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Abstract
This study presents a novel goal-oriented error estimate for the nonlinear shallow water equations solved using a mixed 
discontinuous/continuous Galerkin approach. This error estimator takes account of the discontinuities in the discrete solu-
tion and is used to drive two metric-based mesh adaptation algorithms: one which yields isotropic meshes and another 
which yields anisotropic meshes. An implementation of these goal-oriented mesh adaptation algorithms is described, 
including a method for approximating the adjoint error term which arises in the error estimate. Results are presented 
for simulations of two model tidal farm configurations computed using the Thetis coastal ocean model (Kärnä et al. in 
Geosci Model Dev 11(11):4359–4382, 2018). Convergence analysis indicates that meshes resulting from the goal-oriented 
adaptation strategies permit accurate QoI estimation using fewer computational resources than uniform refinement.

Keywords  Adjoint methods · Mesh adaptation · Discontinuous Galerkin · Tidal turbine modelling · Firedrake
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1  Introduction

Coastal modelling problems are typically multi-scale, 
often with a strongly direction-dependent flow. As such, 
anisotropic mesh adaptation is an attractive prospect for 
providing both accuracy and reduced computational cost; 
by adapting the mesh such that its anisotropy is aligned 
with the flow, the number of degrees of freedom (DOFs) 
required to yield an accurate solution is reduced. The met-
ric based approach to anisotropic mesh adaptation was 
first introduced in [20] and uses Riemannian metric fields 
to control not only the size of mesh elements, but also 
their shape and orientation. This approach was shown to 
be particularly suited to multi-scale ocean modelling in 
[31]. For a review of recent progress in the field of aniso-
tropic mesh adaptation, see [1].

Further, coastal modelling problems often involve a 
diagnostic quantity of interest (QoI) of greater importance 
than the solution itself. Goal-oriented error estimation rep-
resents the error accrued in computing the QoI in terms 
of PDE residuals and solutions of associated adjoint equa-
tions. Used within a mesh adaptation algorithm, such esti-
mators can yield meshes permitting accurate QoI approxi-
mation. The majority of goal-oriented error estimators are 
based upon the pioneering work of [9, 10]. More recently, 
researchers have developed goal-oriented estimators 
which take account of discontinuous Galerkin (DG) discre-
tisations (see [15, 22]). Integration into the metric based 
mesh adaptation framework has also been developed (see 
[12, 27, 32]).

The depth-averaged shallow water equations are often 
used in coastal ocean models, providing approximations 
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to the fluid velocity and elevation of the ocean surface. 
This work builds upon the anisotropic goal-oriented mesh 
adaptation research referenced above, focusing on the 
shallow water equations. To the best of the authors’ knowl-
edge, this work presents the first formulation of a goal-
oriented error estimate for the shallow water equations 
discretised in a mixed discontinuous/continuous space.

The shallow water equations are solved using the Thetis 
coastal ocean modelling framework [24], which is based 
upon the finite element library Firedrake [33]. Underlying 
linear and nonlinear systems are solved using PETSc [5, 6]. 
As well as a 2D shallow water model [35], Thetis offers 3D 
Navier-Stokes solvers with Boussinesq and hydrostatic [24] 
and non-hydrostatic [30] assumptions and a tracer trans-
port model.

Goal-oriented error estimation is introduced in Sect. 2, 
along with two approaches to goal-oriented mesh adap-
tation. Application of the error estimation and adaptation 
techniques to shallow water problems is considered in 
Sect. 3. Section 4 contains numerical experiments vali-
dating the adaptation strategy for a simple tidal turbine 
model. The results from Sect. 4 are discussed in Sect. 5 and 
conclusions are drawn in Sect. 6.

2 � Goal‑oriented mesh adaptation

2.1 � Metric‑based mesh adaptation

In this paper, Riemannian metric fields are used to drive 
the mesh adaptation process. These tensor fields, often 
referred to simply as metrics, are symmetric positive-defi-
nite (SPD) linear forms defined pointwise, which give rise 
to all of the geometrical quantities necessary to perform 
mesh adaptation. In this work, metrics are derived using 
the error estimates described in Sect. 2.2. For details on the 
metric-based approach, see [1, 7, 20, 29, 34].

