methods. The label powerset method transforms a multi-
label dataset into a multi-class dataset, whereas binary
relevance decomposes a multi-label dataset into several
binary datasets (one for each label). In this study, we com-
pared these two methods to determine which method
works better for line chart classification.

4.1.1 � Label powerset method

The label powerset (LP) approach transforms a multi-label
dataset into a multi-class dataset by considering each
combination of labels in the dataset as if it were a new
single label [23]. In other words, the set of labels for each
instance is combined as a single label, which is the con-
catenation of all the labels associated with this instance.
After that, a multi-class classifier is constructed, and then

an unseen observation is assigned to one of those com-
bined labels.

Assume that L+ is label combinations, including each
possible combination of multiple labels in the training
dataset as a new label, |L+| ≤ 2|L|. For the ith instance xi, we
transform the original label vector yi = [yi1, yi2, …, yi|L|] into
an L-dimensional vector ŷi. If the original label belongs to
the class yk, the kth component of the new label combi-
nation is assigned to 1, otherwise 0. Each (x, y) pair in the
multi-label training set is transformed into (x, ŷ), and so,
the corresponding multi-class training dataset is repre-
sented as {(x1, ŷ1), …, (xi, ŷi), …, (xn, ŷn)}.

The number of combined labels in LP is upper bounded
by 2|L|, where |L| is the number of labels. When the num-
ber of labels in the training dataset is high, and the data
size is large, this may lead to computational complexity.
Moreover, some combined labels can have a few training
samples, so the resultant dataset can become imbalanced
and that may negatively affect the classification perfor-
mance. One possible solution for this problem is to prune
the infrequent combined labels; although this process may
improve the accuracy, the dataset may lose some of its
multi-label structure. Furthermore, the LP method is sensi-
tive to the label combinations in the dataset; this means
that it only learns the label combinations that are present
in the dataset, which is a kind of over-fitting problem.
Therefore, if the new observation, which has a new label
combination not present in the training set, will be classi-
fied; the model will never be able to predict this new com-
bination. These possible problems of LP are not a critical
issue for our study since we have only two labels, the train-
ing set is balanced and has all possible label combinations.

4.1.2 � Binary relevance method

Binary relevance (BR) is one of the commonly used multi-
label classification approaches [23]. In the BR method, clas-
sifiers are trained based on one-against-all strategy; the
multi-label problem is transformed into multiple binary
classification problems equivalent to the number of labels.
In other words, it deals with the multi-label classification
problem by constructing one classifier for each class. After
that, in the training phase, a single-label binary classifica-
tion method is utilized to solve each subtask. In the pre-
diction phase, each binary classifier estimates whether its
class is relevant for a new unlabeled input observation
or not, resulting in a set of relevant labels. Although the
BR method is a straightforward and practical method, a
common drawback of it is that it ignores the relationship
between labels since each label is trained independently;
however, it may not have importance in some multi-label
learning problems.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

In the BR method, the L-label task is decomposed into L
independent binary sub-tasks, where the k-th sub-task is
expressed as, {(x1, y1k), …, (xi, yik), …, (xn, ynk)}. Hence, this
method individually trains |L| binary classifiers denoted by
C1, C2, …, C|L|. Each classifier Ci is responsible for predict-
ing the relevance of its corresponding label li∈L by a 0/1
association such that Ci: X → {0, 1}, where i = 1, …, |L|. If an
instance contains Lk, it is regarded as a positive instance
“1”, otherwise as a negative instance”0”. Given an unseen
observation, the binary predictions are combined to form
a multi-label target. Hence, an unseen observation xp is
assigned the prediction (C1 (xp), C2 (xp), …, C|L| (xp))T. The
computational complexity of BR is linearly dependent on
|L|.

In this study, two multi-label problem transformation
methods (LP and BR) were used to determine the bet-
ter one for line chart classification. As shown in Table 2a,
the class labels of line charts are organized in the form
of trend (increasing or decreasing) and functional (lin-
ear or exponential) properties. Hence, each instance
(line chart) is associated with multiple labels. Table 2b
shows the tabular representation of the multi-class data-
set transformed by the LP method. An instance that is
assigned with class labels l1 and l2 would receive a single
combined label l12. For instance, if any data instance (line
chart in this case) has both linear and increasing labels,
it is considered as “linearly increasing”. The combination
of two labels would receive four unique combined labels:

L+ = {linearly increasing (l11), linearly decreasing (l01), expo-
nentially increasing (l10), and exponentially decreasing
(l00)}. Table 2c shows the datasets generated by the BR
method, one for trend label (increasing or not) and the
other one for function label (linear or not).

4.2 � Image preprocessing

The main challenge in line chart classification is to deal
with the wild variety of chart styles in terms of structure,
context, and visual appearance of the charts. Structural
variability of line charts may be illustrated by “single” and
“multiple” series charts or 2D and 3D-line charts, where
they differ dramatically by their structure, but they are
generally sensed as line charts by the human eye. Context
variability includes variability of line chart surroundings,
such as axes, legends, text regions, and grids. Appearance
variability refers to the variability of colors, fill effects, and
shadings used for the line chart. For the diverse appear-
ance of line chart images, the following observations are
generally true: there are text regions in the image; the
background is sometimes complex; the line has lower con-
trast compared to other components in the image. Differ-
ent line chart images have different and specific features,
which are not common for natural scenes. One solution
is to determine some constraints on acceptable chart
images; however, it is not the desired solution for many
domains. In addition, the existing images often have low

Table 2   (a) A tabular representation of a multi-label dataset with d features, n instances, and two labels. (b) The dataset transformed by the
LP method, each combination of labels is translated into a new class. (c) The datasets generated by the BR method, one for each label

a Dataset transformed by the LP method
b Datasets generated by the BR method

Input features Labels Input features Label

F1 F2 … Fd L1 (Increasing) l2 (Linear) F1 F2 … Fd

(a) Multi-label dataset (b) Multi-class dataseta

x11 x12 … x1d 1 0 x11 x12 … x1d l10

x21 x22 … x2d 0 1 x21 x22 … x2d l01

x31 x32 … x3d 0 0 x31 x32 … x3d l00

… … … … … … … … … … …
xn1 xn2 … xnd 1 1 xn1 xn2 … xnd l11

Input features Label l1 (Increas-
ing)

Input features Label l2
(Linear)

F1 F2 … Fd F1 F2 … Fd

(c) Binary datasetsb

x11 x12 … x1d 1 x11 x12 … x1d 0
x21 x22 … x2d 0 x21 x22 … x2d 1
x31 x32 … x3d 0 x31 x32 … x3d 0
… … … … … … … … … …
xn1 xn2 … xnd 1 xn1 xn2 … xnd 1

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

resolution and degraded by noise and blur. Thus the prob-
lem of line chart image classification requires an advanced
approach. To overcome these challenges, we used several
preprocessing techniques as the first step of our approach.

