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Abstract
In this work high performance liquid chromatography coupled to thermal lens spectrometry (HPLC-TLS) was applied for 
monitoring of vinylphenolic pyranoanthocyanins formation during the fermentation of Pinot Noir wines. Vinylphenolic 
pyranoanthocyanins are wine pigments, present in low concentrations, but very important for wine colour stability. 
Fermentation process was conducted with four different yeast strains, used as starters, either in sequential fermenta-
tion of non-Saccharomyces with S. cerevisiae yeast or as single fermentation with S. cerevisiae yeasts in order to test the 
applicability of developed method for monitoring of selected compounds in real wine fermentation experiments. The 
developed HPLC-TLS method showed higher sensitivity compared to HPLC coupled to diode array detection (DAD) 
technique for particular wine colour compounds. Obtained limits of detection (LODs), were 6- and 22-times lower in 
comparison to HPLC–DAD in gradient and isocratic elution mode, respectively, whereas limits of quantification (LOQs) 
5 and 18-times lower. Lower LODs enabled earlier observation of vinylphenolic pyranoanthocyanins formation during 
fermentation (already at day 7) in the case of HPLC-TLS method in gradient mode, while by using HPLC–DAD in gradi-
ent elution mode the formation of vinylphenolic pyranoanthocyanins was noticed only after 12 days of fermentation.

Keywords  Thermal lens spectrometry (TLS) · High performance liquid chromatography (HPLC) · Pyranoanthocyanins · 
Wine · Yeasts

1  Introduction

The colour of red wines is one of their most important 
sensorial characteristics. It results from the presence of 
anthocyanins, phenolic compounds that are extracted 
from grape skins during maceration and fermentation. 
The anthocyanins usually undergo different chemical 
changes already during the fermentation and also later 
during wine maturation and ageing [1, 2], however most 

of these changes go in the direction of non-desirable wine 
colour loss [3]. That is why numerous research efforts of 
wine chemists are directed towards finding new ways to 
preserve and/or improve wine colour, especially for the red 
wine cultivars that are known to be poor in colour [4, 5]. 
Pyranoanthocyanins are currently acknowledged as one 
of the most important anthocyanin derivatives crucial for 
the stability of wine colour, especially for those wines that 
are known to be less rich in anthocyanin pigments such as 
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Pinot Noir (PN) wines [6–8]. One possible way of improv-
ing wine colour is through synthesis of pyranoanthocya-
nins, which can be formed with reaction of anthocyanins 
and yeast metabolites released during fermentation [9]. 
Compared to anthocyanins they are less susceptible to pH 
changes and SO2 decolouration [10, 11]. There are three 
main types of pyranoanthocyanins found in wines; vitisins, 
vinylphenolic pyranoanthocyanins and pyranoanthocya-
nin-flavanols [12].

The synthesis of vinylphenolic pyranoanthocyanins 
takes place in the presence of yeasts as they transform 
grape hydroxycinnamic acids into reactive vinylphenols, 
which in turn condense with anthocyanins and form stable 
vinylphenolic pyranoanthocyanins. The transformation of 
hydroxycinnamic acids into reactive vinylphenols requires 
the presence of hydroxycinnamate decarboxylase enzyme 
(HCDC), an enzyme, which yeasts can possess, but the 
activity varies between species and strains a lot [13–17]. 
Furthermore, yeasts also influence other sensory proper-
ties like wine aroma and flavour, not only colour, empha-
sizing the role of detailed yeast characterization in the 
selection process of wine yeasts. Thus, the wine industry 
is focused on the development of new yeast strains or their 
combinations to improve the fermentation performance, 
as well as wine quality [18].

High performance liquid chromatography (HPLC) with 
gradient elution on C18 columns belongs to the group of 
the most widely used analytical techniques for anthocya-
nin and pyranoanthocyanin analysis. HPLC-VIS detection, 
photodiode array detection (HPLC–DAD), as well as mass 
spectrometry (HPLC–MS) or tandem mass spectrometry 
(HPLC–MS/MS) [15–17, 19–27] are conventionally used 
for detection of anthocyanins and pyranoanthocyanins 
in wines. Both HPLC–MS and HPLC–MS/MS provide sensi-
tive and reliable tool for detection of anthocyanins and 
pyranoanthocyanins in the winemaking processes [28, 29]. 
Unfortunately, they are expensive and not always available 
to the wine producers or researchers working in the field 
of wine yeast selection or fermentation. Reported LODs 

and LOQs from HPLC-VIS-DAD-MS/MS methods are evi-
dent from the Table 1. Thermal lens spectrometry (TLS) has 
already been proven to be sensitive analytical tool with 
low LODs (comparable to MS detection) with no sample 
preparation required for the analysis of other bioactive 
compounds in complex biological matrices [30, 31], mak-
ing it potentially powerful tool for the analysis of pyrano-
anthocyanins in wine and wine-like solutions.

