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Abstract
A model for synchronization of coupled Nakano’s chaotic circuits is studied. The Nakano circuit consists of a simple RLC 
circuit with a switch voltage-depending reset rule which generates a discontinuous dynamics. Thus, the model that we 
study is a network of identical spiking oscillators with integrate-and-fire dynamics. The coupling between oscillators is 
linear, but the network is subject to a common regime of reset depending on the global state of the oscillator population. 
This constitutes the simplest way of build pulse-coupled networks with arbitrary topology for this type of oscillators, 
and it allows the emergence of synchronous states and different reset regimes. The main result is that under certain 
hypothesis over the weight matrix (that represents the network topology) the different reset regimes match and the 
formalism of the master stability function can be generalized in order to study the stability of the synchronous state and 
the discontinuous dynamic of the network. Also, the low dimensionality of the Nakano’s circuit allows to implement the 
saltation-matrix method and numerical simulations can be performed in order to analyze the role of the coupling mode 
in the synchronization regime of the network and the influence of the voltage-type variables.

Keywords  Chaotic circuit · Discontinuous dynamics · Complex networks · Synchronization

1  Introduction

The integrate-and-fire models (IFMs) are known to be one 
of the simplest neuronal models, which in turn replicate a 
large number of present behaviors in biological neurons, 
such as spikes, bursting, mode-locked states, etc. [1, 2]. 
At the same time, using the IFMs, a specific type of net-
works called pulse-coupled networks can be constructed. 
The analysis of the synchrony of these networks is impor-
tant not only as basic nonlinear problems but also as an 
approach to many biological systems as pacemaker cells of 
the heart [3], flashing of fireflies populations [4], segrega-
tion of insulin in the pancreas [5], etc.

On the other hand, consideration of electric circuit 
versions of integrate-and-fire systems is important in 
view of obtaining more realistic and plausible systems 

of experimental implementations. Also the synchronous 
phenomenon in pulse-coupled network of these oscilla-
tors has been studied due to its relation with models of 
voltage-coupled cells [6, 7] and some engineering applica-
tions, for example, chaos-based communications systems 
[8] and artificial neural networks [9].

This paper concerns the emergence of synchrony in a 
specific pulse-coupled network. Our work was inspired 
by the Nakano’s chaotic circuit [10], which consists of a 
simple RLC  circuit with a self-regulating switch. Despite 
its simplicity, the circuit presents complex behaviors as 
bursting states and chaotic oscillations. In turn, the sys-
tem that describes the temporal evolution of the circuit 
is one of the simplest two-dimensional chaotic discon-
tinuous systems. In the past, the Nakano’s oscillator was 
studied as an isolated node or coupled in the limited 
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cases of a master–slave configuration of two nodes or in 
ring configurations. In this work, we generalize that type 
of coupling by considering networks that have arbitrary 
number of nodes and any desired topology. This network 
model guarantees the existence of a synchrony solution 
and allows to raise the problem of its stability. Unlike the 
classic coupling between chaotic systems through sub-
systems [11] or merely a diffusive linear coupling [12], the 
discontinuous nature of systems such as that of Nakano 
allows new types of coupling to be considered through 
the reset regime.

In recent years, the application of the master stability 
function (MSF) [12, 13] to the study of synchronization 
in discontinuous oscillator networks has begun to be of 
interest, and its adaptation has been carried out for a wide 
family of neural integrate-and-fire models [14–16]. At the 
same time, problems such as the appearance of different 
reset regimes in the nodes and their influence on the vari-
ational equation [17, 18] or the prediction of synchroniza-
tion clusters have required expanding the used formalism.

