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Abstract
This study presents an adaptive parameter control structure for the New Local Branching Algorithm (NLBA) to enhance 
the overall efficiency of the algorithm by implementing an exploitation and exploration approach within solution search 
subspaces. In other words, the optimization problem is divided into several sub-problems and the proposed adap-
tive parameter control structure introduces some deterministic rules to check the convergence speed and adapt the 
performance of the algorithm in each subspace. So, the proposed adaptive structure uses an exploration approach to 
avoid becoming trapped at local optimum that may not be the global optimum, as well as an exploitation approach to 
look near good solutions for even better ones at each iteration. To evaluate the performance of the proposed adaptive 
parameter control structure, 26 multi-commodity network design problems are tested. The experimental results of this 
adaptive structure for NLBA (ANLBA) confirm that its performance compared to the original NLBA, a hybrid structure 
that consists of the Self-Adaptive Harmony Search (SAHS) algorithm as a parameter tuning method for NLBA, and CPLEX 
is significantly improved.

Keywords  Local branching algorithm · Parameter setting · Adaptive parameter control · Exploitation · Exploration

1  Introduction

Combinational optimization problems are known to 
encounter many challenges including discrete decision 
variables and a large load of binary variables. Indeed, 
in more involved, real-world applications, finding an 
exact solution can lead to high computational costs, 
so metaheuristic algorithms are often used instead. A 
metaheuristic algorithm has several key parameters that 
affect the performance of the algorithm. Accordingly, an 
appropriate parameter setting helps to enhance the pro-
cess of searching the solution space and lower computa-
tional cost. Given the importance of such parameters, two 
general approaches to the parameter setting have been 
proposed, namely offline and online procedures. Firstly, 

online procedures, hereinafter referred to as parameter 
control methods, adjust parameter values based on real-
time feedback received from the algorithm. Contrarily, the 
offline methods treat the parameters as fixed constants 
during the execution of the algorithm.

A review of the literature related to parameter setting 
for metaheuristic algorithms shows that an appropri-
ate parameter setting provides large contributions to 
improved performance of such algorithms [1]. Focusing 
on the dependence of the algorithm performance on 
the parameter setting, offline methods have been gen-
erally classified into two classes depending on the use 
of explicit models: model-free and model-based [2]. On 
the other hand, the parameter control approach can be 
categorized based on two major aspects: the mechanism 
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by which parameters are changed, and the effects of that 
mechanism on the algorithm. Regarding the mechanisms 
by which parameters are changed, there are three differ-
ent ways for changing the value of a parameter in the 
parameter control methods [3]. The first approach called 
deterministic parameter control which uses some rules to 
change the value of parameters without getting any feed-
back from the performance of the algorithm in the search 
space. The second approach is adaptive parameter control 
which takes some feedback during the execution of the 
algorithm and uses that to set a framework and deter-
mine the direction of the change in the trend of the algo-
rithm for next iterations according to implicit or explicit 
rules. The last one is the self-adaptive parameter control 
approach which is founded on evolutionary algorithms, 
where the evolution of successive generations is used to 
implement a self-adaptive process for parameter setting 
based on the idea that better values of the parameters 
lead to better solutions [3, 4].

Following comprehensive research on the adaptive 
parameter control for evolutionary algorithms, Tvrdik [5] 
used a new conceptual model that subdivided the process 
of parameter adaptation into several steps. In addition to 
this, some researchers emphasized the role of the Differen-
tial Evolution Algorithm (DEA) to formulate adaptive and 
self-adaptive procedures [6–8], and it has been shown 
that the performance of DEA is significantly affected by 
the choice of mutation strategies and control parameters 
[9]. Contrarily, a completely different mechanism in a dif-
ferential evolution algorithm was presented by Zamuda 
and Brest [6] who provided new insight into adaptation 
and self-adaptation by focusing on iteration-temporal 
randomness. That is when the mechanism generates new 
values for a control parameter, randomness of such value 
generation is controlled by a randomness level parameter 
which controls the dynamics of the parameter values and 
improves their propagation through suitable individuals. 
Despite the presence of numerous methods for parameter 
setting, the parameter control approach, especially with its 
adaptive and self-adaptive tools, provides high-accuracy 
changes for adaptation to the trend of the algorithm [5, 
7, 8, 10–13].

Over the last decade of investigations on adaptive 
parameter control approaches in which they should 
dynamically adapt to ever-changing dimensions of the 
problem, Jansen et al. implemented parameter control 
based on offspring population size [14]. In this approach, 
the role of this parameter was determined and a simple 
way was proposed to dynamically change its value based 
on an adaptive procedure. Interestingly, the results con-
firmed that the application of variable offspring popula-
tion size reduced the number of generations remarkably 
with no significant increase in the computational effort. 

Later, Lagos et al. [15] proposed a framework based on 
a genetic programming technique to find optimal values 
of parameters for a Tabu search algorithm. This adaptive 
approach was also implemented on a new swarm intel-
ligence algorithm called Firefly Algorithm (FA) to formu-
late a modified version of FA called FA with adaptive con-
trol parameters (APFA) [16] and coupled FA with a fuzzy 
method to dynamically adapt algorithm parameters to the 
problem [17]. In another investigation on a well-known 
optimization algorithm called Particle Swarm Optimization 
(PSO), Wang et al. [10] proposed a robust and self-adap-
tive learning-based algorithm that could generate initial 
generations of solutions with much better quality. More 
recently, Deng et al. [18, 19] improved the nature-inspired 
optimization algorithm by a multi-population strategy, a 
pheromone updating strategy, and a pheromone diffusion 
mechanism to balance convergence speed as a parameter 
control method. In addition to this, Nseef et al. proposed 
an adaptive parameter control approach using fuzzy logic 
to dynamically adjust the parameter values concerning 
normalized iteration and an error value. To cope with such 
dynamic changes, [20] proposed an adaptive multi-popu-
lation Artificial Bee Colony (ABC) algorithm. Another adap-
tive control approach for the ABC algorithm was proposed 
in Ref [11]. to enhance algorithm performance, ultimately 
formulating a self-adaptive ABC based on the global best 
candidate (SABC-GB). The literature also describes several 
adaptive versions of well-known metaheuristic algorithms 
for parameter setting. For instance, Xia et al. [21] proposed 
Dynamic Ant Colony Optimization (ACO) to improve con-
verge speed and solution quality. Castillo et al. [22] imple-
mented an adaptive parameter control based on a fuzzy 
approach to dynamically control a particular parameter 
in an ACO algorithm. Another endeavor to improve the 
quality of ACO was presented by Deng et al. [23] who 
introduced a genetic and ant colony adaptive collabora-
tive optimization (MGACACO) algorithm for solving com-
plex problems. This algorithm combined the exploration 
capability of Genetic Algorithm (GA) and the stochastic 
capability of ACO as an adaptive tool for parameter control 
to make a uniform pheromone distribution and find the 
optimal solution.