TLS belongs to a group of photothermal techniques and 
is based on the thermal lens effect first time reported in 
the 1964 [32]. Since then TLS technique found applications 
in analytical chemistry, physical chemistry, physics, bio-
chemistry, etc. [31, 33–46]. It provides high sensitivity for 
detection of non-fluorescent analytes and enables analysis 
of small volume (sub μL) samples as well as on-line detec-
tion in liquid chromatography and flow injection analy-
sis. The application of TLS in chemical analysis is still not 
widespread due to the limited availability of laser sources, 
especially in the UV spectral region. Its main disadvantage 
is limited selectivity, however the problem can be over-
come by coupling TLS to separation techniques such as 
HPLC [37, 47]. Furthermore, TLS signal depends on the 
solvent’s opto-thermal properties and is strongly affected 
by the changes in eluent composition. The resulting high 
level of baseline noise, caused by incomplete mixing of 
eluents considerably increases the LODs in gradient elu-
tion mode [48–50]. Thus, this technique is rarely used with 
gradient elution mode HPLC. However, the problem can be 
to some extent reduced by inserting a mixing coil or pre-
column into the system, as mixing coil improves mixing 
of the eluents, resulting in decreased LODs [49]. HPLC-TLS 
has been previously used for determination of β-carotenes 
in blood plasma [51], fish oil-based supplementary drugs 
[52], and vegetable oils [53]. Furthermore, HPLC-TLS has 
found application in determination of bilirubin and bili-
verdin in blood serum [30, 31], offering 50-100 (200) times 
lower limit of detection compared to HPLC–DAD [34, 38]. 
To the best of our knowledge, HPLC-TLS has not been yet 
applied for analysis of any anthocyanins or anthocyanin 

Table 1   LOD/LOQs values of different HPLC/LC/UHPLC methods for analysis of anthocyanins and pyranoanthocyanins in wine or grape skin 
samples

Method Sample type LOD LOQ References

µHPLC–MS/MS Different anthocyanins and pyranoanthocyanins in 
diluted wine (expressed as Mvd-3-glc equivalents)

0.221–0.604 µg/L 0.274–1.157 µg/L [25]

HPLC–DAD Mvd-3-glc standard 0.41 µg/mL 1.24 µg/mL [27]
HPLC–DAD Mvd-3-glc standard 0.15 mg/L 0.55 mg/L [19]
LC–MS Mvd-3-glc

standard
9 ng/mL 27 ng/mL [24]

µHPLC–PDA Mvd-3-glc standard 0.10 mg/kg 0.31 mg/kg [20]
HPLC-VIS Mvd-3-glc standard 2.9 mg/kg 8.9 mg/kg [26]
µHPLC-TQ-MS Mvd-3-glc standard 8 µg/L 79 µg/L [21]
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derived components in red wines or in any other food of 
fruit origin or related studies.

The objective of this work was to develop a HPLC-TLS 
method for determination of vinylphenolic pyranoantho-
cyanins and use it to monitor the formation of vinylphe-
nolic pyranoanthocyanins during production of Pinot Noir 
wines, as well as in characterization of micro scale wine 
yeasts fermentation processes (very low volume fermenta-
tion batches—1.5 mL). We aimed to test whether HPLC-TLC 
(compared to the HPLC–DAD routine method) would ena-
ble better sensitivity, along with successful identification 
and quantification of vinylphenolic pyranoanthocyanins in 
lower sample volumes, without any sample pre-concen-
tration step of complex biological wine sample matrices. 
Moreover, the ability of non-Saccharomyces yeast cul-
tures, used as starters to produce stable pigments called 
vinylphenolic pyranoanthocyanins was investigated. The 
monitoring of vinylphenolic pyranoanthocyanins’ forma-
tion was performed in sequential fermentations of two 
non-Saccharomyces yeasts Pichia guilliermondii and Wick-
erhamomyces anomalus with two S. cerevisiae yeasts and 
single fermentations with S. cerevisiae yeasts in order to 
mimic the real fermentation processes and show the appli-
cability of such analytical technique in wine chemistry 
and wine microbiology research experiments. The time of 
pyranoanthocyanin formation in fermentation procedure 
is important for new yeast strains characterisation in the 
processes of becoming a selected yeast inoculum. Since 
the new non-Saccharomyces yeast strains, already known 
to produce stable red wine pigments in higher extent, are 
usually not able to finish the fermentation of a wine, opti-
mization of sequential yeast inoculations conditions for 
the best desired fermentation results (in this case colour 
of the end wine) are very important as well in this field. 
The results obtained by the application of the developed 
technique were compared to those provided by the use of 
isocratic and gradient HPLC–DAD method.

2 � Materials and methods

2.1 � Materials

HPLC grade methanol was purchased from J.T. Baker 
(Deventer, The Netherlands), citric acid (≥ 99.5%), magne-
sium sulphate (anhydrous, ≥ 99.5%), malic acid (≥ 99.0%), 
p-coumaric acid (≥ 98.0%,), potassium phosphate 
monobasic (for molecular biology, ≥ 98.0%), tartaric acid 
(≥ 99.5%), and trifluoroacetic acid (Reagentplus®, 99%) 
were purchased from Sigma-Aldrich (Steinheim, Germany). 
Calcium chloride dihydrate (≥ 99.0%) and glucose (for bio-
technology) were purchased from VWR (Wien, Austria). 
Fructose (≥ 99.0%) was purchased from Alfa Aesar (Kandel, 

Germany). Double deionized water (ddH2O) was used for 
preparation of all aqueous solutions (18.2 MOhm, ELGA 
LabWater, High Wycombe, UK). Malvidin-3-O-glucoside 
standard (≥ 95.0%) was purchased from Extrasynthese 
(Genay, France). 100 mg/L stock solution of malvidin-3-O-
glucoside standard was prepared in methanol and stored 
at −20 °C. Prior to the analysis appropriate volume of 
malvidin-3-O-glucoside stock solution was evaporated to 
dryness using Genevac™ miVac centrifugal concentrator 
(Ipswich, UK) and reconstituted in mobile phase A (0.2% 
trifluoroacetic acid in ddH2O) in order to prepare standard 
solutions for calibration.