The main goal of this work is the construction of a net-
work model that presents the necessary conditions to 
expand the classic MSF in this new context. The features 
of the Nakano’s model allow the construction of a network 
whose structure guarantees conditions to control the dif-
ferent reset regimes of its variational equation. In this way, 
it is possible to consider the formalism of the MSF for net-
works that have a matrix of weights satisfying a specific 
condition (that we have called “doubly balanced”). In turn, 
the low dimensionality of the Nakano’s model allows the 
implementation of the saltation-matrix method [19–21] 
to evaluate the exponents of Lyapunov required by the 
MSF. Finally, the numerical stability of these evaluations 
makes it possible to compare the influence of the coupling 
regime (and in particular those that involve the voltage-
type variables) through its MSF corresponding to the sym-
metric networks.

In Sect. 2 we show the Nakano circuit and the impact 
system that describes its temporal evolution. We also 
introduce the dummy coupling and its generalization for 
arbitrary topologies. In Sect. 3 we introduce the hybrid 
networks of an arbitrary number of nodes subject to a 
common restart and show the existence of a synchrony 
solution and show how the approach of the variational 
equation gives rise to different reset regimes. Also, we 
define a condition that guarantees the control of such 
regimes. In Sect. 4 we use the mentioned hypotheses 
and expand the MSF for this new type of network. In 
Sect. 5, through the saltation matrix method, we give 
a method to evaluate the exponents of Lyapunov and 
the MSF of the Nakano oscillator. Finally, in Sect.  6, 
through the numerical simulations implemented with 
the methods of the previous sections, we investigate the 

influence of the different types of coupling, and exhibit-
ing the stabilizing effect that the couplings through the 
variable voltage-type possess.

2 � The Nakano–Saito model

We consider the following integrate-and-fire model 
introduced by Nakano and Saito [10], it consists of a 
RLC  circuit with a switched regime given by a condi-
tion on the voltage variable:

v, i are the voltage and current variables, R , L  , C  are the 
constants corresponding to the resistance, the inductance, 
and the capacitor, respectively. VT and E  are the threshold 
and base voltage for the switch condition.

In Fig. 1, the circuit model is shown.
Suppose that (1) has unstable complex characteristic 

root �� + i�

Now, we use the following dimensionless variables and 
parameters:

(1)

⎧
⎪⎨⎪⎩

C
dv

dt
= i

L
di

dt
= −v +Ri

v(t−) = VT → (v(t+), i(t+)) = (E, i(t−)).

(2)𝜔2 =
1

LC
−

(
R

2L

)2

> 0, 𝜌 =
R

2𝜔L
> 0.

Fig. 1   Model of Nakano–Saito circuit given by the system (1). In the 
figure, −R , COMP and MM denote a linear negative resistor, a com-
parator, and a monostable multivibrator, respectively. If the capaci-
tor voltage reaches the threshold V

T
 , the COMP triggers the MM to 

output a signal that closes the switch S and v is reset to base volt-
age E
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For brevity, we write x± = lim�→0± x(t + �) . The derivatives 
are with respect to � . So, the system (1) is transformed into

where

System (4) has an unstable equilibrium of focus type 
in 0, and exhibits bursting states. In particular, the diver-
gent vibration and the firing switch acts as stretching 
and folding mechanisms, respectively, which are funda-
mental for chaos generation. In [10] the chaotic behav-
ior of system (4) was proved, and the synchrony of two 
coupled systems in a master–slave configuration was 
investigated too, see Fig. 2. In addition, as is usual in 
integrate-and-fire systems, the variable that is selected 
for the reset condition is called the voltage-type variable 
[7]. In this case, it is variable x1 , which is proportional 
to the variable that measures the voltage in system (1).

We are interested in the collective behavior that 
emerges from a particular coupling way, called dummy 
slave. Consider a master node x = (x1, x2) given by sys-
tem (4), and a slave node y = (y1, y2) coupled as follow:

(3)

� = �t

vR =
E

VT

x1 =
v

VT

x2 = −
�

VT

v +
1

�CVT

i.