The spatial domain, denoted by 𝛺 ⊂ ℝ
n , is assumed to 

have piecewise smooth boundary � ∶= �� . For a mesh H 
of the domain, we denote mesh elements by K ∈ H and 
the edge set of element K by �K  . In this work we restrict 
attention to triangular mesh elements, for simplicity. 
Denote the set of all edges which are not on the domain 
boundary (internal edges) by �int.

2.2 � Error estimation

The shallow water equations may be written in the ‘resid-
ual form’

(1)� (�) = 0,

with solution � living in a space of functions denoted V. 
Throughout this paper, we shall refer to (1) as the forward 
equation and to � as the forward solution. The diagnostic 
QoI, J, is a functional which maps members of V onto the 
real number line. Associated with (1) and the QoI is an 
adjoint equation,

The adjoint solution �∗ also lives in V and conveys the 
propagation of sensitivities of the QoI to perturbations in 
the forward solution. For a finite dimensional subspace 
Vh ⊂ V  , (1)–(2) have Galerkin approximations given by

where ⟨⋅, ⋅⟩ is the L2 inner product and �h and �∗
h
 are finite 

element approximations to the forward and adjoint solu-
tions. Typically, integration by parts is applied in construct-
ing the weak residuals �(�h, ⋅) and �∗(�∗

h
, ⋅) from the inner 

products.
We consider the classical a posteriori goal-oriented 

error estimate known as the dual weighted residual, due 
to [9, 10]. Therein, the error result

is presented, where the remainder term R(2) is quad-
ratic in the forward and adjoint errors � ∶= � − �h and 
�∗ ∶= �∗ − �∗

h
 . Element-wise dual weighted residual error 

indicators and a global error estimator may be derived as

2.3 � Goal‑oriented metrics

There are many potential ways to construct metric ten-
sor fields using the scalar error indicator (6), one being 
to appropriately scale an identity matrix; this is referred 
to as an isotropic approach, since resulting meshes are 
relatively isotropic. For problems with strong directional 
dependence, anisotropic metrics can be beneficial, allow-
ing control of the shape and orientation of mesh elements, 
as well as size.

In [37], an isotropic metric was compared with two 
approaches to constructing anisotropic metrics from goal-
oriented error estimates (based on the work of [27, 32]) for 

(2)
��

��

T

�∗ =
�J

��

T

.

(3)�(�h, �) = − ⟨� (�h), �⟩ = 0, ∀� ∈ Vh,

(4)�∗(�∗
h
, �) =

⟨
�J

��

T

−
��

��

T

�∗
h
, �

⟩
= 0, ∀� ∈ Vh,

(5)J(�) − J(�h) = �(�h,�
∗ − �∗

h
) + R(2),

(6)EK = || �(�h, �∗)|K ||, E =
∑
K∈H

EK .
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advection-diffusion problems discretised using continu-
ous finite elements. In this subsection, we utilise a differ-
ent approach, developed in [12], which straightforwardly 
permits discontinuous discretisations.

2.3.1 � Isotropic metric

First, consider the isotropic case. Let |K̂ | denote the ref-
erence element volume and |K| denote the volume of an 
arbitrary element K ∈ H . Constructing an element-based 
isotropic metric in n-dimensions amounts to the scaling 
[12]

where �n is the element-wise identity metric. The desired 

element volume |K̃ | is chosen to minimise interpolation 
error, such that the metric complexity N > 0 is smaller than 
some desired complexity, Nmax . Metric complexity can be 
viewed as the continuous analogue of the mesh vertex 
count [1, 7]. The proof that |K̃ | solves this optimisation 
problem is given in [11]. The parameter � ≥ 1 which arises 
in its solution is not known a priori. However, [12] states 
that its influence on (7) is negligible, provided that we are 
sufficiently close to the optimal volume. We have found 
� = 1 to be an effective choice in practice.

It is worth remarking that |K̃ | is mesh-dependent. This 
means that meshes generated using metric �K  are heavily 

influenced by the mesh upon which the metric was con-
structed. However, as detailed in Sect. 3.4, the mesh adap-
tation algorithm used in this work iteratively solves the 
PDE, evaluates (7) and adapts the mesh until convergence 
criteria are met. As such, the dependence on the initial 
mesh diminishes as the algorithm progresses. This is in 
agreement with what we have found in numerical experi-
ments. For further discussion of the coupled mesh adap-
tation-PDE solution process, see [1].