2.2 � Wine fermentation sample preparation

We have prepared two types of samples; synthetic wine 
must samples and real samples taken during fermentation 
of Pinot Noir grapes. Synthetic wine must samples were 
prepared as described in the Sect. 2.3.3 in order to have 
controlled conditions of pyranoanthocyanin synthesis 
for optimization of the HPLC-TLS method. After optimiza-
tion of developed HPLC-TLS method, experiment with a 
lab-scale Pinot Noir grape fermentation was conducted 
and samples were taken and analyses at different days of 
fermentation process. Lab-scale wine fermentation proce-
dure is described in detail in the Sect. 2.4.

2.2.1 � Preparation of yeasts for fermentation experiments

Native Saccharomyces cerevisiae and non-Saccharomyces 
yeasts with high pyranoanthocyanin formation potential 
were selected based on previously published study by 
Topić Božič et al. [54]. Therefore, two Saccharomyces cerevi-
siae strains were used, Fermol Premier Cru (FPC) (commer-
cial strain, AEB Group, Italy) and ZIM2180 (native strain). 
Among the non-Saccharomyces strains Pichia guilliermondii 
ZIM624 and Wickerhamomyces anomalus S138 were cho-
sen for experiments. According to Topić Božič et al. [54], 
yeasts were streaked from cryo-cultures, stored in 15% 
glycerol in in-house yeast collection, onto Wallerstein Lab 
(WL) plates and incubated for 48 h at 25 °C. Thereafter, 
pre-cultures were prepared by inoculating colonies from 
WL plates into 50 mL of YPD (composed of 1% (w/v) yeast 
extract, 2% (w/v) peptone, 2% (w/v) glucose) medium in 
250 mL sterile Erlenmeyer flasks. Pre-cultures were incu-
bated for 24 h at 25 °C with shaking at 250 rpm. Optical 
density (absorbance at 600 nm), determined by UV–Vis 
spectrophotometer (Perkin-Elmer, Lambda, Waltham, 
Massachusetts, USA) (OD600) of washed pre-cultures was 
checked and adjusted to OD600 = 1 with 0.85% sterile 
saline solution, if necessary. The final OD600, i.e. concen-
tration of yeast inoculum in lab-scale fermentations was 
unified among experiments and set to be 0.1 AU.
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2.3 � Micro‑fermentation samples

2.3.1 � Preparation of synthetic grape must (SGM)

SGM media was prepared according to Henscke and 
Jiranek [55] with some modifications. Briefly, SGM 
medium was made from fructose and glucose in the ratio 
1:1, tartaric acid, malic acid, citric acid, KH2PO4, MgSO4, 
CaCl2*2H2O, vitamins, trace minerals and amino acids. The 
pH of SGM was adjusted to 3.5 to mimic the pH of wine. 
Stock solutions of amino acids, trace minerals and vitamins 
were prepared in ddH2O and filtered through sterile 0.22 
µm PES filter (VWR, Austria) and kept at 4 °C.

2.3.2 � Pinot Noir skin extract preparation

PN grapes were collected at the harvest in 2017 from a 
wine estate in the Vipava valley in Slovenia. Skins of PN 
grapes were manually peeled from the berries and lyo-
philized (Kambič Lio5pb, Slovenia). Following lyophiliza-
tion, skins were ground in liquid N2 and stored at − 20 
°C. Extraction of anthocyanins from ground skins was as 
followed: To 1 g of ground skin, 20 mL of methanol was 
added. The solution was ultrasonicated for 15 min and 
afterwards centrifuged (Eppendorf 5804, Hamburg, Ger-
many) for 5 min at 6000 rpm. The procedure was repeated 
four times and supernatant was pooled together. Metha-
nol extract was evaporated to dryness using rotary evapo-
rator (Büchi Laborota 4000, Flawil, Switzerland) (25 °C, 90 
rpm) and dry leftover was stored at − 80 °C until further 
use in the fermentation experiments.

2.3.3 � Formation of vinylphenolic pyranoanthocyanins 
in synthetic wine

The PN skin extract dried leftover (extraction procedure 
is described in the Sect. 2.3.2) was reconstituted in 80 mL 
of synthetic grape must (SGM) which was in turn filtered 
through sterile 0.22 µm PES filter (VWR, Austria). Initial con-
centration of total anthocyanins in filtered synthetic grape 
must was determined with HPLC–DAD (Sect. 2.5) and was 
93 mg/L (expressed as malvidin-3-glucoside equivalents). 
Fermentations with S. cerevisiae FPC yeast were carried out 
in deep well microtiter plates using synthetic grape must 
with PN skin extract or synthetic grape must with 50 mg/L 
of malvidin-3-O-glucoside. To the synthetic must solution, 
a p-coumaric acid was added as well in such amount that 
its final concentration reached 50 mg/L. This medium (1.35 
mL) was distributed into deep well microtiter plates. FPC 
yeast culture was inoculated into the medium (150 µL). The 
deep well plate was covered with sterile cover to prevent 
evaporation. The fermentation spanned for 10 days and 
was performed in four replicates.