In our approach, first, line chart images are converted
to greyscale because the colors of lines do not affect its
shape. Colored images carry redundant data and increase
training time. In a greyscale image, each pixel of the image
is stored as a single value instead of three, which is the
case in RGB images.

In real life, line chart images can be of any size. How-
ever, the images in the dataset should be in a fixed size
for training them on CNNs. Because of that, images in
the training and test sets are resized to 120 × 120 pixels
while preserving their aspect ratio. We determined this
size value based on trial and error tests. Images with sizes
larger than 120 × 120 pixels did not increase test accuracy
and caused much longer training times since the input
size was increased. Smaller sizes than that also reduced
classification accuracies.

After resizing images in a fixed size, the Canny edge
detection method is applied to each of them for extract-
ing characteristic features [24]. Canny edge detector algo-
rithm is used to retrieve useful information from images. It

also reduces the size of image data by discarding redun-
dant information. Hence, CNN’s training process becomes
faster and better because it gets fewer data to work on
and process. In this study, we used the OpenCV library [25]
for Canny edge detection. Figures 1 and 2 show example
line charts and their structures before and after applying
Canny edge detection.

4.3 � Convolutional neural network

Convolutional Neural Networks (CNNs) are a special type
of deep neural networks and image classification is one of
the most common applications of this method [26]. The
CNNs have drawn attention both in the high classifica-
tion performance and in extracting information from the
image.

Since images have large data size, giving them as an
input to a deep neural network without extracting their
distinctive features is not efficient. Convolution operations
help to solve this problem by only feeding the neural net-
work with useful features of an image [27]. Convolutions
provide filter operations that are used in image processing
methods like edge detection or noise reduction. In CNNs,
distinctive features of images are extracted through con-
volution operations and pooling layers. CNNs learn the
relevant filter kernels (matrices) for extracting the most
distinctive features of the given images. Since the line
chart images may have some noise and distortions, we
chose CNN as the best solution for the line chart classifica-
tion problem.

After convolution operation extracts the high-level fea-
tures of the image, an actual neural network is fed with
this output. This layer also called as a fully-connected
layer or dense layer, and it results in a classification pre-
diction. Since CNN extracted the useful features from the
images, the fully-connected layer works with fewer data
and achieves better accuracy results.Fig. 1   Canny edge detection applied on a linearly increasing line

chart

Fig. 2   Canny edge detection
applied on an exponentially
increasing line chart

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

4.4 � The proposed approach

Figure 3 illustrates the general structure of the proposed
approach. In the first step, raw line chart images are pre-
processed by recoloring, resizing and Canny edge detec-
tion methods and then fed into CNN architecture. CNN
selects only useful features from all available ones by
the feature extraction process. After that, in the training
phase, the learning algorithm builds a good model that
map inputs to correct outputs. The training process may
be repeated with different parameters until a desired
classification accuracy level achieved. Once a model is
constructed, then it is utilized to predict the labels of an
unseen line chart image.

The proposed methodology yields to work well since it
has various advantages. First, the Canny edge detection
technique is used as a data preprocessing step. Canny
edge detector algorithm retrieves useful information from
images and reduces the size of the image with discarding
redundant information (i.e. unnecessary lines and noises).
Hence, the training process becomes faster and better,
so it can be possible to get higher accuracies in earlier
epochs. Second, unlike the simple single label classifiers,
the proposed method deals with a multi-label classifica-
tion problem. Hence, it provides us a unified framework
to collaboratively make several predictions. Third, the pro-
posed method is a CNN-based method; hence, it automati-
cally extracts information from images and has generally
better performance on image classification, compared

to the traditional classification methods such as decision
tree, support vector machine, naive Bayes and k-nearest
neighbors.

Chart image classification that has relied on simple
features often fails when addressing the data that could
include many varieties and less common line chart types.
Therefore, in this study, we used CNN technique not only
because it has achieved high classification performance
in many image classification problems but also because
it can be able to learn representations of images with-
out designing a specific feature extractor. We propose
to use the CNN approach since it automates the feature
extraction step as a first step. Motivated by advances in
deep learning techniques, which have been designed to
produce considerable results in the field of image clas-
sification, a new CNN architecture is proposed for line
chart analysis. We designed a simpler version of previous
successful CNN models like VGG Net [6], Resnet [8] and
AlexNet [28]. Our model uses 2D convolution layers and
max-pooling layers followed by dropouts in the feature
extraction process. The layer structure of the proposed
CNN model is given in Table 3.

Padding is used to maintain the input and output
dimensions. Our model applies padding in the first con-
volution layer to reduce data size from (120, 120, 32) to
(118, 118, 32). Also, in other 2D convolution pairs, the
first one reduces the data size, while the second 2D con-
volution layer does not change the image size. The same

Fig. 3   The general structure of the proposed approach

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

padding fills the borders of images with zero values to
prevent data loss when convolution operation applies.

Pooling layers in the convolution process are used for
reducing the size of the images while keeping its distinc-
tive features. The pooling process helps to avoid overfit-
ting in CNNs by down-sampling the image data. If over-
fitting occurs, the resulting CNN works on training data
well, but on test data poorly. We used the max-pooling
method in our model as seen in Table 3.

The dropout method, which randomly drops some
neurons in the network, prevents overfitting of CNNs
and helps it to achieve higher test accuracies [29]. We
used dropouts both after convolution operations and
dense neuron layer. While dropout rates after max-pool-
ing layers were defined as 25%, the dropout rate of 50%
was applied after the dense layer.

The loss method basically compares the correct class
and predicted class to return a score. As a loss function,
a sparse categorical cross-entropy method was used in
this study. This method is very popular when performing
a classification task.

The optimization method is also needed in CNN mod-
els, which minimizes loss value, and it is important for
the actual learning task. In this study, we selected Adam
optimizer, which is a type of gradient descent algorithm
[30].