2.3.2 � Anisotropic metric

As with the approaches considered in [37], the anisotropic 
metric construction of [12] uses a recovered Hessian of the 
prognostic variables. In this instance, we compute the 
element-averaged Hessian �K  on an element K by solving 

an auxiliary finite element problem (for details, see [29]).

(7)�K =
�K̂ �
�K̃ � �n, �K̃ � = �K �

⎛⎜⎜⎝

∑
K∈H E

1

�+1

K

N

⎞⎟⎟⎠
E
−

1

�+1

K
,

As a symmetric matrix, the Hessian has an orthogonal 
eigen-decomposition �K = �K �K �K

T  , with eigenvalue 

matrix �K = diag(�K ,1,… , �K ,n) ordered such that 

|�K ,1| ≤ ⋯ ≤ |�K ,n| . The stretching factor associated with 
the element-averaged Hessian is defined by

We construct an element-wise metric by modifying the 
eigenvalues appropriately. In the two dimensional case, 
[12]

A vertex-based metric is obtained from (9) by projection 
from ℙ0 to ℙ1 . In this work, the projection is applied using 
a Galerkin projection, which amounts to averaging the 
element-wise values surrounding a vertex.

3 � Application to the shallow water 
equations

3.1 � Shallow water equations

In this work we consider the nonlinear shallow water equa-
tions for velocity � [ms−1] and surface elevation � [m] in 
steady-state form,

with boundary conditions as appropriate. The fluid is mod-
elled as having viscosity tensor � [m2 s−1] , (unitless) quad-
ratic drag Cd  and bathymetry b [m] . We assume 
g = 9.81m s−2.

Suppose the exact solution � = (�, �) lives in a function 
space V with finite dimensional subspace Vh . For all test 
functions � = (� ,�) ∈ Vh , we have a Galerkin formulation 
of (10) given by

where �h ∈ Vh is a finite element approximation to � . 
The weak form is decomposed into advection, gravity, 

(8)sK ∶=

√
maxn

i=1
|�i,K |

minn
i=1

|�i,K |
.

(9)

�K = �K �̃
−2

K
�K

T , �̃K = diag

⎛
⎜⎜⎝

�
�K̃ �
�K̂ �

sK ,

�
�K̃ �
�K̂ �

1

sK

⎞
⎟⎟⎠
.

(10)

� ⋅ ∇� + g∇� +
Cd‖�‖�
� + b

= ∇ ⋅ (�∇�), ∇ ⋅ ((� + b)�) = 0,

(11)
�adv(�h, �) + �gra(�h, �) + �vis(�h, �)

+ �drg(�h, �) + �cty(�h, �) = 0,
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viscosity, drag and continuity terms. Taking all test func-
tions, (11) forms a nonlinear system of equations which 
is solved using a Newton iteration. A direct solver is used 
in this work to solve the linear system of equations that 
arises in the update step of Newton’s method based on 
the Jacobian of (11) [3, 4].

For Vh , we select the mixed finite element space 
ℙ1DG − ℙ2 . That is, velocity is piecewise linear and dis-
continuous across elemental boundaries, whilst eleva-
tion is piecewise quadratic and continuous. This element 
pair was shown to be suitable for shallow water model-
ling in [13].

Clearly, functions from the velocity space are discon-
tinuous across internal edges. Thus, internal edge inte-
grals whose integrand involves such functions are not well 
defined. This necessitates the introduction of the following 
restriction operators, which assign a single value on each 
edge. For an edge � ∈ �int , arbitrarily label each side with + 
and −, giving rise to normal vectors �̂± . Define the restric-
tion operators given by the average {{v}}|� ∶= 1

2
(v+ + v−) 

and jump [[v]]|� ∶= v+ − v− , where v can be scalar, vector or 
tensor valued. Note that [[� ⋅ �̂+]]|� ≡ �+ ⋅ �̂+ + �− ⋅ �̂− for 
vector functions. For edges on the domain boundary, set 
both the average and jump to the function value on the 
boundary. Denote the outer product �1�

T
2
 of two vector 

functions by �1 ⊗ �2.
Ignoring boundary condition implementation (for brev-

ity), Thetis uses the discretisation,

(12)