2.4 � Lab‑scale wine fermentation

Wine fermentations were performed according to stand-
ard technological protocol for red winemaking [56], while 
yeast inoculation strategy was following the one already 
described by Topić Božič et al. [54]. Fresh Pinot Noir grapes 
were destemmed and crushed. The fermentations were 
performed in four replicates in 1L volumetric flasks with 
fermentation caps. The fermentation caps were punched 
twice daily and all treatments were macerated for 7 days. 
After 7 days, the wine was pressed and fermented until 
the concentration of sugars reached concentrations lower 
than 2 g/L which was determined spectrophotometri-
cally (Perkin-Elmer, Lambda, Waltham, Massachusetts, 
USA) with d-Fructose/d-Glucose Assay Kit enzymatic kit 
from Megazyme (Madrid, Spain) according to producer 
instructions. Six different experiments (i.e. fermentations) 
were performed with four different yeasts either as single 
fermentations of S. cerevisiae yeasts, or sequential fermen-
tations of non-Saccharomyces with Saccharomyces yeasts 
(FPC, ZIM2180, S138 + FPC, ZIM624 + FPC, S138 + ZIM2180, 
ZIM624 + ZIM2180). In the case of sequential fermenta-
tions, firstly non-Saccharomyces yeast was inoculated and 
at the day three of fermentation process, S. cerevisiae yeast 
was inoculated. Fermentation with single yeast inocula-
tion lasted for 16 days, while sequential fermentations 
spanned for 21 days. After fermentations the wines were 
clarified and racked. Prior to bottling, 50 mg/L of free SO2 
was added in the form of H2SO3 (5–6% (v/v)) according to 
manufacturer instructions (Agrolit, Litija, Slovenia). During 
fermentation, sampling was performed at day 2, 7, 12 and 
at the bottling day (day 16 for single culture fermentation 
and day 21 for sequential fermentation) in order to follow 
the evolution of pyranoanthocyanins in real grapevine 
fermentations.

2.5 � Quantification and identification 
of anthocyanins and pyranoanthocyanins 
in fermentation and wine samples

2.5.1 � HPLC–DAD

The compounds were analysed using Agilent Technolo-
gies 1100 system (Palo Alto, California, USA) HPLC chro-
matograph equipped with a quaternary pump, an autosa-
mpler and photo-diode array detector. Gradient elution 
of mobile phase A (0.2% trifluoroacetic acid in water) and 
mobile phase B (0.2% trifluoroacetic acid in methanol) was 
used. Gradient elution was as follows: 0 min 20% B, 0–20 
min 20–45% B, 20–30 min 45–55% B, 30–40 min 55–70% 
B, 40–50 min equilibration to initial conditions with initial 
eluent flowing through the column (80% A, 20% B). Injec-
tion volume was 40 µL. The column used for separation 
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was reverse-phase Phenomenex Luna C18 PFP(2) (250 × 4.6 
mm, 5 µm i.d.) with matching guard column (Phenomenex, 
Torrance, USA). The column temperature was set to 25 °C. 
Wavelength used for detection was 520 nm. Quantification 
was performed using malvidin-3-O-glucoside (Mvd-3-glc) 
(Extrasynthese, France) as external standard. Anthocyanins 
and pyranoanthocyanins were quantified and expressed 
as Mvd-3-glc equivalents.

2.5.2 � HPLC‑TLS

HPLC coupled to TLS detection was performed using an 
HPLC pump (Knauer Smartline pump 1000, Germany), 
Rheodyne manual injector (model 7725i) (Bensheim, 
Germany), 8 µL flow-through detection cell with 1 cm 
optical path length (Hellma, model 178.173-QS, Müll-
heim, Germany) and a dual-beam TLS detection system. 
The experimental set-up is schematically presented in 
the Fig. 1. In each chromatographic run a 20 µL of sample 
or standard solution was injected manually. Step-gradi-
ent elution (initially mobile phase A (0.2% trifluoroacetic 
acid in water) and mobile phase B (0.2% trifluoroacetic 
acid in methanol) in 70/30 (mobile phase A/mobile 
phase B) volume ratio, followed by 60/40 A/B after elu-
tion of malvidin-3-O-glucoside at 5 min). Time of analysis 
was 20 min, followed by column equilibration to the ini-
tial conditions. The column used for separation was the 
reverse-phase Phenomenex Luna C18 PFP(2) (250x4.6 
mm, 5 µm i.d.) with matching guard column (Phenom-
enex, Torrance, USA). Pyranoanthocyanin determination 

was accomplished using a dual-beam mode-mismatched 
thermal lens spectrometer. The excitation beam (EB) 
originating from an argon ion laser tuned to 514.5 nm 
(Innova 70, Coherent, providing 350 mW power, Palo 
Alto, California, USA) and modulated by a mechanical 
chopper (Control Unit 300C, chopping head 300CD, 
chopping discs 300H, Scitec Instruments, Trowbridge, 
UK) at 24 Hz, that provided the maximum signal to noise 
ratio, was focused onto the sample using a 70 mm focal 
length lens (Edmund Optics, York, UK). As a result of EB 
energy loss when reflection from the mirrors, its power 
was reduced to the value of 160 mW at the location of 
the flow-through detection cell. The probe beam PB 
(623.8 nm) originated from a 2 mW helium neon-laser 
(Melles Griot, Uniphase, Model 1103P, Carlsbad, Califor-
nia, USA) was focused by a 25 mm diameter lens of 70 
mm focal distance (Edmund Optics, York, UK) to have its 
waist placed at 31/2 times the confocal distance beyond 
the sample, what ensures the condition for achieving 
maximum TLS signal [31].

Collinear propagation of the excitation and probe 
beams was achieved with a dichroic mirror (Melles 
Griot, Carlsbad, California, USA), which directed both 
beams through the flow-through cell. The changes in 
the probe-beam intensity were monitored by a photo-
diode (Thorlabs, model PDA 36A-EC, Newton, New Jer-
sey, USA) equipped with an interference filter (633 nm, 
Thorlabs, model PDA 36A-EC, Newton, New Jersey, USA), 
connected to a lock-in amplifier (Stanford Research 
Instruments, model SR830 DP, Sunnyvale, USA) which 

Fig. 1   Schematic presentation of dual-beam HPLC-TLS experimental setup. Legend: excitation laser (1); chopper (2); dichroic mirror (3); flow-
through cell (4); interference filter (5); photodiode (6); probe beam laser (7), mirrors (8)
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amplified only the components of the input signal that 
appeared with the frequency of the reference signal.