(4)

{
ẋ = Ax

x−
1
= 1 → x+ = Rx− + I,

x =

(
x1
x2

)
, A =

(
� 1

−1 �

)
, R =

(
0 0

0 1

)
, I =

(
vR

�(1 − vR)

)
.

where E ∈ ℝ
2×2 . The previous system is one of the sim-

plest ways to couple these oscillators, has a synchronized 
state (see Fig. 3) and can be used as a first approach to 
study other more intricate couplings (see again [10]). So, 
as approach to general case, we consider networks of arbi-
trary number of nodes mutually coupled in that way. This 
way of coupling, we will see, allows a simpler reset regime.

Our generalization of the dummy-slave coupling allows 
us to obtain a network with a single reset regime. In turn, 
this allows us to study how certain inputs that measure the 
global state of nodes influence the stability of synchrony 
solution.

The key to our model is to take a measure of the global 
behavior of the network. (In our case, it is the average of 
the voltage-type variables.) The value of this measure is 
received by an external comparator that evaluates its mag-
nitude. When a certain value is reached, the comparator 
issues the network reset order. For simplicity, we main-
tained an affine linear function as reset rule. See Fig. 4. As 
we will see, this global feedback allows the appearance of 
different synchrony regimes.

3 � Hybrid recurrent networks

We consider the next hybrid network (we use such name 
because the system is hybrid in the nomenclature 
of [20]) of n linear oscillators x i ∈ ℝ

2 , with A ∈ ℝ
2×2 , 

L = (lij) ∈ ℝ
n×n a Laplacian matrix (that is, the sum 

over each row is zero, i.e. the network is balanced) and 
the matrix E ∈ ℝ

2×2 , which captures the way in which 

(5)

{
ẏ = Ay + E(x − y)

xa
1
1 → y+ = Ry− + I,

Fig. 2   Nakano–Saito chaotic oscillator (parameters: � = 0.1 , v
R
= 0)
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information among nodes is being exchanged by identi-
fying what states a node transmits to its neighbors:

where F ∈ ℝ
2 , R ∈ ℝ

2×2 is the reset matrix and the vector 
I ∈ ℝ

2 is called input. Also F .x indicates the dot product 
of vectors.

Suppose now that there is a synchronous state (or syn-
chrony solution) s(t) = x1(t) = ... = xn(t) . Because the sum 
of each row of the L matrix is zero, such solution is given 
by the system

Note that if we replace the values of matrices A, E, I with 
those given in the previous section and take F = (1, 0) , 
then the synchrony solution is solution of previous 

(6)

�
ẋ i = Ax i +

∑n

j=1
lijEx j

1

n

∑n

k=1
F .x−

k
= 1 → x+

j
= Rx−

j
+ I,

(7)

{
ṡ = As

F ⋅ s− = 1 → s+ = Rs− + I.

Nakano’s system (4). To see this, just consider s = (s1, s2) 
and with the aforementioned matrices, we obtain the 
desired system.

Now consider the average variable u =∶
1

n

∑
i x i , and 

write the variational equation around s(t) : consider the 
variation �x i = x i − s . Using that

 and s+ = Rs− + I , we have the next variational system ( �2 
is the identity matrix of dimension 2):

We observe that there are two conditions (or regimes) for 
resetting the systems, and each condition has its own reset 
rule.

Similar scenarios can be found in [17]. There, the prob-
lem of different regimes is approached by considering 
sums of mass-point functions for the instants of reset 
and re-writing the system to introduce them. Here, we 
consider an alternative approach.

We introduce an additional condition on the network 
topology: we will ask that the sum along each column of 
the weights matrix L is also zero (we say that the matrix 
is doubly balanced in this case). This condition contem-
plates the traditional case of non-directed graphs (in this 
case, the matrix L is symmetric).

Assuming the network is doubly balanced, we have 
the following:

n∑
j=1

lij(Ex j − Es) =

n∑
j=1

lijE�x j ,

(8)

⎧⎪⎨⎪⎩

𝛿ẋ i = A𝛿x i +
∑n

j=1
lij(Ex j − Es) = A𝛿x i +

∑n

j=1
lijE𝛿x j

F .s− = 1 → 𝛿x+

i
= 𝛿x−

i
+ (�2 − R)s− − I

F .u− = 1 → 𝛿x+

i
= R𝛿x−

i
− (�2 − R)s− + I.