𝜌adv(�h, �) = −∫𝛺

(∇ ⋅ (�h ⊗ �)) ⋅ �h dx

+ ∫𝛤int

𝜏[[�]] ⋅ [[�h]] dS

+ ∫𝛤int

[[�(�h ⋅ ��
+)]] ⋅

��
�h
��

dS,

𝜌gra(�h, �) = ∫𝛺

g� ⋅ ∇𝜂h dx,

𝜌vis(�h, �) = ∫𝛺

∇� ∶ �∇�h dx

+ ∫𝛤int

𝜎[[� ⊗ ��+]] ∶
��
�
��
[[�h ⊗ ��+]] dS

− ∫𝛤int

[[� ⊗ ��+]] ∶
��
�∇�h

��
dS

− ∫𝛤int

{{∇�}} ∶
��
�
��
[[�h ⊗ ��+]] dS,

𝜌drg(�h, �) = ∫𝛺

� ⋅
Cd‖�h‖�h
𝜂h + b

dx,

𝜌cty(�h, �) = −∫𝛺

∇𝜙 ⋅ ((𝜂h + b)�h) dx,

where � ∶ � ∶=
∑n

i=1

∑n

j=1
SijTij for n-dimensional tensor 

functions � and � . If the elevation was chosen from a dis-

continuous space (which is also a valid choice in Thetis) 
then the gravity term would be integrated by parts and we 
would need Riemann solutions for � and �.

Lax–Friedrichs stabilisation [26] is applied in the 
advection term with parameter � =

1

2
||{{�}} ⋅ �̂+|| . The inte-

rior penalty parameter � used in the viscous term is cho-
sen in line with [17], depending upon the polynomial 
degree, variation of � and the minimal angle in each 
mesh element. For simplicity, we set � as the largest 
element-wise value. It is important to update the penalty 
parameter whenever the mesh is adapted. Boundary 
conditions are imposed weakly, therefore contributing 
additional terms to (12).

3.2 � Goal‑oriented error estimate

As discussed in Sect. 2.2, the construction of goal-ori-
ented error estimators from (12) typically involves inte-
grating by parts on each element. Doing so enables us 
to derive from (5)–(6) error indicators of the form

where � (�h) is the strong PDE residual (3), � �(�h) concat-
enates the residuals associated with the boundary condi-
tions and EDG

K
(�h, �

∗) contains flux terms arising from the 
DG discretisation.

As in [10], (13) is written in this compact form so that 
the structure of the error indicator is transparent. This 
formulation has the advantage of separating out differ-
ent components of the error estimator as regards the 
part of the problem they relate to. The first term assesses 
how well the PDE is solved on element interiors, the 
second term assesses the extent to which the bound-
ary conditions have been weakly imposed and the final 
term describes the magnitude of the flux terms con-
tributed by the DG discretisation of the velocity space. 
Since boundary conditions are neglected in (12), we 
are primarily interested in the nature of the flux term, 
E
DG
K
(�h, �

∗) , which conveys the smoothness of the dis-
crete solution. Analysis of these contributions is useful 
in informing model development and assessing whether 
mesh features arise due to approximation error, bound-
ary conditions or discretisation choice.

In order to derive an error indicator of the form (13), 
we need to appropriately integrate (12) by parts and sub-
stitute test functions for the adjoint error. No integration 

(13)EK =
���⟨� (�h), �

∗⟩K + ⟨� �(�h), �
∗⟩�K + E

DG
K
(�h, �

∗)
���,
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by parts is required for the gravity or drag terms, since it 
is not used in their derivation from corresponding terms 
in (12).

The application of integration by parts on a particular 
element K results in a term involving an integral over its 
edge set, �K  . In the DG method itself, these edge inte-
grals must be restricted, so as to yield a unique value on 
each edge. However, since we seek element-based error 
indicators, there is no need to restrict quantities which 
are discontinuous across elemental boundaries.