2.5.3 � Identification of pyranoanthocyanins

Since commercial standards of pyranoanthocyanins are 
still not available, vinylphenolic pyranoanthocyanins 
were synthesized and isolated using semi-preparative 
HPLC–DAD [57] for the purpose of pyranoanthocyanin 
identification. The synthesis was focused on the three 
main vinylphenolic pyranoanthocyanins detected in 
wines [12, 15].

Vinylphenolic pyranoanthocyanins were obtained 
by fermentation of synthetic must containing Pinot 
Noir grape skin anthocyanins in presence of yeast that 
exhibit high hydroxycinnamate decarboxylase (HCDC) 
activity. Produced pyranoanthocyanins were isolated 
using Agilent Infinity 1260 HPLC–DAD (Agilent Tech-
nologies, Palo Alto, California, USA) operating in a 
semi-preparative mode. Separation column used was 
Zorbax Pursuit 5 C18, 250 × 10 mm (Agilent Technolo-
gies, Agilent Technologies, Palo Alto, California, USA). 
Isolated pyranoanthocyanins were identified using 
UHPLC–DAD–MS system (Accela 1250 coupled to an 
LTQ Velos MS, Thermo Fisher Scientific, Waltham, MA, 
USA). Gradient elution of mobile phase A (2.2% formic 
acid in ddH2O) and mobile phase B (2.2% formic acid, 
85% acetonitrile and 12.8% ddH2O) was applied at the 
rate of 1 mL min−1 as followed: 0 min 100% A, 0–5 min 
10% B, 5–20 min 10–35% B, 20–22 min 35% B, 22–26 min 
35–45% B, 26–27 min 45–60% B, 27–32 min equilibra-
tion to initial conditions. The column used was Kine-
tex EVO C18 (250 × 4.6 mm, 5 µm i.d.) with matching 
guard column (Phenomenex, Torrance, USA) with set 
temperature at 40 °C. 20 µL of sample was injected into 
the HPLC. The HESI parameters were: heater tempera-
ture 400 °C, drying gas (N2), sheath gas flow rate 60 a.u. 
(arbitrary units), auxiliary gas flow rate 10 a.u., sweep 
gas flor rate 2 a.u., spray voltage 3 kV, transfer capillary 
temperature 350 °C. Mass spectrometry was performed 
in the positive scan mode (scan range m/z 250–1200). 
Fragmentation of precursor ions was performed with a 
normalized collision energy of 35% [57].

The identities of isolated pyranoanthocyanins, MS, 
UV–Vis spectral data and HPLC-TLS retention times are 
presented in the Table  4. MSn fragments of isolated 
pyranoanthocyanins are presented in the supplemen-
tary information. The isolated compounds served in 
HPLC–DAD and HPLC-TLC measurements as standards 
for identification purposes.

3 � Results

3.1 � Preliminary TLS measurements and selection 
of mobile phase composition

In the case of TLS detection, the implementation of gradi-
ent elution has proven to be less favourable with respect 
to limits of detection. During gradient elution, eluent 
composition and with it optothermal properties of the 
eluent change, which can generate strong local gradients 
of refractive indexes within the eluent due to incomplete 
mixing. This affects TLS signal, resulting in major fluctua-
tions of baseline noise and subsequently higher LOD val-
ues [49, 50]. Therefore, isocratic elution was applied with 
80/20, 70/30, 65/35 and 60/40 ratios of the solvent A/sol-
vent B in the mobile phase with 1.00 mL/min flow rate. 
The TLS enhancement factor contributed by the higher 
percentage of organic mobile phase (solvent B) was deter-
mined using the average of five chromatographic peak 
areas for 1 mg/L malvidin-3-O-glucoside and compared 
to calculated values according to Eq. 1:

where E is the enhancement factor, P power of the excita-
tion source, λ wavelength of the probe beam, dn/dT is the 
temperature coefficient of refractive index, and k is the 
thermal conductivity of the solvent [58, 59].

For the investigated mobile phases (composition A/B) 
the relative enhancements compared to the mobile phase 
consisting of 80% solvent A and 20% solvent B were cal-
culated as the AreaA/B/Area80/20. The 80/20 composition 
had the lowest enhancement factor due to the highest 
content of water among the tested eluents. The experi-
mentally obtained ratios were compared with theoretically 
calculated ratios for given eluent composition, i.e. EA/B/
E80/20. The enhancement factors were calculated using 
thermooptical parameters (dn/dT, k) for pure solvents [60] 
and Eq. (1). Approximate values of dn/dT and k for eluents 
were calculated using Eq. (2) and Eq. (3), which are appli-
cable to mixtures [61]:

Thermal conductivity (k) for eluents used in this study 
was calculated with Filippov equation,

where F is volume fraction of the pure solvent. The sol-
vents included in the calculation were water and metha-
nol as the most abundant constituents of the investigated 
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eluents, therefore having the main influence on the 
enhancement of the signal. Trifluoroacetic acid was not 
used in the calculations due to being present in signifi-
cantly lower concentration (0.2%).