The rectified linear unit (ReLU) activation function is
commonly used in CNN models to achieve successful
results [28]. In this study, ReLU was used with both con-
volution and dense layers. While, for negative inputs,
ReLU outputs zero; for positive inputs, it returns the
same input value as an output. ReLU’s mathematical
function is given in Eq. 1.

The dense (fully-connected) layer works as a multi-layer
perceptron neural network. The output of the convolu-
tional layer is flattened and then it becomes the input of
the dense layer. Flattening operation converts a multi-
dimensional data structure to a single-dimensional.

After the dense layer, softmax function [31] was used
in this study, which is a useful and popular probability
method and commonly used in classification tasks. Soft-
max function takes a real number value set and turns a

(1)f (x) = max(0, x)

probability for each value. The output shape of the soft-
max layer should be the same as the number of classes,
which is 4 in this study. Each class has a probability value
between 0 and 1, and they all sum up to 1. The math-
ematical formulation of the softmax function is given
in Eq. 2

where the function takes a vector of K real numbers as
input and applies the exponential function to each ele-
ment zi of the input vector z and normalizes them by divid-
ing by the sum of all these exponentials.

The pseudo-code of the proposed approach is pre-
sented in Algorithm 1. First, training and test sets are
taken from the data repository. After that, two data
preprocessing techniques (resizing and Canny edge
detection) are applied to these datasets. The rest of the
algorithm is mainly divided into two main parts: the
implementation of the label powerset method and the
binary relevance method. Each part individually contains
data building, training, and prediction phases.

(2)softmax
�

zi
�

=
ezi

∑K

j=1
e
zj

for i = 1, 2,… , K

Table 3   Proposed CNN model

Layer type Output shape Trainable parameters

Conv2D (120, 120, 32) 320
Conv2D (118, 118, 32) 9248
MaxPooling2D (59, 59, 32) 0
Dropout (25%) (59, 59, 32) 0
Conv2D (59, 59, 64) 18,496
Conv2D (57, 57, 64) 36,928
MaxPooling2D (28, 28, 64) 0
Dropout (25%) (28, 28, 64) 0
Conv2D (28, 28, 64) 36,928
Conv2D (26, 26, 64) 36,928
MaxPooling2D (13, 13, 64) 0
Dropout (25%) (13, 13, 64) 0
Flatten (10,816) 0
Dense (512) 5,538,304
Dropout (50%) (512) 0
Dense (Softmax) (4) 2052

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

5 � Experimental studies

In this study, different ways of addressing multi-label line
chart classification problem are compared: label-powerset
(LP) and binary relevance (BR).

5.1 � Dataset description

In this study, the proposed model was used to discriminate
between two labeled classes (trend and function), each of
which has two features “increasing” and “decreasing”, and
“linear” and “exponential”, respectively. Whereas, in the BR

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

method, separate datasets were generated for each label;
in the LP method, the labels were transformed as; “linearly
increasing”, “linearly decreasing”, “exponentially increasing”
and “exponentially decreasing”. The basic shapes of these
line chart types are shown in Fig. 4.

A linear chart has a straight-line shape in its graphical
representation. It increases or decreases with a constant
rate of change. A linear function forms a linear chart if
visualized, and the function has a mathematical form as
indicated in Eq. 3. If the constant a is positive, the function
is named as “linearly increasing”; whenever a has a nega-
tive value, the function is called as “linearly decreasing”.

An exponential chart is structured as nonlinear and has
curved lines. It has a mathematical form as indicated in
Eq. 4. If the constant b is greater than 1, the function is
labeled as “exponentially increasing”; whenever b has a
value between 0 and 1, the function is called as “exponen-
tially decreasing”.

(3)f (x) = ax + b

(4)f (x) = abx

The training dataset should have a wide variety of line
charts with different visual features, so the trained model
can be able to make successful predictions on real-life
images. Since a special image corpus is not available for
this specific purpose, a computer-generated training
dataset was used in this study. Here, we used Matplotlib
plotting library in Python in order to generate the images
in the training set. The markers and line styles were deter-
mined randomly by using a large number of different visu-
alization methods available in Matplotlib. The widths of
the lines were chosen randomly within a specified range.
The other graphic features such as legend, grid style, value
intervals in x and y axes were also chosen randomly.

With our plot generator Python script, we generated
400 line chart images for each class which makes 1600
training image samples in total. Since it contains an equal
number of samples from each class, the training dataset
is balanced. Several sample images from the generated
training dataset are shown in Fig. 5.

Test data used in this work was collected from image
search engines on the Internet, mainly from Google. In
total, we gathered 320 test images, containing 80 images
from each line chart class. The only constraint for selecting

Fig. 4   Basic shapes of line
charts

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

these test images is that the image should contain a single
line series with a coordinate system. However, they can be
in any size or they might have different line styles. Several
sample images from the test dataset are given in Fig. 6. An
additional validation set was not used on this work since
such an approach would require a large dataset to be
split further to generate a validation set. This would either
result in a smaller test set or an even smaller training set.

5.2 � Experimental settings

In this study, both LP and BR multi-label classification
approaches were tested with our CNN model on the same
dataset. From here onwards, the abbreviation of the multi-
label method followed by the abbreviation of the learning
technique is used to refer to the related approach. For exam-
ple, LP-CNN refers to the LP method with the learning tech-
nique CNN. Each multi-label approach and learning tech-
nique is treated as an independent classifier. In other words,
LP-CNN and BR-CNN are different multi-label classifiers.

The LP-CNN and BR-CNN methods were evaluated by
means of line chart classification in terms of classification
performance. These methods were explored and compared
to each other. When evaluating the classification perfor-
mance of the methods, we considered the most commonly
used metrics such as train and test accuracies, precision,
recall, and F1-Score. Accuracy means how well the model
predicts given input data. While the train accuracy metric is

the accuracy of the CNN model over the training set, the test
accuracy metric is calculated on the test set. Train loss and
test loss values are of loss function outputs over the training
and test sets. Precision is the proportion of correct results in
all the returned results. Recall, also called sensitivity, is the
proportion of the correct predictions to the total number of
correct results that could have been returned. F1-Score is the
harmonic mean of precision and recall. All formulas of these
metrics are given in the equations Eqs. 5–8, respectively.