Exploration and exploitation are common in adaptive 
parameter control approaches to enhancing the conver-
gence of an algorithm. For example, Liu et al. proposed a 
learning-based PSO by reinforcement learning to control 
its exploration and exploitation, and [24] introduced adap-
tive PSO with supervised learning and control (APSOSLC). 
Similarly [25, 26], improved PSO based on an exploring 
strategy which can be dependently adjusted. Further-
more, [27] Attempted to set parameters of PSO adaptively 
while maintaining the diversity to improve its exploration 
capability which is similar to research done by Song et al. 
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[28] which led to enhanced PSO by an exploration and 
exploitation approach to increase the algorithm’s robust-
ness against premature convergence. Also, [29] defined 
adaptive PSO with four evolutionary states: exploration, 
exploitation, convergence, and jumping out. Inspired by 
supervised learning and predictive control strategies in 
machine learning, this approach aimed at extending the 
swarm diversity and speeding up the convergence. On 
another note, [30] Improved moth-flame optimization 
algorithm by adopted Cauchy mutation to enhance the 
global exploration ability. Similarly, Xu et al. [31] proposed 
a new framework for the moth-flame optimization algo-
rithm by Gaussian mutation coupled with chaotic local 
search to get a more stable balance between explora-
tion and exploitation. Relatedly, Lin and Gen [4] focused 
on how to strike a balance between the exploration and 
exploitation of the solution space in different algorithms 
like free flower based on a pairwise testing strategy [32]. 
Due to the various dimension of different problems, the 
balance should be changed dynamically regarding the 
current status of the evolution process [33].

The main goal of this study is to propose an adaptive 
parameter control structure able to improve the search 
process while decreasing computational cost through 
changing parameters based on exploration and exploi-
tation within solution subspaces. When it comes to the 
many binary variables in Mixed Integer Programming (MIP) 
applications, the adaptive parameter control approach 
can keep from becoming trapped at a local optimum 
by dynamically adjusting the algorithm through getting 
feedback. In the present paper, an adaptive parameter 
control structure is proposed for the New Local Branch-
ing Algorithm (NLBA) [34] which is an extension to the 
Local Branching Algorithm (LBA) [35]. In other words, we 
proposed an adaptive structure in which an optimization 
problem is divided into several sub-problems to solve. So, 
the proposed adaptive parameter control structure checks 
the status of the given feasible solution and the elapsed 
processing time at each iteration to decide on explora-
tion or exploitation of the search subspace for the next 
iterations.

The paper is organized as follows. Firstly, Sect. 2, pre-
sents LBA and the NLBA together with the correspond-
ing pseudocode. Then, in Sect. 3, the proposed adaptive 
parameter control structure for the NLBA, and different 
solutions that are likely to show up during the execution 
of the algorithm are thoroughly explained. Following this, 
Sect. 4 presents a discussion on the mathematical formula-
tion of the multi-commodity network design problems. In 
Sect. 5, the performance of the proposed adaptive param-
eter control structure is evaluated and 26 experimental 
instances are tested. In this section, the proposed adaptive 
parameter control structure is compared to the original 

NLBA, the NLBA using Self-Adaptive Harmony Search 
(SAHS) to tune its parameters, and CPLEX. Finally, Sect. 6 
presents a discussion of experimental results and conclu-
sions, and references are listed in Sect. 7.

2 � NLBA and the original LBA framework

First proposed by Fischetti and Lodi [35], LBA is a tech-
nique for solving MIP problems. Although it is known as 
an exact solution method, it becomes heuristic by redefin-
ing some control parameters to find high-quality solutions 
utilizing a MIP solver. In practice, this method uses the MIP 
solver as a black box tool to effectively explore the solu-
tion subspaces defined at a strategic level by the external 
branching framework as a Local Branching Cut (LBC).

To clarify the framework of LBA, a generic MIP model 
with 0–1 variables and the additional constraint LBC are 
shown in Eq. (1) to Eq. (5).

The general framework of LBA can be defined as fol-
lows [35]:

Equation (1) is the objective function (P) with the best 
feasible solution x which satisfies the constraint of Eq. (2). 
Consider j to be the index of a MIP variable. Concerning 
Eqs. (3) and (4), the variables are divided into the sets � 
and � , where � contains binary variables, and � contains 
general integer and continuous variables. If 

−
x is a given 

feasible solution of (P), for each possible incumbent solu-
tion 

−
x of (P) and a positive integer parameter k, the k-OPT 

neighborhood N ( 
−
x , k) of 

−
x would be the set of feasible 

solutions of (P) satisfying the additional constraint LBC, 
Eq. (5). The two terms in the left-hand side of the Eq. (5) 
count the number of binary variables flipping their values 
to 

−
x , either from 1 to 0 or from 0 to 1, respectively.

The purpose of the LBA is that the LBC is a branching 
criterion within an enumerative scheme for (P). So, for the 
given incumbent solution 

−
x , the solution space associ-

ated with the current branching node can be partitioned 
through a disjunction, Eq. (6).

(1)(P) Min CTx

(2)s.t Ax ≥ b

(3)xj ∈ {0, 1} ∀j ∈ � ≠ �

(4)xj ≠ 0 ∀j ∈ �

(5)
Δ
(
x, x

)
=

∑
j∈�∶xj=1

(1 − xj) +
∑

j∈�∶xj=0

xj ≤ k
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The value of parameter k should be chosen as the larg-
est value producing a left branch sub-problem which is 
likely to be solved more easily than the one associated 
with its parent. The idea is that the neighborhood N ( 

−
x, k) 

corresponding to the left branch must be small enough 
to be optimized within a short processing time, but still 
large enough to have a high probability of containing bet-
ter solutions than 

−
x . But only the right branches get away 

from the previously-seen solution subspace without call-
ing the black box to solve the sub-problem.

As mentioned before, LBA is a great technique for MIP 
problems and has been used in numerous research works. 
For instance, Fallahia et al. [36] used it for solving the Set 
Covering Problems utilizing the Design of Experiments 
(DOE) as a parameter tuning method. In another work, 
Yaghini et al. [37] further improved LBA for train forma-
tion planning.

During recent years, a new hybrid algorithm was pro-
posed as an extension to the LBA: New Local Branching 
Algorithm (NLBA) [34]. This algorithm also used the MIP 
solver as a black box, but the proposed external local 
branching framework made the solving process much 
easier. In other words, the right branch of the Eq. (6) was 
removed and the left one was taken as an LBC at each 

(6)
Δ
(
x, x

)
≤ k (left branch) or Δ

(
x, x

)
≥ k + 1 (right branch) iteration. Finally, the structure of the NLBA and the respec-

tive pseudocode is shown in Fig. 1. The NLBA parameters 
are also described in Table 1.  

In the pseudocode of Fig.  1, TL, zeroIterationTime, 
increaseRateOfRHSForImprove, initialRHS, and increaseR-
ateOfRHSForNotImprove are initialized. Then, the algorithm 
starts with an initial solution that could be generated by 
different neighborhood structures. In the basic version of 
the LBA, the MIP solver begins to solve the problem at a 
certain zero iteration time, zeroIterationTime, and follows 
an iterative process. Once the new feasible solution is seen 
not to improve the previous one, node zero is terminated, 
the zeroIterationSolution (

−

x) is considered as the bestSo-
FarSolution (

−

x) , the objective value of the reference solu-
tion 

−
x is considered as an initial solution, and the value of 

bestSoFar is updated. Then, the LBC is built based on the 
reference solution 

−
x.

This method consists of the main while loop which is 
iterated until one of the termination criteria is met. More 
precisely, at each iteration, the MIP solver receives two 
parameters as inputs, namely the total processing time 
limit TL, and the bestSoFar, which is used as an upper 
bound UB to interrupt the optimization as soon as the 
best lower bound becomes greater than or equal to UB. 
Hence, at each iteration, the MIP solver is aborted as soon 
as the best iterationObjective is found by the given refer-
ence solution 

−
x.