Chromatographic peak areas (Fig. 2) show the expected 
increase with decreasing volume fraction of water present 
in mobile phase due to higher temperature coefficient of 
the refractive index (dn/dT) and lower thermal conductiv-
ity (k) of organic solvent (i.e. methanol) in comparison to 
water [62–64]. The increase in the experimental enhance-
ment factors with respect to enhancement factors for 
A/B = 80/20 mobile phase composition (EA/B/E80/20) is in 
agreement with theoretically predicted ratios of enhance-
ment factors (EA/B/E80/20)t which also show increase with 
decreasing water volume fraction (Table 2). When com-
paring the signal of malvidin-3-O-glucoside when 80/20 
A/B and 60/40 A/B mobile phase are used, 70% increase 
in the signal of malvidin-3-O-glucoside can be observed 
with 60/40 A/B mobile phase (Fig. 3).

3.2 � Optimization of mobile phase composition 
for HPLC‑TLC analyses

Although the enhancement of the TLS signal was higher 
when 65/35 and 60/40 A/B eluents were used in our study, 
with these solvent systems we could not retain the antho-
cyanins on the column and Mvd-3-glc was eluted with the 
solvent front (Fig. 3). Since the quantification and calibra-
tion could not be done in such conditions, a 70/30 A/B 
mobile phase in the isocratic mode was selected for sepa-
ration and detection of wine pigments with HPLC-TLS in 
further experiments.

However, under conditions of isocratic elution, sepa-
ration of pyranoanthocyanin peaks from pigments in 
micro-fermentation experiment samples (synthetic wine 
fermented with commercial FPC yeast) was not possible. 
Therefore, step gradient was introduced with changing the 

mobile phase composition from 70/30 A/B to 60/40 right 
after the elution of Mvd-3-glc (Fig. 4) (at 5 min). The change 
in the eluent composition resulted in TLS signal fluctua-
tion over a 30 s time frame, between retention times of 
11 and 11.5 min as it is highlighted with the dashed-line 
red circle in Fig. 5, This signal fluctuation is not due to any 
photothermal effect, but is due to the change in the sol-
vent composition which results in a non-uniform refrac-
tive index which distorts the probe beam and deflects it 
from its original propagation, as it was also reported earlier 
[31, 50]. This is exhibited as a change in the signal because 
probe beam intensity at the detector changes, however it 
does not affect the detection of targeted pyranoanthocya-
nins as they elute after this change (Table 4).

3.3 � HPLC‑TLS and HPLC–DAD method comparison

The LODs and LOQs from HPLC-TLS and HPLC–DAD are 
presented in the Table 3. They were calculated for antho-
cyanin standard Mvd-3-glc as concentration providing 
a signal-to-noise ratio of 3 for LOD and 10 for LOQ [65]. 
The achieved LOD and LOQs values for HPLC-TLS method 
with 514.5 nm excitation beam were 6.5 times lower than 

Fig. 2   The enhancement of 
chromatographic peak area for 
1 mg/L malvidin-3-O-glucoside 
achieved by using higher 
percentage of solvent B

Table 2   Comparison of the ratios of malvidin-3-O-glucoside peak 
area (AreaA/B/Area80/20) and the ratios of theoretically determined 
enhancement factors for investigated mobile phases

% A/B 80/20 70/30 65/35 60/40

Area (V*s) 0.27 ± 0.03 0.34 ± 0.02 0.43 ± 0.01 0.47 ± 0.06
Enhancement 

experimen-
tal AA/B/
A80/20

1 ± 0.00 1.26 ± 0.02 1.59 ± 0.04 1.72 ± 0.02

Enhancement 
theoretical 
EA/B/E80/20

1 1.30 1.47 1.65
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for gradient HPLC–DAD method (7 and 45 µg/L, respec-
tively). Based on the literature data available (Table 1), 
the HPLC-TLS method shows superior LODs and LOQs 
to several published HPLC–DAD and HPLC–MS meth-
ods (Table  1). Just recent publication from 2020 by 
Zhang et al. [25] reports about LODs of different wine 
anthocyanins and pyranoanthocyanins (expressed as 
mvd-3-glc) below 1 µg/L measured with HPLC–MS/MS, 
however MS/MS is still not routinely used for monitor-
ing of anthocyanins and pyranoanthocyanins due to the 
cost. Furthermore, the HPLC-TLS method showed good 
reproducibility expressed as relative standard devia-
tion of peak area for 1 mg/L Mvd-3-glc, which was 8.1%. 
Reproducibility of retention time for 1 mg/L Mvd-3-glc 
was 0.7%. Two HPLC–DAD methods were included in the 
comparison—gradient HPLC–DAD as for the analysis of 
pyranoanthocyanins in wines gradient elution is usually 

Fig. 4   HPLC-TLS chromatograms of synthetic grape must supple-
mented with 50 mg/L of malvidin-3-O-glucoside and 100 mg/L 
p-coumaric acid fermented with commercial FPC yeast using iso-
cratic elution of 70/30 A/B with marked unresolved peaks (left) 

and step gradient elution from 70/30 to 60/40 A/B after elution 
of malvidin-3-O-glucoside (marked with asterisk) at 5 min (right). 
Synthesized malvidin-3-O-glucoside-4-vinylphenol is marked with 
number 2

Fig. 5   HPLC-TLS chromatogram of a blank sample (mobile phase 
A—0.2% trifluoroacetic acid in water) using step gradient elution 
from 70/30 to 60/40 A/B

Table 3   Calibration parameters 
for HPLD-DAD and HPLC-TLS 
methods

* The equation y = kx + n is the equation of the calibration curve, where y is the chromatographic peak 
area, x the concentration of analyte [mg/L], k is the slope of the curve and n is the intercept