The proposed CNN model was implemented with
Python programming language using Keras and Tensor-
Flow frameworks. The Keras is a deep learning and neu-
ral network library that runs on top of the TensorFlow
machine learning library. Keras also supports prototyping
CNNs. In all experiments, a basic personal computer was
used for training the CNNs and obtaining the performance
results. This computer uses Windows 10 64-bit operating

(5)Accuracy =
true positives+true negatives

total data

(6)Precision =
true positives

true positives+false positives

(7)Recall =
true positives

true positives+false negatives

(8)F1 Score = 2 ×
precision×recall

precision+recall

Fig. 5   Sample images from the training set

Fig. 6   Sample images from the test set

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

system with Intel Core i7-8750H 2.20 GHz processor and
16 GB of RAM.

Since the quality of a classification model critically
depends on its hyperparameter configuration, we deter-
mined the optimum values for input parameters. The
learning rate was set to 0.001 in our experiments. The
batch size was the same as the number of training sam-
ples. Rather than limiting the training phase to a specific
number of epochs, the training was set to expire when
validation checks were reached. In order to prevent from
overfitting problem, the validation checks were triggered
according to the increases on the train and test accuracies
and the decreases on the train and test error rates. Zero-
padding was preferred over other alternative methods
such as mirror-padding and linear-padding since these
methods sometimes cause spurious effects in the matri-
ces. Among alternative pooling techniques such as aver-
age or median pooling, we preferred max-pooling, since
this improves convergence speed and also increases gen-
eralization due to position invariance over larger regions.
While dropout rates after max-pooling layers were defined
as 25%, the dropout rate of 50% was applied after the
dense layer.

5.3 � Experimental results

This paper introduces an extensive comparison of the
multi-label classification approaches for line chart
categorization.

5.3.1 � Results of the LP‑CNN method

The training process of the LP-CNN method across four
combined labels reached its best test accuracy on the
45th epoch with a value of 93.75% as shown in Table 4. An
epoch is defined as one training pass using all the training
samples in the dataset. Thus, one epoch corresponds to
all training samples being fed to the CNN. Training is per-
formed on an epoch-by-epoch basis until the user-defined
stopping criteria like the number of steps or targeted error
minimization are satisfied. With respect to experimental
results given in Table 4, it is possible to say that both test
accuracy and train accuracy results reached very successful
percentage values (> 93%).

Figure 7 shows the train and test accuracy and loss val-
ues obtained at the end of each epoch. Hence, the effect of
epoch numbers is analyzed distinctly at each step. In this
way, it can be easily determined the optimal epoch value
by observing both train and test accuracies. The higher
number of epochs usually results in high classification
performance; when the accuracy reaches to its highest
value, it remains the same or may drop due to overfitting.

The generalization performance of the model increases
with increasing epoch until remains almost constant, as
was generally noted in the previous studies. Train loss con-
verges to zero as the number of epochs increases. After
around 9 epochs, the training accuracy remains almost
constant at about 99%, and training lost is very closely
fixed to 0 value. It is observed from the experiments that
the LP-CNN method is more easily stalled at flat regions
during training. Train accuracy always shows better per-
formance than the test accuracy, however, the two metrics
usually follow each other closely. Initially, the test accuracy
is continuously increased; after 5 epochs it achieves high
values (about 90%) and then shows small fluctuations until
it reaches the best accuracy of 93.75% at the 45th epoch.
The key observation is the jump in the test losses, and a
drop in the corresponding test accuracies. As the epoch
progresses, the gap between the train loss and test loss
sometimes increases, however, sometimes tends to be
close. This instability is probably related to the variety of
the structure, context, and visual appearance of the real-
world line charts in the test set. For example, it may be
relevant to the varieties of line chart surroundings such
as legends, axes, text regions, and grids, or the variety of
colors, fill effects, and shadings used for the line chart. The
diversity of line chart images is sometimes observed when
there are text regions in the image or background is com-
plex or the line has a lower contrast compared to other
components in the image.

The confusion matrix given in Table 5 shows the predic-
tion performance of the LP-CNN method on the test set for
each class individually. A confusion matrix has two-dimen-
sions, the row dimension represents the actual classes of
the objects, whereas the column dimension represents
the classifier predicts. In the confusion matrix, the cell Mij
represents the number of examples actually belonging to
class Ci, but that are classified as class Cj. It is observed from
the confusion matrix that the model generally had no diffi-
culty in identifying all classes. For instance, 76 of 80 “expo-
nentially decreasing” line charts were predicted correctly;
however, only 4 of them were labeled as “linearly increas-
ing” by the constructed model, which are false predic-
tions. According to the confusion matrix, three instances
were classified incorrectly as an “exponentially increasing”,
instead of “linearly decreasing”. It can be deduced from the
confusion matrix that the best performance on the test set
was achieved on “exponentially increasing” class detection

Table 4   LP-CNN method classification performance results

Epoch Train accuracy Train loss Test accuracy Test loss

LP-CNN method
45 0.998750 0.008740 0.937500 0.466359

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

with accuracy 98.75%, where the classifier misclassified
only one case for this class.

For assessing the LP-CNN method in more detail, Fig. 8
shows the precision, recall and F1-Score values obtained
for each class on the test set. Higher numbers in this figure
mean the LP-CNN method is more successful in the classifi-
cation task for the corresponding class label. While the pre-
cision values are ranging from 0.8902 to 0.9863, the recall
values are changing between 0.9 and 0.9875. Although
both of them are very promising results with very high
values; the recall scores are generally higher (so better)
than the precision scores. For instance, the precision value
for the “linearly increasing” class label is 0.8902 as a result
of 73/82, where the value 73 is the correct prediction
score for this class and 82 is the total count of predictions

labeled as “linearly increasing”. Likewise, the recall score
for the same class is 0.9125 as a result of 73/80, where the
values 73 and 80 are the number correct predictions and
the number of instances for this class respectively. Among
all class labels, LP-CNN achieved the best precision score
(0.9863) on the “linearly decreasing” class label. When
F1-Score value is close to 1, this means that the predic-
tion result is close to ground truth. From this perspective,
it is possible to say that the model built by LP-CNN has
good generalization ability to variabilities in the input line
charts, so it can be effectively used to predict them well.