Fig. 1   Pseudocode for the 
NLBA

Pseudocode for NLBA  

1 Initialize TL, zeroIterationTime, initialRHS, increaseRateOfRHSForImprove, 
increaseRateOfRHSForNotImprove; 

2 Set iterationObjective = bestSoFar = +∞;
3 Create model;
4 Solve the iteration zero(zeroIterationTime); 
5 Set bestSoFarSolution = zeroIterationSolution ; 
6 Set currentRHS = initialRHS; 
7 Add the constraint ∆( ̅) to the MIP model; 
8 While (termination criteria not satisfied) do
9 Solve the model(TL, UB); 
10      If (iterationObjective < bestSoFar) 

a. Update bestSoFar; 
b. Update reference solution ; 
c. Update currentRHS with increaseRateOfRHSForImprove; 
d. Delete the last constraint from the MIP model; 
e. Add the constraint ∆( ̅) to the MIP model; 

11      Else
a. Update currentRHS with increaseRateOfRHSForNotImprove; 
b. Update the last constraint with increaseRateOfRHSForNotImprove; 

12      Endif;
13      Endwhile;
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Next, if the iterationObjective can improve the best-
SoFar, the value of bestSoFar is updated, the last LBC is 
deleted, the new constraint is rebuilt by the new ref-
erence solution 

−
x  , and the right-hand side value cur-

rentRHS is increased by the increaseRateOfRHSForIm-
prove. On the other hand, if the iterationObjective fails 
to improve the bestSoFar, the currentRHS is just updated 
by the increaseRateOfRHSForNotImprove.

Regarding the performance of the NLBA, we found 
that the following three key points affect the process 
of searching the solution space and can help find bet-
ter solutions:

•	 The right-hand side value of LBC likely exceeds the 
number of binary variables, in which case the algo-
rithm is stopped before the total processing time 
limit is reached.

•	 Extension of the search subspaces in successive 
iterations makes the searching process more diffi-
cult while lowering the chance of finding the optimal 
solution. Therefore, it is a good idea to start exploita-
tion around the best points and occasionally use the 
exploration method to find unforeseen new points 
along the whole search space.

•	 In a situation where the objective value has not 
improved, an extension of the search subspace with-
out regarding the status of the given solution is not 
so efficient. Accordingly, it is better to consider the 
status of the given solution before widening or nar-
rowing the search subspace.

Considering all of the aforementioned reasons, we 
introduce an adaptive parameter control structure 
based on exploitation and exploration for the NLBA in 
the following section.

3 � The proposed adaptive parameter control 
structure for the new local branching 
algorithm

Given the major effects of the parameters of an algo-
rithm on its performance, this section introduces an 
adaptive parameter control structure for the NLBA 
(ANLBA). For this purpose, beginning with the identifica-
tion of the main parameters affecting the algorithm, an 
adaptive parameter control structure is proposed based 
on exploitation and exploration within the solution 
space. However, such exploitation and exploration is dif-
ficult because algorithm performance is highly problem 
dependent [4]. Thus, the parameter control procedure 
should occur dynamically. The parameters of ANLBA and 
the pseudocode of its adaptive procedure are shown in 
Table 2 and Fig. 2, respectively.

In this pseudocode, TL, iterationTime, initialRHS, first-
ImproveRHS, increaseRateOfRHS, increaseRateOfTime, iter-
ationStatus, bestSoFarSolution(x  ) and bestSoFar are total 
processing time limit, a certain iteration time, the initial 
right-hand side value, the right-hand side value of the 
LBC when the first improvement occurs than to the ini-
tial objective value, the rate of increase right-hand side 
value of the LBC, the rate of increase the iteration time 
limit, status of the given solution upon calling the MIP 
solver, reference solution ( x  ), and the objective value of 
the reference solution, respectively.

In the first part of the pseudocode, the variables are 
initialized and then the model is created. Since there 
are too many methods for generating an initial solution 
and given that this adaptive structure looks for the first 
improvement in the objective value upon executing 
the algorithm, the method used to generate the initial 

Table 1   NLBA Parameters 
description

Parameter Description

TL Total considered time for solving each problem
zeroIterationTime Initial time, the time at which iteration zero is executed
initialRHS Initial right-hand side value of the LBC
currentRHS Current value of the LBC
bestSoFarSolution (̅x) Best feasible solution found (reference solution)
bestSoFar The objective value of the best feasible solution
iterationObjective Value of the given feasible solution at each iteration
increaseRateOfRHSForImprove Rate of increase of the right-hand side value of the LBC 

when the bestSoFar is getting updated
increaseRateOfRHSForNotImprove Rate of increase of the right-hand side value of the LBC 

when the bestSoFar is not getting updated
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solution and its value is of paramount importance. The 
reason for considering the first improvement after exe-
cuting the NLBA is that the proposed adaptive structure 
can adjust its performance with the problem dimen-
sions and try not to change many binary variables with-
out producing any improvement. Therefore, we concur 
that a reasonably short iteration time would be benefi-
cial to generate an initial solution. Then, the NLBA will 
be executed to find the first improvement, firstImprov-
eRHS, based on the problem dimensions. If the consid-
ered problem is small, the improvement could occur by 
changing a small number of variables, this helps with 
exploitation inside small search subspaces. On the other 
hand, if the problem is too large, the first improvement 
may occur only after a change in a large number of vari-
ables. This varying of a large number of variables is what 
is called exploration within different search subspaces.

To find a reasonable, feasible initial solution, the black 
box solves the problem in the iterationTime without any 
interruption or additional constraints. Once the initial solu-
tion is found, that is considered as the bestSoFarSolution 
( x  ) and the bestSoFar is updated by the initial objective 
value iterationObj. Afterward, the LBC is built based on the 
given initial solution bestSoFarSolution ( x  ). Importantly, 
the main while loop is iterated until one of the termina-
tion criteria is met. That is, until the elapsed processing 
time exceeds the iterationTime or the best lower bound 
becomes greater than or equal to the UB. During the 
main while loop, once the first improvement occurs in the 
objective value, compared to bestSoFar, the value of the 
right-hand side is saved as the firstImproveRHS. At the end 
of each iteration, the status of the given solution will be 
checked. Three different cases may arise for the iteration 
status, as follows:

(a)	 Optimal: since it is often a good point for exploiting 
the solution subspace, the time allotted to a certain 

iteration is set to a time limit iterationTime, then the 
algorithm checks the iteration objective iterationObj:

•	 If it improves the best so far, the value of bestSoFar 
is updated, the last LBC is deleted and rebuilt based 
on the reference solution bestSoFarSolution ( x ), and 
the right-hand side value currentRHS is set equal to 
the firstImproveRHS to narrow the search subspace. 
Accordingly, at the next iteration, the algorithm is 
executed to exploit a small search subspace around 
a good point.

•	 If the iteration objective iterationObj cannot 
improve the bestSoFar, while the algorithm is 
still around a good point, the currentRHS is just 
increased by increaseRateOfRHS. We assume the 
previous search subspace is not large enough to 
contain better solutions. So, at the next iteration, 
the problem is solved again in a certain iteration 
time iterationTime but in a relatively larger search 
subspace. In other words, the algorithm explores a 
larger search subspace around a good point to find 
a better solution.

(b)	 Feasible: there are two reasons an iteration objective 
might be feasible, but not optimal:

(1)	 (1) Since the certain iteration time limit is not 
enough for searching the whole subspace, the 
algorithm cannot find the optimal solution, and/
or

(2)	 (2) The search subspace is too small to contain 
an optimal solution.

	   In these cases, there are two alternatives:

•	 If the objective function of a given feasible solu-
tion iterationObj leads bestSoFar to improve, the 
bestSoFar is updated, the last LBC is deleted and 

Table 2   ANLBA Parameters 
description

Parameter Description

TL Total considered time for solving each problem
IterationTime Considered time for solving each iteration
initialRHS Initial right-hand side value of the LBC
firstImproveRHS Right-hand side value of LBC when the first improve-

ment relative to the initial objective occurs
currentRHS Current value of the LBC
bestSoFarSolution (̅x) Best feasible solution found (reference solution)
bestSoFar The objective value of the best given feasible solution
iterationObj Value of the given feasible solution in each iteration
iterationStatus Status of the given solution upon calling the MIP solver
increaseRateOfRHS Rate of increase of the current LBC
increaseRateOfTime Rate of increase of iteration time
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rebuilt based on the reference solution bestSo-
FarSolution ( x  ), and the certain iteration time 
limit iterationTime is just prolonged by increaseR-
ateOfTime. So, the algorithm can exploit the cur-
rent small search subspace in a relatively longer 
iteration time.