Method Gradient HPLC–DAD Isocratic HPLC–DAD HPLC-TLS

Wavelength [nm] 520.0 514.5 514.5
Injection volume [µL] 40 20 20
Linearity range [mg/L] 0.100–500 0.500–500 0.025–10
Slope [k] 4.31 2.29 0.010
Intercept [n]* − 1.2689 − 0.4247 0.0004
R2 0.9973 0.9979 0.9994
LOD [µg/L] 45 160 7
LOQ [µg/L] 140 460 25
System precision [RSD-% using 

standard solutions of 1 mg/L]
7.1 2.2 8.1
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applied [14, 20, 21], and HPLC–DAD performed under 
the same conditions as HPLC-TLS method (detection 
wavelength, step gradient elution, injection volume). 
In the gradient HPLC–DAD the injection volume was 
higher as, higher injection volume results in the better 
sensitivity of the method (lower LOD) [66, 67]. For Mvd-
3-glc HPLC–DAD with step gradient elution provided 
LOD and LOQ 3-times higher compared to continuous 

gradient elution HPLC–DAD. Furthermore, the signal of 
the pyranoanthocyanin Mvd-3-glc-4-VP was four times 
higher either for pure standard or for pyranoanthocya-
nins formed in synthetic wine fermented with commer-
cial FPC yeast (Fig. 6). As gradient HPLC–DAD showed 
superior sensitivity and lower LOD, it was selected for 
further method comparisons with HPLC-TLS (Table 4).

Fig. 6   HPLC–DAD chromatograms of isolated malvidin-3-O-gluco-
side-4-vinylphenol standard (Fig. 6a) and synthesized malvidin-3-O-
glucoside-4-vinylphenol in synthetic wine sample (Fig. 6b) that was 
supplemented with 50 mg/L of malvidin-3-O-glucoside (marked 
with asterisk) and 100 mg/L p-coumaric acid and fermented with 
commercial FPC yeast. Malvidin-3-O-glucoside-4-vinylphenol is 

marked with number 2. Information about identification of the 
peak is presented in the Table  3. Samples were analyzed with 
HPLC–DAD step gradient method with the same conditions as in 
HPLC-TLS method and with gradient HPLC–DAD method. As gradi-
ent HPLC–DAD method showed better sensitivity it was selected 
for future comparison with HPLC-TLS method

Table 4   MS data, λmax and HPLC-TLS chromatogram characteristics (retention time) for isolated vinylphenolic pyranoanthocyanins

*The average retention time [N = 6]. In brackets the RSD of retention time of pyranoanthocyanins is shown. MSn fragments of isolated 
pyranoanthocyanins are shown in the supplementary information

Peak Compound tr HPLC-TLS* [min] MS [m/z] MS/MS MS/MS/MS λmax [nm]

1 Malvidin-3-glucoside-4-vinylcaffeoyl (Pinotin A) 14.1 ± 0.1 [0.4%] 625 463 463,447,402 509
2 Malvidin-3-glucoside-4-vinylphenol 15.1 ± 0.1 [0.4%] 609 447 447,431,414 502
3 Malvidin-3-glucoside-4-vinylguaiacol 16.3 ± 0.1 [0.8%] 639 477 477,462,416 510
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3.4 � Application of HPLC‑TLS in the monitoring 
of vinylphenolic production 
during fermentation in synthetic grape must 
supplemented with Pinot Noir skin extract 
and 50 mg/L p‑coumaric acid

Formation of vinylphenolic pyranoanthocyanins in syn-
thetic grape must, supplemented with Pinot Noir skin 
extract and fermented with commercial S. cerevisiae FPC 
yeast strain was monitored with HPLC-TLS. Sampling took 
place at day 2 and day 10 of the fermentation (Fig. 7). The 
sample is more complex than the one containing only mal-
vidin-3-O-glucoside as a substrate source of anthocyanins 
in pyranoanthocyanin biosynthesis and better represents 
the complexity of wine matrix as red grapes contain sub-
stantial amounts of mostly monomeric anthocyanins, i.e. 
-3-O-monoglucosides of delphinidin, cyanidin, petunidin, 
peonidin and malvidin, with latter being present in the 
highest concentrations [29, 68]. The results showed that 
formation of vinylphenolic pyranoanthocyanin Mvd-4-VP 
occurs already the second day of fermentation, with the 
concentration 0.8 ± 0.0 mg/L. The concentration of Mvd-
4-VP increased till the end of fermentation by almost a fac-
tor of 10–7.6 ± 0.5 mg/L, which can be seen from the Fig. 7. 
With the increase in Mvd-4-VP concentration, the decrease 
in anthocyanin concentration was also observed. It has 
been previously reported that the reaction between Mvd-
3-glc and 4-vinylphenol occurs quickly in synthetic media, 
especially with substrate being present in high concen-
trations, such as 2000 mg/L [69, 70]. The concentration of 
anthocyanins in Pinot Noir skin extract in our medium was 

93 mg/L. However, the concentration of p-coumaric acid in 
grapes and wines is usually in µg/L to low mg/L range [71], 
highlighting the importance of implementing HPLC-TLS in 
yeast characterization in real fermentation samples, due to 
superior sensitivity compared to conventional HPLC–DAD 
method, which is important in yeast starter selection and 
yeast optimization studies with micro-vinifications using 
microtiter plates, where small sample volume is required.