Fig. 3   Synchronized stable state for a master-slave system with a dummy slave. The common regimen of reset and the adecuate matrix E 
produce a fast synchrony. For this simulation � = 0.1 , v

R
= 0 and E = {E11 = 1, E12 = E21 = E22 = 0}

Fig. 4   Symbolized diagram of the network model with a global 
feedback. The system of coupled nodes send a measure of the 
global activity and it is analyzed by the COMP element. If certain 
condition is fulfilled (to reach certain threshold for example), so 
COMP sends a reset order to the nodes
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In addition, the reset rule is transformed into the following 
expression:

Finally, we obtain that the average solution obeys the 
system

But observing that the systems (7) and (11) are the same, 
we get that for a doubly balanced network its synchrony 
solution matches with the averages of nodes. So, we con-
clude that the structure of the network (represented 
through the matrix L) produces the coincidence of the 
reset regimes.

4 � Extension of MSF

If u = s , then the variables x i and s reset at the same time 
by the same rule. so we will have that system (8) becomes 
in

Note that the previous system is an hybrid system whose 
reset condition is independent of the state of the nodes 
and only depends on the frequency of s(t) . That is, the evo-
lution of variation and resetting are “decoupled”.

Now we write everything with the usual Kronecker 
product. Let be �x = (�x1,… , �xn) . We obtain

Let P ∈ ℝ
n×n be such that L = PΛP−1 , where Λ is diagonal, 

and make the change of variables (P ⊗ �2)� = 𝛿x.
So, we have

Using properties of the Kronecker product we finally get

(9)

u̇ =
1

n

n∑
i=1

ẋ i = Au +
1

n

n∑
i=1

n∑
j=1

lijEx j

= Au +
1

n

n∑
j=1

(
n∑
i=1

lij

)
Ex j

= Au.

(10)
1

n

n∑
j=1

F .x−

j
= F .u− = 1 → u+ = Ru− + I.

(11)

{
u̇ = Au

F ⋅ u− = 1 → u+ = Ru− + I.

(12)

�
𝛿ẋ i = A𝛿x i +

∑n

j=1
lij(Ex i − Es) = A𝛿x i +

∑n

j=1
lijE𝛿x j

F .s− = 1 → 𝛿x+

i
= R𝛿x−

i
.

(13)

{
𝛿ẋ = (�n ⊗ A)𝛿x + (L⊗ E)𝛿x

F .s− = 1 → 𝛿x+ = (�n ⊗ R)𝛿x−.

(14)
(P ⊗ �2)�̇ = (�n ⊗ A)(P ⊗ �2)� + (PΛP−1 ⊗ E)(P ⊗ �2)�.

For the reset conditions, we have

Finally, knowing that the matrix Λ is diagonal, we can 
decouple the different normal modes in the usual way. Let 
be �i = � + i� and � i = � , we have that each block obeys 
the equation:

where the orbit s is given by the system (7).
In this way, we can use the system (17) to define the 

MSF in the usual way as the maximum Lyapunov exponent 
for given � = � + i� , and thus we can analyze the stability 
of the synchronous state.

5 � Evaluating the MSF

For evaluating the MSF, we join the previous system (17) 
with (7):

We take system (18) and use a more compact notation, 
where � = � + i�:

where 0 represents null matrices with adequate size.
Now we define the variable �̄ = (s, �)T  . In this way, we 

write the system (18) in a more compact way:

Let tk , k ∈ ℕ be the instants where there is a reset of vari-
able �̄ , and let Q(t) be the saltation matrix of the system 
(19) (see Chapter 2 of [20]). Write G(t) = exp Āt , so we have 
the next approximation to the variation 𝛿�̄:

But since we want to evaluate the maximal Lyapunov 
coefficient of (17), we consider only initial variations of 
the form

(15)�̇ = (�n ⊗ A)� + (Λ⊗ E)�.