Integrating by parts in the advection, viscosity and 
continuity terms yields

where �̂ ∈ {�̂+, �̂−} is the outward-pointing normal to �K  . 
The notation used in (14) can be simplified by application 
of three restriction identities, as follows. Consider a scalar 
function f, vector function � and an edge � shared by two 
adjacent elements K+, K− ∈ H whose outward-pointing 
normals are �̂+ and �̂− , respectively. Then

Replacing test functions with the adjoint error in (14) and 
applying (15), we obtain error indicators of the form (13), 
where the flux term is given by

(14)

𝜌adv(�h, �)|K = ∫K

� ⋅ (�h ⋅ ∇�h) dx

− ∫𝜕K

((�h ⊗ �) ⋅ �h) ⋅ �� dS,

+ ∫𝜕K�𝛤

𝜏[[�]] ⋅ [[�]] dS + ∫𝜕K�𝛤

[[�h ⋅ ��
+]]� ⋅

{{
�h
}}

dS,

𝜌vis(�h, �)|K = ∫K

� ⋅ (∇ ⋅ (�∇�h)) dx

− ∫𝜕K

� ⊗ �� ∶ �∇�h dS

− ∫𝜕K�𝛤

𝜎[[� ⊗ ��+]] ∶
{{
�
}}
[[�h ⊗ ��+]] dS

+ ∫𝜕K�𝛤

[[� ⊗ ��+]] ∶
{{
�∇�h

}}
dS

+ ∫𝜕K�𝛤

{{∇�}} ∶
{{
�
}}
[[�h ⊗ ��+]] dS

𝜌cty(�h, �)|K = ∫K

𝜙∇ ⋅ ((𝜂h + b)�h) dx

− ∫𝜕K

𝜙(𝜂h + b)�h ⋅ �� dS,

(15)

{{f}}|𝛾 = 1

2
f |𝜕K+ +

1

2
f |𝜕K− ,

[[� ⋅ ��+]]|𝛾 = � ⋅ ��+|𝜕K+ + � ⋅ ��−|𝜕K− ,

[[�⊗ ��+]]|𝛾 = �⊗ ��+|𝜕K+ + �⊗ ��−|𝜕K− .

Here �∗ = (�∗, �∗) is the exact adjoint solution, �∗
h
= (�∗

h
, �∗

h
) 

is a finite element approximation thereof and �∗ = (�∗
�
, e∗

�
) 

is the corresponding error.

3.3 � Approximation of the adjoint error

Note that (13) and (16) contain the (unknown) exact 
adjoint solution, �∗ . In practice, it suffices to approximate 
it in an enriched space, V+

h
⊃ Vh . We again choose V+

h
 as 

ℙ1DG − ℙ2 , but defined on a uniformly refined mesh. 
That is, a single, global iso-ℙ2 refinement is made, which 
amounts to inserting vertices wherever a quadrature node 
would exist in a quadratic element. The adjoint equation is 
then derived using a linearisation about the projected for-
ward solution, �+

h
�h ∈ V+

h
 . Whilst this approach is shown 

to be effective in Sect. 4.3, it implies an additional compu-
tational cost associated with solving the adjoint equation 
on a mesh with four times as many elements. In future 
work, a more efficient approach will be implemented, such 
as the one described on pp.590–593 of [15], which solves 
local PDEs to approximate �∗.

3.4 � Implementation details

The anisotropic metric formulation described in Sect. 2.3 
relies on the provision of an approximate Hessian. Hessian 
recovery techniques typically seek second derivatives for 
scalar fields. In this case, there are a number of options for 
fields to recover a Hessian from—the free surface eleva-
tion, velocity components and the fluid speed being the 
most obvious candidates. Individual Hessians may be com-
bined, using a strategy such as metric averaging or metric 
superposition (see pp. 131–138 of [7] for details and an 
investigation of the differences). In this work, we super-
pose the free surface elevation and velocity component 

(16)

E
DG
K
(�h, �

∗) = −∫𝜕K

((�h ⊗ �∗
�
) ⋅ �h) ⋅ �� dS,

+ ∫𝜕K�𝛤

𝜏[[�∗
�
]] ⋅ [[�]] dS

+ ∫𝜕K�𝛤

[[�h ⋅ ��
+]]�∗

�
⋅
{{
�h
}}

dS − ∫𝜕K

�∗
�
⊗ �� ∶ �∇�h dS

− ∫𝜕K

e∗
𝜂
(𝜂h + b)�h ⋅ �� dS

− ∫𝜕K�𝛤

𝜎�∗
�
⊗ �� ∶

{{
�
}}
[[�h ⊗ ��+]] dS

+ ∫𝜕K�𝛤

�∗
�
⊗ ��+ ∶

{{
�∇�h

}}
dS

+
1

2 ∫𝜕K�𝛤

∇�∗
�
∶
{{
�
}}
[[�h ⊗ ��+]] dS.
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Hessians, so that the anisotropy of each field is accounted 
for. The eigenvalues of the resulting metric are then modi-
fied according to (9) in order to account of the error indica-
tor (13), giving rise to a goal-oriented metric.