•	 If the objective function of a given feasible 
solution iterationObj fails to improve the best-
SoFar, the certain iteration time limit iteration-
Time-, as well as the right-hand side value of 

the LBC currentRHS, are increased. In this case, 
the algorithm can explore a vast search sub-
space in a longer iteration time.

(c)	 Infeasible or Unknown: in this case, both the certain 
iteration time limit iterationTime and the right-hand 
side value of the LBC currentRHS are increased by 
increaseRateOfTime and increaseRateOfRHS, respec-
tively, until the first feasible or optimal solution is 
found.

Fig. 2   Pseudocode for the 
adaptive parameter control 
structure of NLBA

Pseudocode for ANLBA 

1 Initialize TL, iterationTime, initialRHS, increaseRateOfRHS, 
increaseRateOfTime; 

2 Set iterationObjective = bestSoFar = +∞;
3 Create model
4 Solve the iteration zero; 
5 Set bestSoFarSolution (x )= zeroIterationSolution; 
6 Update bestSoFar; 
7 Set currentRHS = initialRHS; 
8 Add the constraint ∆( ̅) to the model; 
9 While (termination criteria not satisfied)  
10     Solve the model (iterationTime, UB); 
11     If (iterationStatus == “Optimal”) 

a. Set iterationTime by default; 
12     Elseif (iterationStatus == “Feasible”) 

a. IterationTime * increaseRateOfTime; 
13     Else

a. IterationTime *increaseRateOfTime ; 
b. currentRHS * increaseRateOfRHS; 

14     Endif;
15     If (iterationStatus == “Optimal” or iterationStatus == “Feasible”) 
16        If (iterationObj < bestSoFar) 
17          If (numOfImproved == 1) 
18          Set firstImproveRHS = currentRHS; 
19          Endif 
20        Update bestSoFar; 
21        Update bestSoFarSolution (x );  
22        Set currentRHS = firstImproveRHS; 
23        Delete the last constraint from the MIP model; 
24        Add the constraint ∆( ̅) to the model; 
25        Else 

a. currentRHS * increaseRateOfRHS; 
b. Update the last constraint with currentRHS;

26        Endif;
27     Endif;
28 Endwhile;
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This adaptive structure for setting parameters inter-
rupts the algorithm at each iteration to check the con-
vergence speed, the status of the current solution, and 
the objective value, then cuts the search space according 
to this feedback. In ANLBA, the right-hand side value of 
the LBC will change based on some deterministic rules 
which help the algorithm adapt to the problem dimen-
sion. Additionally, this structure helps keep the algo-
rithm from becoming trapped at a local optimum in a 
small search subspace, and helps it find better solutions 
with specific iteration time.

As mentioned previously, using exploitation and 
exploration is highly dependent on the characteristics 
of different problems, but the proposed adaptive param-
eter control structure can start searching within a small 
search subspace and try to find a better solution in a 
reasonable time. There are some key points in terms of 
the main contribution of this study that should be men-
tioned as a guideline about the proposed structure:

•	 This structure is not very sensitive to set the itera-
tion time iterationTime since this iteration time is just 
used to abort the algorithm, check the status of the 
given solution, and decide for the next iteration. On 
the other hand, if the algorithm can find the optimal 
solution within a search subspace, the black box will 
be terminated. As a result, we recommend consider-
ing a short iteration time so that the algorithm will 
not be trapped in a local optimum.

•	 As we mentioned, considering first improvement first-
ImproveRHS after executing the NLBA could help us to 
adjust the adaptive structure to fit the problem. This 
parameter helps us to get information about problem 
dimensions, and when the algorithm finds a better 
solution, the adaptive structure sets the right-hand 
side value of the LBC currentRHS equal to firstImprov-
eRHS to explore a small search subspace around a 
better given feasible solution.

•	 The rate of increase of the iteration time increaseR-
ateOfTime and right-hand side value of the LBC 
increaseRateOfRHS are tools that can give the algo-
rithm a chance of finding a better solution. These 
parameters should have smaller rather than larger 
values since the adaptive structure will be aborted 
and checked regularly to make decisions for the next 
iterations. More succinctly, the role of these parame-
ters is jumping out from local optimums within small 
search subspaces.

In the following section, multi-commodity network 
design problems will be described in brief, and 26 prob-
lems are tested to compare the performance of the ANLBA 
with that of the original NLBA.

4 � Formulation of the multi‑commodity 
network design problems

Generally, there are several types of network design prob-
lems. In this section, the general model of the network 
design problem is presented [38].

Consider a network G = (N, A), in which N is the set of 
nodes and A is the set of directed arcs. In this type of net-
work problem, commodities can be distinct physical goods 
or the same goods with a different origin or destination. 
So K is the set of commodities, and dk is the amount of 
goods which must flow from the origin O(k) to the desired 
destination D(k). Each flow has fixed and variable cost 
components, so ck

ij
 and Fij are the per-unit arc routing cost 

of community k on the arc (i, j), and the fixed arc design 
cost (i, j), respectively. The general model can be written as 
follows [39]:

where yij and f k
ij

 are the decision variables, yij is 0 if the arc 
(i, j) is closed and 1 if it is open, and f k

ij
 is the amount of the 

commodity k which flows on the arc(i, j) . The objective 
function of the model in Eq. (7) is to minimize the variable 
cost of commodities flowing on the arcs, as well as the 
fixed cost of the open arcs. Equation (8) is the balancing 
equation of the network flow problem. Equation (9) shows 
that the sum of the flows on each arc (i, j) must not exceed 
the maximum capacity of the arc.

5 � Computational results

In this section, a total of 26 different multi-commodity net-
work design problems are solved using 4 different meth-
ods for comparisons: the proposed ANLBA; the original 
NLBA; NLBA using Self-Adaptive Harmony Search (SAHS), 

(7)min

(∑
k∈K

∑
(i,j)∈A

ck
ij
f k
ij
+

∑
(i,j)∈A

Fijyij

)

(8)

�
j∈N

f k
ij
−
�
l∈N

f k
lj
=

⎧⎪⎨⎪⎩

dk ifi = O(k)

−dk ifi = D(k)

0 otherwise

∀K ∈ k

(9)
∑
k∈K

f k
ij
≤ Kijyij∀(i, j) ∈ A

(10)(f , y) ∈ S

(11)f k
ij
≥ 0, yij = 0 or 1∀(i, j) ∈ A, k ∈ K
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which is described below; and CPLEX 12.6.2 – 64 Bit. Spe-
cifically, the program was written in the Java programming 
language and executed on a personal computer equipped 
with 8 GB of RAM and an Intel(R) Core(TM) i7-6500U CPU 
at 2.50 GHz, operating under Microsoft Windows 10. Fur-
thermore, the termination criteria for all comparisons are 
a processing time of an hour and a half (5600 s) and/or 
five successive insignificant improvements in the objective 
function. Finally, the results are described in three sub-
sections below, where the relative gaps of the objective 
function and processing time are presented in Tables 3, 
4 and 5.