(16)

F ⋅ s− = 1 → �+ = (P ⊗ �2)
−1(�n ⊗ R)(P ⊗ �2)�

−

= (P−1 ⊗ �2)(P ⊗ R)�−

= (�n ⊗ R)�−.

(17)

{
�̇ = A� + (𝛼 + i𝛽)E�

F ⋅ s− = 1 → �+ = R�−,

(18)

⎧⎪⎨⎪⎩

ṡ = As

�̇ = A� + (𝛼 + i𝛽)E�

Fs− = 1 →

s+ = Rs− + I

�+ = R�−

Ā =

(
A 0

0 A + 𝜆E

)
, R̄ =

(
R 0

0 R

)
, Ī =

(
I

0

)
, F̄ =

(
F

0

)
,

(19)

{
̇̄� = Ā�̄

F̄ .�̄− = 1 → �+ = R̄�− + Ī.

(20)𝛿�̄(tn) = Q(tn)G(tn − tn−1)...Q(t1)G(t1 − t0)𝛿�̄(t0).
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and use the formula (20) to approximate the limit

5.1 � The saltation matrix

Let’s write [A, B] = AB − BA , where A, B are square matrices 
with the same size. Also, write �̄∗ = (s∗, �∗) the cut points 
in which the variable �̄ is reset. Then, according to the 
given formula for the saltation matrix Q of (19) (see the 
Section 2.5 of [20]), we have:

We only conserve the fourth block of the matrix (23) 
because we use the formula (20) with an initial variation 
(21):

Let be G�(t) = exp (A + �E)t , now we can use equation (22). 
It will be enough to evaluate the quotient

for a large enough k ∈ ℕ.

6 � Application to Nakano–Saito oscillator

Now we consider hybrid networks of oscillators which have 
the form ẋ = Ax . These networks generalize the dummy 
slave exposed in the first section. We study the case of 
nodes coupled in different ways given by a matrix E.

First we consider the classical coupling used as canoni-
cal test for evaluations of MSF. After we consider another 
coupling which if of interest in the design of electronic 
circuits.

In addition, we will take advantage of the stability of the 
simulations in order to investigate in detail different types 
of couplings, and we will see how those that privilege the 

(21)𝛿�̄(0) =

⎛⎜⎜⎜⎜⎜⎜⎝

0

…

0

𝛿�1(0)

…

𝛿�m(0)

⎞⎟⎟⎟⎟⎟⎟⎠

(22)Λmax = lim
k→∞

1

tk
log

�‖𝛿�̄(tk)‖
‖𝛿�̄(0)‖

�
.

(23)
Q(�̄∗) = R̄ +

(
ĀR̄�̄∗ + ĀĪ − R̄Ā�̄∗

)
F̄⊤

F̄⊤Ā�̄∗

=

(
R 0

0 R

)
+

1

F⊤As∗

(
[A, R]s∗F

⊤ + IF⊤ 0

[A + 𝜆E, R]�∗F
⊤ 0

)
.

(24)Q
�
= R,

(25)
1

tk
log

�‖Q�
(tk)G

�(tk − tk−1)…Q
�
(t1)G

�(t1)��(0)‖
‖��(0)‖

�
,

voltage variable are fundamental in the generation of sta-
bility regimes.

In the simulations make with formula (25), we take 
k = 50 for obtaining the MSF map showed in the figures.

6.1 � The canonical case

We study the hybrid network of oscillators only coupled in 
the first variable by a Laplacian double-balanced matrix L 
. Consider

Considering a network like (6) with the parameters men-
tioned above, we obtain an hybrid network whose syn-
chronization solution s(t) is a Nakano–Saito oscillator 
given by (4). As we can see in Fig. 5, synchronous and non-
synchronous behaviors are possible in these networks.

(26)E = E11 =

(
1 0

0 0

)
, F =

(
1

0

)
, I =

(
vR

�(1 − vR)

)
.