Mesh adaptation is performed using Pragmatic [8, 34], 
which is a mesh optimisation library primarily perform-
ing h-like adaptive operations, with some local Laplacian 
smoothing. The mesh adaptation workflow used is identi-
cal to that described in Algorithm 1 of [37]. The adapta-
tion loop is terminated if the QoI value, number of mesh 
elements or error estimator (13) change by less than 0.1% 
from one iteration to the next.

Previously published studies, such as [19], use the 
dolfin-adjoint package [18], which automates the solu-
tion of the discrete adjoint of a finite element problem 
expressed in Unified Form Language (UFL) [2]. In this work, 
we wish to be able to discretise the adjoint problem in a 
different way than the forward problem. Thus, we exploit 
the automatic differentiation capabilities of UFL in order 
to avoid an error-prone manual calculation.

Given a weak form PDE ‘F == 0’ with finite element 
solution ‘q’ and QoI ‘J’, the adjoint solution, ‘q_star’, may 
be computed in only a few lines of code:

Writing the adjoint equation using Firedrake solve calls 
enables us to solve the adjoint equation in V+

h
 , as opposed 

to Vh . To do this, we replace q by q_∈ V+
h

 and F by F_ in the 
above, where F_ is defined by prolonging the variables 
used in F from Vh to V+

h
.

The Firedrake installation used for all simulations docu-
mented in Sect. 4 is archived at [23, 36], with all simulation 
code archived at [38].

4 � Numerical experiments

4.1 � Tidal turbine modelling

Marine renewable energy is an active area of research in 
coastal ocean modelling (for example, see [14, 16, 19, 28, 
35]). In particular, tidal power presents an opportunity to 
generate large amounts of low-carbon electricity in coastal 
countries such as the UK. One major advantage of tidal 
power over other renewable energy sources is that tides 

���� = ����������(�, �, �������������(�.��������_�����()))

����_��������� = ��
����(����)

���� = ����������(�, �, ������������(�.��������_�����()))

�����(����_��������� == ����, �_����, ������_���������� = {...}).

are highly predictable, meaning that power is generated 
reliably.

The shallow water depth in which tidal turbines are 
deployed has a significant impact on wake recovery and 
hydrodynamic blockage effects, meaning that the posi-
tioning of turbines can be very important. By modifying 
the shallow water equations to account for tidal turbines 
positioned within the domain, recent research formulated 
tidal array positioning as a PDE-constrained optimisation 
problem [19]. Solving this problem gives the configura-
tion with maximum power, with the potential to incorpo-
rate penalties in the optimisation functional to account 
for financial [14] and environmental impact factors [16]. A 
parametrisation based approach is used, meaning that the 
turbines are modelled using a density function d = d(�).

Modifying (10) to account for a set of tidal turbines T  
amounts to choosing an appropriate drag coefficient Cd . 
Suppose turbine T has thrust coefficient cT , area AT and foot-
print indicated by �T . For a background drag Cb = 0.0025,

The binary footprint function �T ∶ � → {0, 1} is unity in 
the region where turbine T is deployed and zero elsewhere. 

(17)Cd ∶= Cb + Ct , Ct ∶=
∑
T∈T

1

2
d cT AT �T .

As such, it specifies the spatial region where the turbine 
drag is active. The thrust coefficent used in (17) is based 
on an upstream velocity, whereas � is the depth-averaged 
velocity at the turbine. Hence, we correct the thrust coef-
ficient using the rescaling recommended in [25].

We use the following proxy for the power output of the 
tidal array:

This provides a QoI for goal-oriented error estimation and 
has units of Watts.

4.2 � Problem setup

Whilst realistic tidal turbine applications are inherently 
time-dependent, we consider a steady-state test case to 
highlight the impact of the turbine position on power 

(18)J(�, �) ∶= ∫�

Ct‖�‖3 dx .
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output. For a simple tidal farm with two turbines, T1 and 
T2 , we consider two configurations: one where T1 is directly 
upstream of T2 and another where the turbines are offset 
by one turbine diameter to south and north, respectively. 
Our numerical experiments involve applying the goal-ori-
ented mesh adaptation approaches described in Sect. 2 
to provide accurate approximations to the total tidal farm 
power output in each case.