In addition to hold-out validation, the fivefold cross-
validation technique was also performed to evaluate the
performance of the LP-CNN method. In this technique, the
dataset is divided into five disjoint subsets of almost equal

Fig. 7   LP-CNN learning process

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30 35 40 45 50 55

V
al

ue

EpochTrain Accuracy Train Loss Test Accuracy Test Loss

Table 5   Confusion matrix of
the LP-CNN model

Class Predicted classes

Linearly increasing Linearly decreasing Exponentially
increasing

Expo-
nentially
decreasing

Actual classes
Linearly increasing 73 (91.25%) 0 0 7
Linearly decreasing 5 72 (90.00%) 3 0
Exponentially increasing 0 1 79 (98.75%) 0
Exponentially decreasing 4 0 0 76 (95.00%)

Fig. 8   Precision, recall and
F1-Score values obtained from
the LP-CNN model on the test
set

0.9325

0.9753

0.9412

0.9012

0.9500

0.9875

0.9000

0.9125

0.9157

0.9634

0.9863

0.8902

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Exponentially Decreasing

Exponentially Increasing

Linearly Decreasing

Linearly Increasing

Precision Recall F1-Score

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

size. In each fold, a subset is kept away, while the remain-
ing subsets are used for training. The classifiers achieved
the following accuracies at each fold respectively; 91.25%
on 60th epoch, 90.62% on 90th epoch, 86.25% on 81st
epoch, 90.62% on 60th epoch, and 88.44% on 49th epoch.
The final result can be reported as 89.44%, which is the
average of five runs.

5.3.2 � Results of the BR‑CNN method

In this experiment, the binary relevance multi-label clas-
sification approach was tested with the CNN model on
the same test dataset. The BR-CNN method has two main
steps: the first step determines whether the function type
of the line chart is linear or exponential, and the second
step predicts whether the values in the line chart are
increasing or decreasing (trend). Hence, two classifiers,
named as function classifier and trend classifier, are trained
and then their outcomes are combined together to obtain
the final prediction.

In the first part of the BR-CNN method, the function
classifier was built by considering only one label attribute
of the multi-label data as the target attribute. The linear
line charts were labeled as 1, while others were assigned
to 0. The constructed “function classifier” was tested on
the real-world line chart images. As shown in Table 6, the
trained model reached its best test accuracy (87.81%) on
the test set at the 120th epoch.

In the second part of the BR-CNN method, the trend
classifier was built by considering only related label attrib-
ute as the target. The line charts with increasing trend
were labeled as 1, while others were assigned to 0. The
constructed “trend classifier” was tested on the real-world
line chart images. As shown in Table 7, the trained model
reached its best test accuracy (98.13%) on the test set after
19 epochs.

The average test accuracy score of two classifiers
(function classifier and trend classifier) was calculated as
92.97%, which is the final test accuracy output of the BR-
CNN method.

Figures 9 and 10 show the train and test accuracy and
loss values obtained at the end of each epoch during the
learning processes of function and trend classifiers, respec-
tively. Hence, the effect of epoch numbers is analyzed dis-
tinctly at each step. In this way, it can be easily determined

the optimal epoch value by observing both train and test
accuracies. Train loss converges to zero as the number of
epochs increases. The generalization performances of
the models improve with increasing epoch until remains
almost constant. It is observed from the experiments that
the BR-CNN method is more easily stalled at flat regions
during the training of trend classifier. Train accuracy always
shows a better performance than the test accuracy, how-
ever, the two metrics usually follow each other closely.
Initially, the test accuracies are continuously increased;
after a few epochs, they achieve high values and then
show small fluctuations until they reach to their best
accuracies (98.13% for the trend classifier and 87.81% for
the function classifier). The key observation is the jump in
the test losses. As the epoch progresses, the gap between
the train loss and test loss sometimes increases; however,
sometimes tends to be close. This instability is probably
related to the variety of the structure, context, and visual
appearance of the real-world line charts in the test set. For
example, it may be relevant to the varieties of line chart
surroundings such as legends, axes, text regions, and grids,
or the variety of colors, fill effects, and shadings used for
the line chart.

Since the BR-CNN method builds a separate classifier for
each class label, Table 8 shows two confusion matrices, the
first one for function classifier (linear or exponential) and
the second one for trend classifier (increasing or decreas-
ing). It is observed from the confusion matrices that the
models generally had no difficulty in identifying all classes.
For instance, 96.25% of increasing-trend line charts were
predicted correctly; however, only 6 out of 160 charts were
classified incorrectly. It can be deduced from the confusion
matrices that the trend classifier has better performance
on the test set, compared to the function classifier.

Figure 11 shows the precision, recall and F1-score val-
ues obtained by the BR-CNN method for each class on
the test set. Higher numbers in this figure mean the BR-
CNN method is more successful in the classification task
for the corresponding class label. While the precision val-
ues are ranging from 0.9088 to 0.9530, the recall values
are changing between 0.9031 and 0.9562. Although both
of them are very promising results with very high values;
the recall scores are higher (so better) than the precision
scores for linear charts; while the opposite case is true for
exponential charts. Among all class labels, the BR-CNN

Table 6   Function (linear or exponential) classifier performance
results

Epoch Train accuracy Train loss Test accuracy Test loss

BR-CNN method
120 1.000000 0.000015 0.878125 1.390342

Table 7   Trend (increasing or decreasing) classifier performance
results

Epoch Train accuracy Train loss Test accuracy Test loss

BR-CNN method
19 1.000000 0.000384 0.981250 0.874668

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

method achieved the best score (0.9562) on the “expo-
nentially increasing” class label. When F1-Score value is
close to 1, this means that the prediction result is close
to ground truth. From this perspective, it is possible to
say that the model built by BR-CNN has good generaliza-
tion ability (> 0.92) to variabilities in the input line charts,
so it can be effectively used to predict them well.

5.3.3 � Comparison of LP‑CNN and BR‑CNN Methods

Figure 12 shows the comparison of the LP-CNN and
BR-CNN methods in terms of classification accuracy.

Regarding the test accuracy results, LP-CNN (93.75%)
slightly outperformed BR-CNN (92.97%) as illustrated in
Fig. 12. This would suggest that the model built by LP-CNN
has a better chance of being generalized beyond the train-
ing data. However, two methods can be alternatively used
since the difference in the accuracy is small.