In Tables 3, 4 and 5, the PROB column indicates the char-
acteristics of the problem, such as the number of nodes, 
arcs, and demands. The ANLBA columns refer to the values 
of the objective function of each problem as calculated 
by NLBA with the proposed adaptive parameter control 
structure along with the respective processing time and 
final status. Besides the stated termination criteria, the 
parameters of ANLBA were initialized as follows: The lim-
ited iterationTime set to 200 s., and the initial right-hand 

side value initialRHS, the increasing rate of right-hand side 
value increaseRateOfRHS, and the increasing rate of the 
iteration time increaseRateOfTime were all initialized at 2.

5.1 � The NLBA in comparison to The ANLBA

Considering the stated termination criteria, the param-
eters of the NLBA are initialized as follows:, a certain zero 
iteration time zeroIterationTime was set to 200 s., the ini-
tialRHS, increaseRateOfRHSForImprove, and increaseRateO-
fRHSForNotImprove were initialized by the default values 
in the literature, 1, 1.1 and 2, respectively.

In Table 3, the NLBA columns refer to the objective 
value, the execution time, and the status of the final itera-
tion given by NLBA for each problem, respectively. Finally, 
the GAP columns present the results of comparing the pro-
posed ANLBA to the original NLBA. Overall relative gaps 
are reported along the last row. As Table 3 shows, the 
performance of the proposed ANLBA, as compared to the 
NLBA, improved by − 14.0% and − 663.53% with regards to 
the objective functions and processing times, respectively.

Table 3   Computational results of NLBA and ANLBA

Row PROB NLBA ANLBA Relative Gap %

Obj. Value CPU time (s) Final status Obj. Value CPU time (s) Final status Obj. value CPU time (s)

1 20,230,200,V,L 94,213.00 5600.00 Time Reached 94,213.00 4225.00 Not improving 0.00  − 24.55
2 20,230,200,F,L 137,712.89 5600.00 Time reached 137,642.33 2674.00 Not improving  − 0.05  − 52.25
3 20,230,200,V,T 97,914.00 5600.00 Time reached 97,914.00 1895.00 Not improving 0.00  − 66.16
4 20,230,200,F,T 136,661.44 5600.00 Time reached 136,231.00 5600.00 Time reached  − 0.31 0.00
5 20,300,200,V,L 75,155.00 5600.00 Time reached 74,811.00 4151.00 Not improving  − 0.46  − 25.88
6 20,300,200,F,L 116,022.33 5600.00 Time reached 116,330.00 3827.00 Not improving 0.27  − 31.66
7 20,300,200,V,T 74,991.00 3456.00 Not improving 74,991.00 2292.00 Not improving 0.00  − 33.68
8 20,300,200,F,T 107,803.10 5600.00 Time reached 107,169.00 3987.00 Not improving  − 0.59  − 28.80
9 30,520,100,V,L 53,958.00 3544.00 Not improving 53,958.00 410.00 Not improving 0.00  − 88.43
10 30,520,100,F,L 94,809.56 5600.00 Time reached 94,043.00 5600.00 Time reached  − 0.81 0.00
11 30,520,100,V,T 52,046.00 5600.00 Time reached 52,046.00 3115.00 Not improving 0.00  − 44.38
12 30,520,100,F,T 99,394.56 5601.00 Time reached 98,076.00 5411.00 Time reached  − 1.33  − 3.39
13 30,520,400,V,L 112,909.64 5600.00 Time reached 112,961.44 5430.00 Time reached 0.05  − 3.04
14 30,520,400,F,L 152,756.78 5601.00 Time reached 150,254.86 5600.00 Time reached  − 1.64  − 0.02
15 30,520,400,V,T 114,672.69 5600.00 Time reached 114,640.46 5600.00 Time reached  − 0.03 0.00
16 30,520,400,F,T 157,682.14 5600.00 Time reached 153,453.22 5600.00 Time reached  − 2.68 0.00
17 30,700,100,F,L 60,121.67 5600.00 Time reached 60,143.00 2093.00 Not improving 0.04  − 62.63
18 30,700,100,V,T 45,871.50 5602.00 Time reached 45,891.00 1061.00 Not improving 0.04  − 81.06
19 30,700,100,F,T 54,975.50 5600.00 Time reached 55,014.00 3305.00 Not improving 0.07  − 40.98
20 30,700,400,V,L 98,561.11 5600.00 Time reached 98,670.33 5665.00 Time reached 0.11 1.16
21 30,700,400,F,L 142,128.93 5600.00 Time reached 136,954.36 5600.00 Time reached  − 3.64 0.00
22 30,700,400,V,T 95,673.56 5601.00 Time reached 95,656.00 5600.00 Time reached  − 0.02  − 0.02
23 30,700,400,F,T 132,666.22 5600.00 Time reached 130,974.88 5600.00 Time reached  − 1.27 0.00
24 100,400,10,F,T 64,113.00 5601.00 Time reached 63,764.00 5600.00 Time reached  − 0.54  − 0.02
25 100,400,30,F,L 49,018.00 5600.00 Time reached 49,115.00 3130.00 Not improving 0.20  − 44.11
26 100,400,30,F,T 139,478.33 5600.00 Time reached 137,514.00 3717.00 Not improving  − 1.41  − 33.63
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5.2 � The hybrid structure of NLBA and SAHS 
in comparison to the ANLBA

In order to evaluate the performance of the proposed 
ANLBA, we decided to use a heuristic optimization algo-
rithm named Self-Adaptive Harmony Search (SAHS), which 
includes an adaptive structure to control the parameters of 
NLBA. More generally, Harmony Search (HS) is a heuristic 
algorithm which consists of a set of solution vectors gov-
erned by three rules including random selection, memory 
consideration and pitch adjustment which make for a bal-
ance between exploration and exploitation by selecting a 
value from the possible range of variables [40]. Recently, 
the HS algorithm has captured much attention, and vari-
ous extensions of it have been proposed and applied to 
solve a wide range of optimization problems [41–47]. Fur-
thermore, different variants of the HS algorithm employ 
novel methods for generating new solution vectors that 
enhance accuracy and convergence rate. As a result of 
good performance and convergence in parameter tun-
ing, the HS algorithm and its extensions are widely used 

as parameter tuning approaches for improving structural 
optimization and dynamic parameter adaptation [48–53].

Here, we used the SAHS algorithm as a parameter tun-
ing method and applied this adaptive structure for setting 
parameter values of the NLBA. In the following subsection, 
the HS and SAHS algorithms are briefly described. Then, 
the framework of the hybrid structure consisting of the 
SAHS algorithm and the NLBA, as well as the results of this 
hybrid structure as compared to the proposed ANLBA are 
presented.

5.2.1 � The general procedure of HS algorithm

Step 1: An initial population of n-dimension harmony 
vectors are randomly generated and stored in a Har-
mony Memory (HM).
Step 2: A new harmony is generated from all of the solu-
tions in the HM based on a memory consideration rule, 
a pitch adjustment rule, and a random re-initialization.
Step 3: The new candidate vector will be compared to 
the worst harmony vector in the HM. If the new candi-

Table 4   Computational results of NLBA coupled by SAHS and ANLBA

Row PROB NLBA coupled by SAHS ANLBA Relative Gap %

Obj. Value CPU time (s) Final status Obj. Value CPU time (s) Final status Obj. Value CPU time (s)