3.5 � The monitoring of the vinylphenolic 
pyranoanthocyanins evolution 
during fermentation of Pinot Noir grapes

Lab-scale fermentations were carried out either as sequen-
tial fermentation of two non-Saccharomyces strains with 
high HCDC activity (P. guilliermondii ZIM624 and W. anom-
alus S138) and S. cerevisiae strain or as single fermentations 
with S. cerevisiae strains (FPC, ZIM2180). The reason behind 
the fermentations was testing of the developed HPLC-TLC 
technique in real wine chemistry experiment. At the com-
pletion of fermentations, we have confirmed the formation 
of three main vinylphenolic pyranoanthocyanins during 
fermentation; malvidin-3-O-glucoside-4-vinylcaffeoyl 
(Pinotin A), Mvd-4-VP and malvidin-3-O-glucoside-4-vi-
nylguaiacol (Mvd-4-VG), with Mvd-4-VP formed in the 
highest concentration, followed by Mvd-4-VG and Pino-
tin A employing the HPLC-TLS. Identification of individual 
pyranoanthocyanins was based in comparison of retention 
times to retention times of synthetic standards. The trend 
of pyranoanthocyanin concentrations was observed in all 
of the six fermentations.

The formation of Mvd-4-VP and Mvd-4-VG was detected 
on the 7th day of fermentation with HPLC-TLS technique, 
although the concentrations were below calculated 
LOD (Table 2). With HPLC–DAD method it was possible 
to observe vinylphenolic pyranoanthocyanin forma-
tion 5 days later, on the 12th day of the fermentation. 
Mvd-4-VP and Mvd-4-VG were detected, although their 
concentration was below calculated LOD (Fig. 8). At the 
end of fermentation all three pyranoanthocyanins were 
detected with both methods although with HPLC–DAD, 
Pinotin A was not quantifiable as its concentration was 
below LOQ of the method (Table 3). With HPLC-TLS, at the 
end of the fermentation, all three vinylphenolic pyrano-
anthocyanins were present in the concentration above 
calculated LOQ (25 µg/L). The Fig. 8 shows only the chro-
matogram for the sequential fermentation of ZIM624 (P. 
guilliermondii yeast) with FPC (S. cerevisiae yeast), while 
similar trend was observed in the profile of synthesized 
pyranoanthocyanins of other five fermentation experi-
ments (S138 + FPC, ZIM624 + ZIM2180, S138 + ZIM2180, 
FPC, ZIM2180). The quantification results showed that 
ZIM624 yeast in sequential fermentation with S. cerevisiae 

Fig. 7   HPLC-TLS chromatograms of synthetic wines supplemented 
with Pinot Noir skin extract and 50 mg/L of p-coumaric acid and 
fermented with commercial S. cerevisiae FPC yeast. Upper chroma-
togram shows wine sampled at day 2 of fermentation and lower 
chromatogram shows wine sampled at day 10 of fermentation. 
Malvidin-3-O-glucoside is marked with asterisk, and malvidin-3-O-
glucoside-4-vinylphenol is marked with number 2
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yeast was superior in the amounts of pyranoanthocyanins 
synthetized. Native S. cerevisiae yeast alone synthesized 
more pyranoanthocyanins than commercial FPC yeast in 
both, single or in sequential fermentations. The calculated 
values for Pinotin A, Mvd-4-VP, and Mvd-4-VG in the case 
of ZIM624 + FPC sequential fermentation were 5-, 37- and 
12-times above the calculated LOQ of the method. The 
concentration ranges for six fermentation experiments for 
Pinotin A, Mvd-4-VP, and Mvd-4-VG were 4- to 9- times, 
19- to 65 times, and 8- to 18-times above LOQ, respectively 
(Additional data about concentrations is shown in the 
supplementary information). HPLC-TLS has been proven 
to be more sensitive in the monitoring of pyranoantho-
cyanin formation compared to used HPLC–DAD methods 
as pyranoanthocyanins were detected earlier in the fer-
mentation process and all of them could be quantified. 
Identification of pyranoanthocyanins was carried out with 
comparison of retention of standards to the ones in the 
wine samples and with standard addition method where 
samples was spiked with individual isolated standard, 
and an increase in the signal of pyranoanthocyanin was 
observed in the spiked samples.

4 � Conclusions

HPLC-TLS technique was applied successfully in wine 
chemistry analysis, for detection and quantification of 
three vinylphenolic pyranoanthocyanins typical for Pinot 
Noir wines in real fermentation experiments. We followed 
six different fermentations employing two native non-
Saccharomyces (Pichia guilliermondii ZIM624 and Wicker-
hamomyces anomalus S138) and two S. cerevisiae strains 
(commercial FPC and native ZIM2180). Applied analytical 
techniques enabled us following the synthesis of stabile 
wine pigments during wine fermentation, as well as com-
parisons in respect to quantification of produced pigments 
during and at the end of the fermentation. The highest 
pyranoanthocyanin concentrations were produced with 
native ZIM2180 Saccharomyces yeast in the sequential fer-
mentation but also in single strain fermentation compared 
to the commercial FPC strain. To the best of our knowledge 
this is the first application of its kind. Although wine is a 
complex matrix, our results showed better performance 
of gradient HPLC-TLS method compared to both gradient 
HPLC–DAD and isocratic HPLC–DAD due to superior sensi-
tivity of the HPLC-TLS method. Because of better sensitivity 
and lower LODs, the formation of vinylphenolic pyranoan-
thocyanins could be detected with HPLC-TLS 5 days ear-
lier in fermentation (day 7) compared to the HPLC–DAD 
technique (day 12 of the fermentation). As wine industry 
is constantly searching for yeast strains that could improve 
wines in terms of color, HPLC-TLS technique could provide 

a useful tool for characterization of wine yeasts with 
desired enological properties in microvinification testing.
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