Furthermore, the LP-CNN and BR-CNN models were
compared with the AlexNet [28] which is one of the most
popular and efficient architectures that have been widely
used to address problems in image classification. Accord-
ing to the results given in Fig. 12, it can be concluded
that both LP-CNN and BR-CNN models outperformed

Fig. 9   BR-CNN learning
process of function classifier
(linear or exponential)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 10 20 30 40 50 60 70 80 90 100 110 120
V

al
ue

EpochTrain Accuracy Train Loss Test Accuracy Test Loss

Fig. 10   BR-CNN learning pro-
cess of trend classifier (increas-
ing or decreasing)

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

V
al

ue

EpochTrain Accuracy Train Loss Test Accuracy Test Loss

Table 8   Confusion matrices of the BR-CNN models

Class Predicted classes

Exponential Linear

Actual classes
Exponential 135 (84.38%) 25
Linear 14 146 (91.25%)

Class Predicted classes

Increasing Decreasing

Actual classes
Increasing 154 (96.25%) 6
Decreasing 0 160 (100.00%)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

the AlexNet model in terms of classification accuracy. The
results also show that the LP-CNN method approximately
increased accuracy by 10% with respect to AlexNet in the
experiment. While the LP-CNN method reached its best
test accuracy (93.75%) on the 45th epoch, the AlexNet
achieves its best performance (84.37%) on the 80th epoch.
Thus, the experimental results indicate that the classifier
built by the LP-CNN method can classify line chart images
more effectively according to their trend and functional
properties, compared to classifiers constructed by BR-CNN
and AlexNet.

In addition to classification accuracy, we also compared
the LP-CNN, BR-CNN, and AlexNet models in terms of
F1-Score because of aggregating recall and precision into
a single measure. Table 9 shows the F1-Scores obtained
for each model and each multi-label class individually. In
all cases, the LP-CNN and BR-CNN models provide better
classification accuracy than the AlexNet model. On aver-
age, the LP-CNN model has the best performance with the
93.76% F1-Score value.

Although the LP-CNN method has higher F1-Scores, the
obtained results should be validated by the statistical tests
to ensure the significance of differences among the methods
on the datasets. Here, the null hypothesis (H0) for the statisti-
cal test is that there are no performance differences among
the methods on the datasets; otherwise, the alternative
hypothesis (H1) is present when there are performance dif-
ferences among the methods. The p value is defined as the
probability under the null hypothesis of obtaining results
and with a small p value (p value <= 0.05), we reject the null
hypothesis (H0), so the relationship between the results is

significantly different. For verification, we used three well-
known non-parametric statistical tests by multiple group
comparisons (all vs. all): Friedman Test [32], Friedman aligned
ranks test [33] and Quade Test [34]. The p values obtained
from these statistical tests are 0.00659, 0.04979 and 0.04930,
respectively. Thereby, it is possible to say that the results are
statistically significant since all p values are smaller than the
significance level (0.05). Thus, it can be concluded that the
differences between the performances of the examined
methods are unlikely to occur by chance.

It should be noted that the classification accuracy is not
the only issue in constructing a prediction model. The com-
putational complexity should also be taken into considera-
tion. The computational time of a multi-label problem can
be evaluated in terms of the number of epochs. While the LP-
CNN method reached the highest test accuracy value on the
45th epoch, the BR-CNN method achieved its best results
after the 120 epochs. Increasing the epoch number will likely
improve the classification accuracy of the model, but also
increases the cost of time. Moreover, the consideration of

Fig. 11   Precision, recall and
F1-Score values obtained from
the BR-CNN model on the test
set

0.9277

0.9273

0.9319

0.9315

0.9218

0.9031

0.9562

0.9375

0.9349

0.9530

0.9088

0.9269

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Exponentially Decreasing

Exponentially Increasing

Linearly Decreasing

Linearly Increasing

Precision Recall F1-Score

Fig. 12   Comparison of LP-CNN,
BR-CNN, and AlexNet models
in terms of classification
accuracy

84.37

92.97

93.75

70 75 80 85 90 95

AlexNet
BR-CNN
LP-CNN

Table 9   The F1-Scores of the CNN models

Dataset F1-Scores (%)

LP-CNN BR-CNN AlexNet

Linearly increasing 90.12 93.15 73.85
Linearly decreasing 94.12 93.19 90.67
Exponentially increasing 97.53 92.73 81.28
Exponentially decreasing 93.25 92.77 90.17
Avg. 93.76 92.96 83.99

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

a large number of epochs usually involves the necessity to
increase the required computing resources.

When the number of labels in the training set is low
such as two, like in this study, the LP-CNN method can
be usually run faster than the BR-CNN method. The rea-
son behind this is that LP-CNN builds only one classifier,
instead of individual classifiers for each class like BR-CNN.
It deals with the multi-label problem as a multi-class prob-
lem, by concatenating the multiple labels that present in
the dataset as one combined-label when constructing
the classification model. Meanwhile, the BR-CNN method
is slightly slower, since it should construct a collection of
binary classifiers (one for each label) to deal with a multi-
label problem. Increasing the number of training pro-
cess increases the execution time of the method. How-
ever, this advantage of the LP-CNN method can be lost
when the number of labels |L| in the training set is high,
since, in this case, the number of the combined labels is
upper bounded by 2|L| and this may lead to computational
complexity.

It can be deduced from the experiments that higher
classification rates can be achieved with the LP-CNN
method for the line chart classification problem, rather
than the BR-CNN method. The reason behind this is that
the BR-CNN method ignores the relation between labels
since each label is trained independently. However, the
achievement of LP-CNN over BR-CNN can be changed
depending on many factors, such as the number of labels,
the application domain, and the structure underlying the
training set.

6 � Conclusion and future works

As an effective information transmitting way, line charts
are widely used in many different sources (i.e. books,
research papers, reports, newspapers) to visualize math-
ematical functions, to represent statistics datum and to
gain a better understanding of changes. Line charts can
provide additional information, may not be mentioned in
the text, to allow readers to make their own inferences.
However, the information given in line charts cannot
automatically interpretable by the machines since they
are generally in raster image format. Therefore, an intel-
ligent model should be developed to be able to automati-
cally classify and interpret insights presented in line chart
images. Based on this motivation, in this study, we funda-
mentally focus on line chart classification which is formed
as a multi-label classification task. Multi-label classification
is concerned with a collection of training samples where
each sample is assigned with several labels. In this study,
the class labels are organized in the form of trend property
(increasing or decreasing) and functional property (linear

or exponential). We selected these properties because an
essential stage in line chart image interpretation is to iden-
tify the trend and functional properties. However, classify-
ing line chart images is a difficult task itself, due to the wild
variety of chart styles.