1 20,230,200,V,L 94,213.00 5602.00 Time reached 94,213.00 4225.00 Not improving 0.00  − 24.58
2 20,230,200,F,L 138,533.67 3501.00 Not improving 137,642.33 2674.00 Not improving  − 0.64  − 23.62
3 20,230,200,V,T 97,914.00 3852.00 Not improving 97,914.00 1895.00 Not improving 0.00  − 50.80
4 20,230,200,F,T 136,252.00 5251.00 Time reached 136,231.00 5600.00 Time reached  − 0.02 6.65
5 20,300,200,V,L 75,219.00 5601.00 Time reached 74,811.00 4151.00 Not improving  − 0.54  − 25.89
6 20,300,200,F,L 116,291.00 4551.00 Not improving 116,330.00 3827.00 Not improving 0.03  − 15.91
7 20,300,200,V,T 74,991.00 2450.00 Not improving 74,991.00 2292.00 Not improving 0.00  − 6.45
8 20,300,200,F,T 107,465.80 3150.00 Not improving 107,169.00 3987.00 Not improving  − 0.28 26.57
9 30,520,100,V,L 53,958.00 2450.00 Not improving 53,958.00 410.00 Not improving 0.00  − 83.27
10 30,520,100,F,L 94,834.00 4551.00 Not improving 94,043.00 5600.00 Time reached  − 0.83 23.05
11 30,520,100,V,T 52,048.00 3151.00 Not improving 52,046.00 3115.00 Not improving 0.00  − 1.14
12 30,520,100,F,T 98,048.00 5601.00 Time reached 98,076.00 5411.00 Time reached 0.03  − 3.39
13 30,520,400,V,L 112,892.82 4901.00 Not improving 112,961.44 5430.00 Time reached 0.06 10.79
14 30,520,400,F,L 151,508.23 5604.00 Time reached 150,254.86 5600.00 Time reached  − 0.83  − 0.07
15 30,520,400,V,T 114,672.69 4550.00 Not improving 114,640.46 5600.00 Time reached  − 0.03 23.08
16 30,520,400,F,T 156,031.13 5603.00 Time reached 153,453.22 5600.00 Time reached  − 1.65  − 0.05
17 30,700,100,F,L 60,049.00 5600.00 Time reached 60,143.00 2093.00 Not improving 0.16  − 62.63
18 30,700,100,V,T 45,871.50 2801.00 Not improving 45,891.00 1061.00 Not improving 0.04  − 62.12
19 30,700,100,F,T 55,014.00 2451.00 Not improving 55,014.00 3305.00 Not improving 0.00 34.84
20 30,700,400,V,L 98,410.00 5601.00 Time reached 98,670.33 5665.00 Time reached 0.26 1.14
21 30,700,400,F,L 139,184.00 5605.00 Time reached 136,954.36 5600.00 Time reached  − 1.60  − 0.09
22 30,700,400,V,T 95,894.49 5604.00 Time reached 95,656.00 5600.00 Time reached  − 0.25  − 0.07
23 30,700,400,F,T 132,216.83 5603.00 Time reached 130,974.88 5600.00 Time reached  − 0.94  − 0.05
24 100,400,10,F,T 64,207.00 3851.00 Not improving 63,764.00 5600.00 Time reached  − 0.69 45.42
25 100,400,30,F,L 49,115.00 4900.00 Not improving 49,115.00 3130.00 Not improving 0.00  − 36.12
26 100,400,30,F,T 139,243.00 3850.00 Not improving 137,514.00 3717.00 Not improving  − 1.24  − 3.45
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date vector is better than the worst vector in the HM, 
the worst one is replaced by the new candidate vector 
and HM is updated.
Step 4: This process is repeated until a termination cri-
terion is met.

Assume LB and UB are the lower bound and upper 
bound of the possible range of variables, HMS is the mem-
ory size, HMCR is the rate of choosing from the memory, 
PAR is the pitch adjustment rate, and BW is the distance 
bandwidth. The process of improvising a new harmony 
vector is shown in Fig. 3.

Table 5   Computational results of CPLEX and ANLBA

Row PROB CPLEX ANLBA Relative Gap %

Obj. Value CPU time (s) Final status Obj. Value CPU time (s) Final status Obj. value CPU time (s)

1 20,230,200,V,L 94,254.00 5600.12 Time reached 94,213.00 4225.00 Not improving  − 0.04  − 24.56
2 20,230,200,F,L 137,854.00 5600.15 Time reached 137,642.33 2674.00 Not improving  − 0.15  − 52.25
3 20,230,200,V,T 97,914.00 2529.87 Optimal found 97,914.00 1895.00 Not improving 0.00  − 25.09
4 20,230,200,F,T 136,225.00 5600.15 Time reached 136,231.00 5600.00 Time reached 0.00 0.00
5 20,300,200,V,L 74,811.00 5600.36 Time reached 74,811.00 4151.00 Not improving 0.00  − 25.88
6 20,300,200,F,L 116,186.00 5598.73 Time reached 116,330.00 3827.00 Not improving 0.12  − 31.65
7 20,300,200,V,T 74,991.00 1583.73 Optimal found 74,991.00 2292.00 Not improving 0.00 44.72
8 20,300,200,F,T 107,314.00 5600.39 Time reached 107,169.00 3987.00 Not improving  − 0.14  − 28.81
9 30,520,100,V,L 53,958.00 479.09 Optimal found 53,958.00 410.00 Not improving 0.00  − 14.42
10 30,520,100,F,L 93,967.00 5600.17 Time reached 94,043.00 5600.00 Time reached 0.08 0.00
11 30,520,100,V,T 52,046.00 3672.24 Optimal found 52,046.00 3115.00 Not improving 0.00  − 15.17
12 30,520,100,F,T 97,259.00 5600.11 Time reached 98,076.00 5411.00 Time reached 0.84  − 3.38
13 30,520,400,V,L 112,923.21 5600.24 Time reached 112,961.44 5430.00 Time reached 0.03  − 3.04
14 30,520,400,F,L 149,835.25 5600.32 Time reached 150,254.86 5600.00 Time reached 0.28  − 0.01
15 30,520,400,V,T 114,676.64 5600.35 Time reached 114,640.46 5600.00 Time reached  − 0.03  − 0.01
16 30,520,400,F,T 153,884.11 5600.51 Time reached 153,453.22 5600.00 Time reached  − 0.28  − 0.01
17 30,700,100,F,L 59,958.00 5600.12 Time reached 60,143.00 2093.00 Not improving 0.31  − 62.63
18 30,700,100,V,T 45,871.50 5601.67 Time reached 45,891.00 1061.00 Not improving 0.04  − 81.06
19 30,700,100,F,T 54,904.00 5600.31 Time reached 55,014.00 3305.00 Not improving 0.20  − -40.99
20 30,700,400,V,L 97,984.00 5600.26 Time reached 98,670.33 5665.00 Time reached 0.70 1.16
21 30,700,400,F,L 146,667.04 5600.34 Time reached 136,954.36 5600.00 Time reached  − 6.62  − 0.01
22 30,700,400,V,T 95,315.60 5600.35 Time reached 95,656.00 5600.00 Time reached 0.36  − 0.01
23 30,700,400,F,T 131,217.04 5600.35 Time reached 130,974.88 5600.00 Time reached  − 0.18  − 0.01
24 100,400,10,F,T 63,753.00 5600.09 Time reached 63,764.00 5600.00 Time reached 0.02 0.00
25 100,400,30,F,L 49,115.00 5600.03 Time reached 49,115.00 3130.00 Not improving 0.00  − 44.11
26 100,400,30,F,T 136,435.00 5600.05 Time reached 137,514.00 3717.00 Not improving 0.79  − 33.63

Fig. 3   Improvise a new har-
mony vector at each iteration 
in HS algorithm
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The parameter HMCR, which varies between 0 and 1, 
controls the balance between exploration and exploita-
tion. The HMCR value determines the random selection 
from the possible range of variables, or the memory con-
sideration to pick one pitch from HM. Once one pitch has 
been picked from the HM, the PAR determines whether or 
not further adjustment is required according to a variable-
distance bandwidth BW. This pitch adjustment step is simi-
lar to a local search mechanism that finds a new harmony 
from outside of the HM [40].