Fig. 5   Synchronous and non-synchronous behavior of the variable 
x1 , of networks with a structure of complete non-directed graph 
(nine nodes), and random values of couplings. In black, the syn-
chrony solution is plotted (parameters: � = 0.1 , v

R
= 0)
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Applying the formalism of previous section, we can 
evaluate the MSF of the hybrid network (6) for this oscil-
lator. We can see in Fig. 6 that the stability of the synchro-
nous state is guaranteed for eigenvalues � with negative 
real part sufficiently far from zero. In addition, as is com-
mon in these maps, we can observe a well region (the dark 
blue region) where the synchrony is more robust.

6.2 � Coupling by the current variable

Often systems like (1) are coupled by the current variables:

If we use the aforementioned dimensionless variables, we 
obtain an hybrid network like (6) coupled by the matrix

This is one of the most interesting couplings, as we will see 
in the next section.

In Fig. 7, we can observe a more complicated region of 
synchrony than in the previous example, with zones of the 
left half-plane where synchrony is not possible. Then we 
can conclude that the synchrony is more sensitive to the 
topology of the network for this type of couplings (since 
new regions of non-synchronization appear). Although 
again we see a well region (the dark blue region) where 
the synchrony is more robust.

(27)L
dik

dt
= −vk +Rik +

∑
j

wkj(vk − vj).

(28)E = E21 =

(
0 0

1 0

)
.

Numerical simulations of hybrid networks with E21 cou-
pling are shown in Fig. 8. Temporal standard deviation of 
the first variables of nodes has been taken as synchrony 
indicator, thus the case � = 0 corresponds to the syn-
chrony state. The network is simulated for three different 
configurations (case of complete network, symmetric 
random network and other random directed network). 
Figure 9 shows the distribution of the eigenvalues of the 
simulated network configurations together with the MSF. 
It can be appreciated the coincidence between the pre-
dicted behavior of the network and the simulated one.

6.3 � Other couplings

We will concentrate only on networks with non-directed 
connections, to study the impact of the E matrix that 
selects the coupling mode. In this case, the matrix L is sym-
metric, and all its eigenvalues are real. Thus, the evaluation 
of the MSF is simplified to case � ∈ ℝ.

We will consider different couplings: the family of the 
Eij matrices (which possess the ij-entry equal to 1 and zero 
the others entries), the identity coupling E = �2 , and the 
coupling through the following matrix

The simulations of the MSF corresponding to the cou-
plings E11, E21, E22 and �2 were performed using the for-
mula (25) with K = 50 . In all these cases, near zero, there 
is a change in stability the synchronization solution from 
right to left along the real axis. The horizontal part of the 

(29)G =

(
0 1

1 0

)
.

Fig. 6   MSF of the hybrid network with Nakano–Saito oscillator as 
synchronous state coupled by the matrix E11 (parameters: � = 0.1 , 
v
R
= 0)

Fig. 7   MSF of the hybrid network with Nakano–Saito oscillator as 
synchronous state coupled by the matrix E21 (parameters: � = 0.1 , 
v
R
= 0)
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curve corresponding to the coupling �2 is due that in the 
numerical implementation the value of ‖��k‖ was lower 
than the allowed tolerance � = 10−100 . So, that value was 
taken as an estimate. In this way, the constant part of the 
curve does not match the correct value of Λmax (in fact its 
value is much smaller) but it does guarantee its negative 
sign. The plot of the MSF corresponding to that couplings 
can be seen in Fig. 10. Finally, we compare the curves and 
obtain that the coupling E21 , unlike the others, presents 
disjoint intervals of stability, which allows to infer a richer 
behavior of the networks that use it.

On the other hand, the MSF of the couplings E12 and 
G could not be estimated in the same range as the previ-
ous ones due to the numerical instability they presented. 
However, the calculation could be performed in a smaller 

neighborhood of � = 0 with the same precision as the 
previous ones. The direction of stability changes in these 
two couplings unlike the previous couplings. In Fig. 11 
we can see how the instability region ends to the right 
of the value � = 0 and the stability region continues as 
the parameter grows.