In this paper, we propose a convolutional neural net-
work (CNN) architecture to build a multi-label classifier
that categorizes line chart images according to their char-
acteristics. As a data preprocessing step, the Canny edge
detection method was applied to decrease the training
time and prevent the overfitting of the learning process.
In addition, this paper presents the comparison of two
multi-label classification approaches for line chart cat-
egorization: label powerset (LP) and binary relevance (BR)
approaches.

In the experimental studies, the LP-CNN and BR-CNN
methods were compared in terms of many different per-
formance evaluation metrics such as accuracy, precision,
recall, and F1-Score. While the training set consists of com-
puter-generated line chart images, the benchmark test
set is a collection of real-world line chart images, mainly
obtained via Google image search. Both training and test
sets are exactly balanced, so we have the same number of
line chart images for each class. The experimental stud-
ies showed that the proposed LP-CNN model achieved
93.75% accuracy on the test set, which contains real-
world line chart images. Hence, the constructed model
can be effectively employed for classifying multi-labeled
line chart images based on their characteristics with high
accuracies.

In the future, more effort may be put to handle more
complex line charts such as 3D charts and multiple series
charts. In addition to linear and exponential shaped line
charts, other different forms may be added, i.e. sinusoidal
shaped charts. Line charts with changing trends, for exam-
ple, a linear chart starting with an increase followed by a
decrease, can also be inspected. In addition to LP and BR,
other existing multi-label classification approaches such
as classifier chains can be applied to extend the work. Fur-
thermore, more attention can be given to the data pre-
processing step, such as employing feature selection and
feature weighting strategy.

Code availability  Not applicable.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

Availability of data and materials  Not applicable.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y	 Research Article

References

	 1.	 Mishchenko A, Vassilieva N (2011) Model-based chart image
classification. In: International symposium on visual com-
puting (ISVC 2011), advances in visual computing. Lecture
notes in computer science, vol 6939, pp 476–485. https​://doi.
org/10.1007/978-3-642-24031​-7_48

	 2.	 Prasad VSN, Siddiquie B, Golbeck J, Davis LS (2007) Classify-
ing computer generated charts. In: International workshop on
content-based multimedia indexing (CBMI), pp 85–92. https​://
doi.org/10.1109/CBMI.2007.38539​6

	 3.	 Savva M, Kong N, Chhajta A, Li FF, Agrawala M, Heer J (2011)
ReVision: automated classification, analysis and redesign of
chart images. In: 24th annual ACM symposium on user inter-
face software and technology (UIST’11), pp 393–402. https​://
doi.org/10.1145/20471​96.20472​47

	 4.	 Jung D et al (2017) ChartSense: interactive data extraction
from chart images. Conf Hum Factors Comput Syst. https​://doi.
org/10.1145/30254​53.30259​57

	 5.	 Amara J, Kaur P, Owonibi M, Bouaziz B (2017) Convolutional
neural network based chart image classification. In: 25th inter-
national conference in central europe on computer graphics, pp
83–88

	 6.	 Bajic F, Job J, Nenadic K (2019) Chart classification using sim-
plified VGG model. In: Proceedings of the international confer-
ence on systems, signals and image processing (IWSSIP), 5–7
June 2019, Osijek, pp 229–233. https​://doi.org/10.1109/IWSSI​
P.2019.87872​99

	 7.	 Chagas P et al (2017) Architecture proposal for data extraction
of chart images using convolutional neural network. In: Pro-
ceedings of the 21st international conference on information
visualisation, 11–14 July 2017, London, pp 318–323. https​://doi.
org/10.1109/iV.2017.37

	 8.	 Chagas P et al (2018) Evaluation of convolutional neural network
architectures for chart image classification. In: Proceedings of
the international joint conference on neural networks (IJCNN),
8–13 July 2018, Rio de Janeiro, pp 1–8. https​://doi.org/10.1109/
IJCNN​.2018.84893​15

	 9.	 Tang B et al (2016) DeepChart: combining deep convolutional
networks and deep belief networks in chart classification.
Signal Process 124:156–161. https​://doi.org/10.1016/j.sigpr​
o.2015.09.027

	10.	 Huang W, Zong S, Tan CL (2007) Chart image classification
using multiple-instance learning. In: IEEE workshop on appli-
cations of computer vision (WACV’07), 21–22 Feb 2007, Aus-
tin. https​://doi.org/10.1109/WACV.2007.17

	11.	 Liu X, Klabjan D, Bless PN (2019) Data extraction from
charts via single deep neural network. https​://arxiv​.org/
abs/1906.11906​

	12.	 De P (2018) Automatic data extraction from 2D and 3D pie
chart images. In: IEEE 8th international advance computing
conference (IACC 2018), 14–15 Dec 2018, Greater Noida, pp
20–25. https​://doi.org/10.1109/IADCC​.2018.86921​04

	13.	 Takagi N, Chen J (2013) A broken line classification method
of mathematical graphs for automating translation into scal-
able vector graphic. In: IEEE 43rd international symposium on
multiple-valued logic, 22–24 May 2013, Toyama, pp 71–76.
https​://doi.org/10.1109/ISMVL​.2013.3

	14.	 Liu WY, Wang BW, Yu JX, Li F, Wang SX, Hong WX (2008) Visu-
alization classification method of multi-dimensional data
based on radar chart mapping. In: International conference
on machine learning and cybernetics, July 2008, pp 857–862.
https​://doi.org/10.1109/ICMLC​.2008.46205​24

	15.	 Hachicha W, Ghorbel A (2012) A survey of control-chart
pattern-recognition literature (1991–2010) based on a new

conceptual classification scheme. Comput Ind Eng 63:204–
222. https​://doi.org/10.1016/j.cie.2012.03.002

	16.	 Lesany SA, Koochakzadeh A, Fatemi Ghomi SMT (2014) Rec-
ognition and classification of single and concurrent unnatu-
ral patterns in control charts via neural networks and fitted
line of samples. Int J Prod Res 52:1771–1786. https​://doi.
org/10.1080/00207​543.2013.84848​3

	17.	 Wan Y, Si YW (2017) A formal approach to chart patterns clas-
sification in financial time series. Inf Sci 411:151–175. https​://
doi.org/10.1016/j.ins.2017.05.028