5.2.2 � The general framework of the SAHS algorithm

Because PAR and BW in the HS algorithm have a great 
influence on the quality of final solutions and control the 
convergence rate and ability for fine-tuning, [42] proposed 
a modified variant of HS, called SAHS, which includes a 
self-adaptive mechanism to improve the pitch adjustment 
step of HS using Eq. (12) and Eq. (13).

Let min ( HMi ) and max ( HMi ) denote the lowest and 
the highest values of the ith variable in the HM, then the 
selected pitch from the HM called a trial is adjusted as 
follows:

The pitch adjustment through this mechanism is based 
on the LB and UB of the variables and it would not violate 
the boundary constraint of variables.

5.2.3 � The hybrid structure consists of the NLBA coupled 
with the SAHS algorithm

In this structure, we consider increaseRateOfRHSForIm-
prove, and increaseRateOfRHSForNotImprove as parameters 
for adjusting by SAHS algorithm. So, the HM consists of 
solution vectors of two dimensions, including increaseR-
ateOfRHSForImprove, and increaseRateOfRHSForNotIm-
prove which were randomly generated in the range [1, 4]. 
According to the literature, the values of HMS and HMCR 
were set to 50 and 0.99, respectively. Also, a certain zero 
iteration time, zeroIterationTime, and initialRHS were set to 
200 s. and 1, as stated in Sect. 5.1, respectively.

As mentioned, TL, zeroIterationTime, HMS, HMCR were 
initialized, so the NLBA is executed to solve the zero 
iteration and update the bestSoFarSolution (

−

x) . Then, the 
main while loop of the NLBA (presented in Fig. 1) is iter-
ated until one of the termination criteria is met. At each 
iteration, before calling the black box, a new harmony 
vector is improvised according to the general frame-
work of the HS algorithm for random selection, memory 

(12)triali + [max (HMi) − triali] × ran[0, 1)

(13)triali − [triali −min (HMi)] × ran[0, 1)

consideration, and the pitch adjustment mechanism of 
the SAHS algorithm stated in Eq. (12) and Eq. (13). The 
results of the comparison between the proposed ANLBA 
and this hybrid structure is presented in Table 4. As the 
overall relative gaps show, the proposed ANLBA, when 
compared to the hybrid structure consisting of the NLBA 
and SAHS algorithm, improved by − 8.96% and − 228.17% 
in relative gaps of the objective functions and processing 
times, respectively.

5.3 � The proposed ANLBA in comparison to CPLEX

In Table 5, the result of the problems solved by the pro-
posed ANLBA and CPLEX are reported. The CPLEX columns 
show the objective function, the CPU time, and the status 
of the final iteration. The results confirm that the proposed 
ANLBA outperformed CPLEX in terms of objective func-
tion values by − 3.67%, and in terms of processing times, 
by − 440.85%.

In sum, the algorithm using the proposed adaptive 
parameter control structure was found to have better solu-
tion accuracy and faster processing times than the original 
NLBA, the NLBA coupled with SAHS, and even CPLEX.

6 � Conclusion and discussion

Given the paramount importance of parameter setting 
and parameter control in optimization algorithms, an 
adaptive parameter control structure was proposed to 
enhance the performance of the NLBA using CPLEX as a 
black box, to solve MIP problems. The proposed adaptive 
parameter control structure regularly aborts the algorithm 
checking convergence speed and instantaneous dimen-
sions to determine the search direction at the next itera-
tion. In other words, the proposed adaptive parameter 
control structure proposes some deterministic rules in a 
framework to enhance exploitation and exploration. Addi-
tionally, this structure will check the status and the value of 
a given feasible solution whenever termination criteria are 
met, and the right-hand side value of the local constraint 
and the certain iteration time are changed according to 
the deterministic rules.

Once the parameter control structure had been 
described, its excellent performance was demonstrated 
on a series of computational experiments regarding 26 
multi-commodity network design problems. Indeed, the 
proposed structure improved the quality of the objective 
function value in a shorter processing time, compared to 
the original NLBA, the NLBA coupled with SAHS, and even 
CPLEX.

More precisely, improvements the proposed ANLBA 
made in objective function values and compared to 
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the other algorithms were as follows: − 14.01% for the 
original NLBA, − 8.96% for the NLBA coupled with SAHS, 
and − 3.67% for CPLEX. Similarly improvements in pro-
cessing times were shown to be − 663.53% compared to 
the original NLBA, − 228.17% for the NLBA-SAHS hybrid 
structure, and − 440.85% compared to CPLEX. The results 
confirmed that significant time and money savings can 
be obtained by solving MIP problems with the proposed 
adaptive parameter control structure to develop a network 
design plan.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Karafotias G, Hoogendoorn M, Eiben ÁE (2015) Parameter con-
trol in evolutionary algorithms: trends and challenges. IEEE 
Trans Evol Comput 19:167–187

	 2.	 Dobslaw F (2010) Recent development in automatic parameter 
tuning for metaheuristics. In: Proceedings of the 19th annual 
conference of doctoral students-WDS 2010, 2010

	 3.	 Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control 
in evolutionary algorithms. Evol Comput IEEE Trans 3:124–141

	 4.	 Lin L, Gen M (2009) Auto-tuning strategy for evolutionary algo-
rithms: balancing between exploration and exploitation. Soft 
Comput 13:157–168

	 5.	 Tvrdık J (2009) Self-adaptive variants of differential evolution 
with exponential crossover. Anal West Univ Timisoara Ser Math-
Inform 47:151–168

	 6.	 Zamuda A, Brest J (2015) Self-adaptive control parameters׳ rand-
omization frequency and propagations in differential evolution. 
Swarm Evol Comput 25:72–99

	 7.	 Fan Q, Yan X (2015) Self-adaptive differential evolution algo-
rithm with discrete mutation control parameters. Expert Syst 
Appl 42:1551–1572

	 8.	 Guo Z, Liu G, Li D, Wang S (2017) Self-adaptive differential 
evolution with global neighborhood search. Soft Comput 
21:3759–3768

	 9.	 Fan Q, Yan X (2016) Self-adaptive differential evolution algo-
rithm with zoning evolution of control parameters and adaptive 
mutation strategies. IEEE Trans Cybern 46:219–232

	10.	 Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-
adaptive learning based particle swarm optimization. Inf Sci 
181:4515–4538

	11.	 Xue Y, Jiang J, Zhao B, Ma T (2017) A self-adaptive artificial bee 
colony algorithm based on global best for global optimization. 
Soft Comput 22:1–18

	12.	 Hutter F, Stuetzle T, Leyton-Brown K, Hoos HH (2014) ParamILS: 
an automatic algorithm configuration framework. arXiv preprint 
arXiv:1401.3492

	13.	 Precup R-E, David R-C, Petriu EM, Preitl S, Rădac M-B (2014) 
Novel adaptive charged system search algorithm for optimal 
tuning of fuzzy controllers. Expert Syst Appl 41:1168–1175

	14.	 Jansen T, De Jong KA, Wegener I (2005) On the choice of the off-
spring population size in evolutionary algorithms. Evol Comput 
13:413–440

	15.	 Lagos C, Crawford B, Soto R, Cabrera E, Vega J, Johnson F et al 
(2016) Improving tabu search performance by means of auto-
matic parameter tuning. Can J Electr Comput Eng 39:51–58

	16.	 Wang H, Zhou X, Sun H, Yu X, Zhao J, Zhang H et al (2017) Fire-
fly algorithm with adaptive control parameters. Soft Comput 
21:5091–5102