For a channel domain � = [0,�1] × [0,�2] with 
�1 = 1.2 km and �2 = 500m and uniform bathymetry 
b = 40m , flow is driven by an inflow condition, 
�|x=0 = (5, 0)ms−1 . These depths and fluid speeds are rep-
resentative of the Pentland Firth, Scotland - one of the UK’s 
greatest tidal resources [16]. Viscosity is set to be the iso-
tropic constant � = � �2 with � = 0.5m2 s−1 , meaning we 

have a moderately advection-dominated problem. Free-
slip conditions are imposed on the channel walls, along 
with a Dirichlet condition �|x=�1

= 0m on the outflow 
which acts to close the system. Turbines of diameter 18m 
are centred at {(456, 250), (744, 250)} in the aligned case 
and {(456, 232), (744, 218)} in the offset case. We use J0 and 
J1 to denote the total power output (18) for each of the two 
array configurations considered, where the subscript indi-
cates the offset in terms of number of turbine diameters.

Coarse initial meshes which take account of the tidal 
turbines are generated using gmsh [21] and shown in 
Fig. 1a, b. Figure 1c, d show the magnitude of the veloc-
ity (i.e. the speed) given by solving the test case on 
meshes which have been refined three times using iso-ℙ2 
refinement.

Observe that, in the aligned case, the momentum defi-
cit at T2 is more significant than at T1 . This is because the 
wake of T1 has not fully recovered and so the fluid speed 
meeting T2 is lower than that which meets the first. That 
is, T2 is fully in the wake of T1 and thus overall experiences 
slower flow and consequently generates less power [cf. 
(18)]. In the offset case, the momentum deficit is similar at 
each turbine, suggesting that the presence of T1 has less 
impact upon the fluid speed meeting T2 . The result is that 
the total power output of the aligned array configuration 
is lower than that of the offset configuration, as shown 
in the QoI values displayed on the fourth row of Table 1.

Table  1 illustrates the convergence of QoI values 
under iso-ℙ2 (uniform) refinement to four significant fig-
ures. Final values, J0 = 19.7174 kW and J1 = 23.1905 kW , 
present benchmark values to approximate using adap-
tive meshes. In agreement with expectations, the con-
verged power output in the aligned configuration is 15% 
lower than in the offset case. This illustrates how the 

Fig. 1   a, b Initial meshes for 
the aligned and offset cases 
with turbine footprint regions 
indicated by blue squares. c, d 
Fluid speed as computed on 
meshes generated by three 
uniform refinements of the 
meshes shown in a, b  0 200 400 600 800 1000 1200

0

100
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300

400

500

(a) Initial mesh (3,328 elements, max.
aspect ratio 1.8)

0 200 400 600 800 1000 1200
0

100

200

300

400

500

(b) Initial mesh (3,170 elements, max.
aspect ratio 1.7)

(c) Fluid speed [m s−1] in aligned case on a
212,992 element uniformly refined mesh

(d) Fluid speed [m s−1] in offset case on a
202,880 element uniformly refined mesh

Table 1   Convergence of QoIs J0 and J1 evaluated at finite element 
solutions on a sequence of meshes generated by uniform refine-
ment of the initial mesh

Aligned Offset

Elements DOFs J0 (kW) Elements DOFs J1 (kW)

3328 26,711 20.7460 3170 25,447 24.1583

13,312 106,669 19.9454 12,680 101,613 23.4034

53,248 426,329 19.7451 50,720 406,105 23.2172

212,992 1,704,625 19.7201 202,880 1,623,729 23.1923

851,968 6,817,121 19.7174 811,520 6,493,537 23.1905
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positioning of turbines within an array can significantly 
impact power output.

4.3 � Convergence analysis under goal‑oriented 
mesh adaptation

Having obtained benchmark values for the power output 
under uniform refinement in each turbine configuration, 
we apply mesh adaptation in an attempt to achieve con-
vergence to these values using fewer DOFs.

Figure 2 shows meshes generated by the two adapta-
tion strategies, each with low resolution downstream of 
the second turbine. This should be expected since we have 
an advection-dominated problem, meaning the power 
output of the array is independent of the downstream 
dynamics. We observe high mesh resolution surrounding 
and upstream of the turbines.