	18.	 Kumar ND, Singh RR, Ali F, Efray’im (2017) Development of
classification charts for Q Index of shale from the param-
eters. In: Advances in laboratory testing and modelling
of soils and shales (ATMSS 2017), pp 281–287. https​://doi.
org/10.1007/978-3-319-52773​-4_32

	19.	 Yao JX, Agrawala M (2013) Linelens: automatic data extraction
from line charts. In: Visualization, UC Berkeley CS, 2013, pp
1–10

	20.	 Al-Zaidy RA, Giles CL (2015) Automatic extraction of data from
bar charts. In: Proceedings of the 8th international conference
on knowledge capture (K-CAP 2015), Oct 07–10, 2015, Palisades.
https​://doi.org/10.1145/28158​33.28169​56

	21.	 Mishchenko A, Vassilieva N (2011) Chart image understanding
and numerical data extraction. In: 6th International conference
on digital information management, 26–28 Sept 2011, Mel-
bourn, pp 115–210. https​://doi.org/10.1109/ICDIM​.2011.60933​
20

	22.	 Nagy A, Bigler T, Treytl A, Sauter T (2019) A radio-map clustering
algorithm for RSS based localization using directional antennas.
In: 15th IEEE international workshop on factory communication
systems, 27–29 May 2019, Sundsvall. https​://doi.org/10.1109/
WFCS.2019.87579​38

	23.	 Spolaôr N, Cherman EA, Monard MC, Lee HD (2013) A compari-
son of multi-label feature selection methods using the prob-
lem transformation approach. Electron Notes Theor Comput Sci
292:135–151. https​://doi.org/10.1016/j.entcs​.2013.02.010

	24.	 Canny J (1986) A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell 6:679–698. https​://doi.
org/10.1109/TPAMI​.1986.47678​51

	25.	 Bradski G (2000) The OpenCV Library. Dr Dobb’s J Soft Tools
25:120–125

	26.	 Basha SHS, Dubey SR, Pulabaigari V, Mukherjee S (2020) Impact
of fully connected layers on performance of convolutional neu-
ral networks for image classification. Neurocomputing 378:112–
119. https​://doi.org/10.1016/j.neuco​m.2019.10.008

	27.	 Rawat W, Wang Z (2017) Deep convolutional neural networks for
image classification: a comprehensive review. Neural Comput
29:2352–2449. https​://doi.org/10.1162/neco_a_00990​

	28.	 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classifica-
tion with deep convolutional neural networks. Commun ACM
60(6):84–90. https​://doi.org/10.1145/30653​86

	29.	 Park S, Kwak N (2017) Analysis on the dropout effect in convolu-
tional neural networks. Lecture Notes in Comput Sci 10112:189–
204. https​://doi.org/10.1007/978-3-319-54184​-6_12

	30.	 Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-
tion. In: 3rd international conference on learning representa-
tions (ICLR 2015), pp 1–15. http://arxiv​.org/abs/1412.6980

	31.	 Bridle JS (1990) Probabilistic interpretation of feedforward
classification network outputs with relationships to statistical
pattern recognition. Neurocomputing 68:227–236. https​://doi.
org/10.1007/978-3-642-76153​-9_28

	32.	 Friedman M (1937) The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. J Am Stat Assoc
32(200):675–701. https​://doi.org/10.1080/01621​459.1937.10503​
522

https://doi.org/10.1007/978-3-642-24031-7_48
https://doi.org/10.1007/978-3-642-24031-7_48
https://doi.org/10.1109/CBMI.2007.385396
https://doi.org/10.1109/CBMI.2007.385396
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1109/IWSSIP.2019.8787299
https://doi.org/10.1109/IWSSIP.2019.8787299
https://doi.org/10.1109/iV.2017.37
https://doi.org/10.1109/iV.2017.37
https://doi.org/10.1109/IJCNN.2018.8489315
https://doi.org/10.1109/IJCNN.2018.8489315
https://doi.org/10.1016/j.sigpro.2015.09.027
https://doi.org/10.1016/j.sigpro.2015.09.027
https://doi.org/10.1109/WACV.2007.17
https://arxiv.org/abs/1906.11906
https://arxiv.org/abs/1906.11906
https://doi.org/10.1109/IADCC.2018.8692104
https://doi.org/10.1109/ISMVL.2013.3
https://doi.org/10.1109/ICMLC.2008.4620524
https://doi.org/10.1016/j.cie.2012.03.002
https://doi.org/10.1080/00207543.2013.848483
https://doi.org/10.1080/00207543.2013.848483
https://doi.org/10.1016/j.ins.2017.05.028
https://doi.org/10.1016/j.ins.2017.05.028
https://doi.org/10.1007/978-3-319-52773-4_32
https://doi.org/10.1007/978-3-319-52773-4_32
https://doi.org/10.1145/2815833.2816956
https://doi.org/10.1109/ICDIM.2011.6093320
https://doi.org/10.1109/ICDIM.2011.6093320
https://doi.org/10.1109/WFCS.2019.8757938
https://doi.org/10.1109/WFCS.2019.8757938
https://doi.org/10.1016/j.entcs.2013.02.010
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-319-54184-6_12
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1250 | https://doi.org/10.1007/s42452-020-3055-y

	33.	 Hodges JL, Lehmann EL (1962) Ranks methods for combination
of independent experiments in analysis of variance. Ann Math
Stat 33:482–497. https​://doi.org/10.1007/978-1-4614-1412-4_35

	34.	 Quade D (1979) Using weighted rankings in the analysis of
complete blocks with additive block effects. J Am Stat Assoc
74:680–683. https​://doi.org/10.2307/22869​91

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-1-4614-1412-4_35
https://doi.org/10.2307/2286991

	Multi-label classification of line chart images using convolutional neural networks
	Abstract
	1 Introduction
	2 Motivation
	3 Related works
	4 Materials and methods
	4.1 Multi-label classification
	4.1.1 Label powerset method
	4.1.2 Binary relevance method

	4.2 Image preprocessing
	4.3 Convolutional neural network
	4.4 The proposed approach

	5 Experimental studies
	5.1 Dataset description
	5.2 Experimental settings
	5.3 Experimental results
	5.3.1 Results of the LP-CNN method
	5.3.2 Results of the BR-CNN method
	5.3.3 Comparison of LP-CNN and BR-CNN Methods

	6 Conclusion and future works
	References