	17.	 Castillo O, Soto C, Valdez F (2018) A review of fuzzy and math-
ematic methods for dynamic parameter adaptation in the fire-
fly algorithm. In: advances in data analysis with computational 
intelligence methods, Springer, 2018, pp 311–321

	18.	 Deng W, Xu J, Zhao H (2019) An improved ant colony optimi-
zation algorithm based on hybrid strategies for scheduling 
problem. IEEE Access 7:20281–20292

	19.	 Yang X-S, Deb S, Hanne T, He X (2019) Attraction and diffusion 
in nature-inspired optimization algorithms. Neural Comput 
Appl 31:1987–1994

	20.	 Nseef SK, Abdullah S, Turky A, Kendall G (2016) An adaptive 
multi-population artificial bee colony algorithm for dynamic 
optimisation problems. Knowl-Based Syst 104:14–23

	21.	 Xia Y-M, Chen J-l, Meng X-W (2008) On the dynamic ant colony 
algorithm optimization based on multi-pheromones. In: Sev-
enth IEEE/ACIS international conference on computer and 
information science, 2008. ICIS 08, pp. 630–635

	22.	 Castillo O, Neyoy H, Soria J, Melin P, Valdez F (2015) A new 
approach for dynamic fuzzy logic parameter tuning in ant 
colony optimization and its application in fuzzy control of a 
mobile robot. Appl Soft Comput 28:150–159

	23.	 Deng W, Zhao H, Zou L, Li G, Yang X, Wu D (2017) A novel col-
laborative optimization algorithm in solving complex optimi-
zation problems. Soft Comput 21:4387–4398

	24.	 Liu Y, Lu H, Cheng S, Shi Y (2019) an adaptive online param-
eter control algorithm for particle swarm optimization based 
on reinforcement learning. IEEE Congress Evol Comput (CEC) 
2019:815–822

	25.	 Li D, Guo W, Wang L (2019) Niching particle swarm optimizer 
with entropy-based exploration strategy for global optimiza-
tion. In: International conference on swarm intelligence, 2019, 
pp 118–127

	26.	 Son B, Kim J-S, Kim J-W, Kim Y-J, Jung S-Y (2019) Adaptive 
particle swarm optimization based on kernel support vector 
machine for optimal design of synchronous reluctance motor. 
IEEE Trans Magn 55:1–5

	27.	 Dong W, Zhou M (2017) A supervised learning and control 
method to improve particle swarm optimization algorithms. 
IEEE Trans Syst Man Cybern Syst 47:1135–1148

	28.	 Song Z, Liu B, Cheng H (2019) Adaptive particle swarm optimi-
zation with population diversity control and its application in 
tandem blade optimization. Proc Inst Mech Eng Part C J Mech 
Eng Sci 233:1859–1875

	29.	 Aoun O, Sarhani M, El Afia A (2018) Hidden markov model clas-
sifier for the adaptive particle swarm optimization. In: Recent 
developments in metaheuristics, Springer, 2018, pp 1–15

	30.	 Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced 
Moth-flame optimizer with mutation strategy for global opti-
mization. Inf Sci 492:181–203

	31.	 Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X et al (2019) 
An efficient chaotic mutative moth-flame-inspired optimizer 
for global optimization tasks. Expert Syst Appl 129:135–155

	32.	 Nasser AB, Zamli KZ (2018) Parameter free flower algorithm 
based strategy for pairwise testing. In: Proceedings of the 
2018 7th international conference on software and computer 
applications, 2018, pp 46–50

	33.	 Nalepa J, Blocho M (2016) Adaptive memetic algorithm for 
minimizing distance in the vehicle routing problem with time 
windows. Soft Comput 20:2309–2327



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:1043 | https://doi.org/10.1007/s42452-020-2856-3

	34.	 H. A. H. A. f. S. M. I. P. Pooladi, Solving a Railway Model as a Case 
study. MSc Thesis, Iran University of Science and Technology

	35.	 Fischetti M, Lodi A (2003) Local branching. Math Program 
98:23–47

	36.	 Fallahia M, Amiri S, Yaghinic M (2014) A parameter tuning meth-
odology for metaheuristics based on design of experiments. Int 
J Eng Technol 2:497–521

	37.	 Yaghini M, Momeni M, Sarmadi M (2013) An improved local 
branching approach for train formation planning. Appl Math 
Model 37:2300–2307

	38.	 Magnanti TL, Wong RT (1984) Network design and transporta-
tion planning: models and algorithms. Transp Sci 18:1–55

	39.	 Yaghini M, Akhavan R (2012) Multicommodity network design 
problem in rail freight transportation planning. Proc-Soc Behav 
Sci 43:728–739

	40.	 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. Simulation 76:60–68

	41.	 Pan Q-K, Suganthan PN, Tasgetiren MF, Liang JJ (2010) A self-
adaptive global best harmony search algorithm for continuous 
optimization problems. Appl Math Comput 216:830–848

	42.	 Wang C-M, Huang Y-F (2010) Self-adaptive harmony search algo-
rithm for optimization. Expert Syst Appl 37:2826–2837

	43.	 Kattan A, Abdullah R (2013) A dynamic self-adaptive harmony 
search algorithm for continuous optimization problems. Appl 
Math Comput 219:8542–8567

	44.	 Wang L, Hu H, Liu R, Zhou X (2019) An improved differential 
harmony search algorithm for function optimization problems. 
Soft Comput 23:4827–4852

	45.	 Omran MG, Mahdavi M (2008) Global-best harmony search. Appl 
Math Comput 198:643–656

	46.	 El-Abd M (2013) An improved global-best harmony search algo-
rithm. Appl Math Comput 222:94–106

	47.	 Mahdavi M, Fesanghary M, Damangir E (2007) An improved har-
mony search algorithm for solving optimization problems. Appl 
Math Comput 188:1567–1579

	48.	 Peraza C, Valdez F, Castro JR, Castillo O (2018) Fuzzy dynamic 
parameter adaptation in the harmony search algorithm for the 
optimization of the ball and beam controller. Adv Oper Res 
2018:1–16

	49.	 Dash R (2018) An adaptive harmony search approach for gene 
selection and classification of high dimensional medical data. J 
King Saud University-Comput Inf Sci (in press)

	50.	 Choi YH, Lee HM, Yoo DG, Kim JH (2018) Improvement of search 
efficiency in optimization algorithm using self-adaptive har-
mony search algorithms. J Korea Academia-Ind Cooper Soc 
19:1–11

	51.	 Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza C 
et al (2019) Shadowed type-2 fuzzy systems for dynamic param-
eter adaptation in harmony search and differential evolution 
algorithms. Algorithms 12:17

	52.	 Zhao F, Liu Y, Zhang C, Wang J (2015) A self-adaptive harmony 
PSO search algorithm and its performance analysis. Expert Syst 
Appl 42:7436–7455

	53.	 Hasançebi O, Erdal F, Saka MP (2009) Adaptive harmony search 
method for structural optimization. J Struct Eng 136:419–431

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	An adaptive structure on a new local branching algorithm using instantaneous dimensions and convergence speed: a case study for multi-commodity network design problems
	Abstract
	1 Introduction
	2 NLBA and the original LBA framework
	3 The proposed adaptive parameter control structure for the new local branching algorithm
	4 Formulation of the multi-commodity network design problems
	5 Computational results
	5.1 The NLBA in comparison to The ANLBA
	5.2 The hybrid structure of NLBA and SAHS in comparison to the ANLBA
	5.2.1 The general procedure of HS algorithm
	5.2.2 The general framework of the SAHS algorithm
	5.2.3 The hybrid structure consists of the NLBA coupled with the SAHS algorithm

	5.3 The proposed ANLBA in comparison to CPLEX

	6 Conclusion and discussion
	References