We conjecture that such a change of direction is due 
to the influence of the variable x2 on x1 because the 
growth of the variable x2 , unlike x1 , is not restricted by 
any threshold and the reset does not change its magni-
tude. Thus, their influence on x1 tends to increase the 
frequency with which resets occur, destabilizing the 
network (we can see that the slope in the changes of 
the stable regions is much greater than in the previous 
couplings).

Fig. 8   Temporal evolution of 
the standard deviation of the 
first variable for different net-
work structures, with connec-
tion E21 (parameters: � = 0.1 , 
v
R
= 0 ). The value of the stand-

ard deviation is close to zero 
near the synchronization state. 
The top image corresponds 
to the complete graph, and 
the L matrix is its adjacency 
matrix, for the second image a 
symmetric matrix with random 
entries was used (the entries 
are in the interval (−1, 1) and 
the values of the diagonal 
entries are equal to the sum 
of the remaining entries of 
the row). The abrupt change 
to the synchrony regime 
with the complete graph is 
striking. Finally, the bottom 
image corresponds to a matrix 
balanced by both rows and 
columns, with random entries 
in (−1, 1) and null diagonal. In 
the pictorial representation of 
the matrices, the dark green 
shades correspond to values 
close to 1 and the light green 
shades to −1
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7 � Conclusions

In this work, the appearance of synchronous behaviors 
in a particular type of pulsed coupled networks with 
global feedback was studied. Like classic synchronization 
works, our network consists of coupled identical nodes. 
Each node of network represents a Nakano-type circuit, 

and they are linearly coupled. However, the action of a 
common reset to the entire network (given by the aver-
age of the voltage variables) produces a discontinuous 
dynamics of integrate-and-fire type.

Due to certain characteristics of this network, several 
of the usual formalism (mainly the MSF and the salta-
tion matrix) could be generalized and expressed through 
closed forms.

In this way it was possible to investigate how a global 
reset rule generates synchrony states and how the reset 
regimes can be canceled under certain hypotheses about 
the topology of network. Also different coupling modes 
can be compared. On this last point, it should be noted 
that after comparisons of different coupling modes, those 
involving the voltage variables acting on the current ones 
stand out. This type of coupling exhibits a more robust 
synchrony and the appearance of different stability gaps. 
This variety of behaviors makes this coupling the can-
didate to develop control mechanisms for this type of 
networks.

However, it is still pending to explain the nature of these 
behaviors, as well as to expand these formalism to more 
complex and higher dimensional systems than the Nakano 
circuit. On the other hand, although taking the average 
of the variables as restart, allowed us to study in detail 
the synchrony, in future works the rule of restart must 
be replaced by more realistic ones. Some of the possible 
couplings are random choices of nodes, connections with 
delay [22] or linear functions such like those used in [23].

Finally, all these studies will also involve sophisticated 
numerical tools. Although the MSF is a tool that provides 
invaluable information on network dynamics, in future 

Fig. 9   The distribution of their eigenvalues is plotted in the figure, 
and it can be seen how the inside/outside position of the respec-
tive eigenvalues coincide with the synchrony simulations shown 
in the previous figures. The dark blue areas correspond to the syn-
chrony regions of the network

Fig. 10   Sectional cut of the MSF ( ℑ(�) = 0 ) for the couplings 
E11, E21, E22 and �2 . The right graph shows how the stability region 
begins just before the zero value. We can also identify in each curve 

some well region, as is usual in these diagrams. Finally we see that 
in the case of the coupling E21 there are others stability zone to the 
right of � = 0
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studies we will incorporate new approaches such as phase 
curve response or mean-field quantities, which allow us 
to account for different behaviors such as the transition 
between synchrony states and asynchrony [12], antici-
pated synchrony [24], or traveling waves through the net-
work connections [1].
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