The moderate advection-dominance manifests in the 
anisotropy of the meshes shown in Fig. 2c, d. The maxi-
mum aspect ratio is reported to be higher in the aligned 
configuration, in which case almost all of the dynamics to 
which the QoI value is sensitive lie in a narrow horizontal 
band through the middle of the domain. The moderate 
mesh resolution near the domain boundaries in the tidal 

farm and upstream regions is due to residual contributions 
from the weakly enforced boundary conditions.

Figure 3 is useful in understanding how each com-
ponent of the error indicator (13) contributes towards 
the mesh adaptation. We observe that the PDE residual 
is most significant surrounding the turbines, whilst the 
error indicator contributions due to flux terms are gener-
ally in the upstream region. As has already been noted, 
the fact that we weakly impose boundary conditions 
means that there are significant flux term contributions 
near to the boundary.

Figure 4 illustrates the convergence of evaluated QoI 
values to the benchmark values established in Table 1 
under each adaptation strategy with increasing DOF 
count. This validates the adaptive solution strategies. The 
DOF count is increased by increasing the target mesh 
complexity in (7).

For a given number of DOFs, isotropic goal-oriented 
adaptation generally offers an improvement in QoI 
approximation accuracy over uniform refinement. Ani-
sotropic goal-oriented adaptation is shown to yield 
yet more accurate power output estimates, with the 
improvement over uniform refinement of the initial 
mesh being significant.

Fig. 2   Example meshes gener-
ated using goal-oriented mesh 
adaptation. In the aligned case, 
adaptation is applied to the 
mesh shown in Fig. 1a in order 
to generate a, c. In the offset 
case, adaptation is applied to 
the mesh shown in Fig. 1b in 
order to generate b, d  (a) Isotropic adaptation (5,508 elements, max. 

aspect ratio 1.7, QoI 20.2358 kW)
(b) Isotropic adaptation (5,472 elements, max. 

aspect ratio 2.2, QoI 23.5522 kW)

(c) Anisotropic adaptation (6,060 elements, max. 
aspect ratio 18.3, QoI 19.8468 kW)

(d) Anisotropic adaptation (6,442 elements, max. 
aspect ratio 8.7, QoI 23.3632 kW)

Fig. 3   Element-wise error 
indicator contributions result-
ing from a the strong residual 
evaluated on element interiors 
and b flux terms due to bound-
ary conditions, integration 
by parts and the DG velocity 
discretisation. Both fields 
are evaluated on the mesh 
displayed in Fig. 2d
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5 � Discussion

The numerical experiments conducted in Sect. 4 validate 
the two goal-oriented mesh adaptation strategies con-
sidered. The experimental results show that the aniso-
tropic approach in particular is able to achieve notably 
higher QoI estimation accuracy than is obtained using 
the same number of DOFs under uniform refinement. 
The isotropic approach also offers some improvement 
over uniform refinement for these test cases.

Consider again the goal-oriented meshes shown in 
Fig.  2. Observe that, in each case, the tidal farm and 
other well-resolved regions correspond to a small pro-
portion of the domain, with low resolution used away 
from these regions. One can imagine that extending the 
problem size to something akin to a realistic tidal tur-
bine modelling application would imply high resolution 
deployed in an even smaller proportion of the domain. 
Goal-oriented mesh adaptation is most effective when 
the QoI is insensitive to the dynamics in the majority 
of the domain and this becomes increasingly true as 
the domain size increases relative to the tidal farm. As 
remarked above, goal-oriented adaptation strategies 
deploy high resolution mostly in upstream regions 
for advection-dominated problems. Any combination 
of widening the channel, extending the downstream 
region and increasing the advection-dominance of the 
problem (as per the advection/viscosity relationship 
determined by the Reynolds number) would imply a 
leftwards shift of the goal-oriented convergence curves 
shown in Fig. 4, relative to the uniform refinement curve. 
It is likely that all three of these would be present in a 
realistic application, meaning that goal-oriented mesh 

adaptation would require relatively few DOFs to provide 
an accurate power output estimate.

Mixed finite element methods are becoming increas-
ingly popular discretisation choices for shallow water 
problems [13]. Through the derivation shown in Sect. 3.2, 
we illustrate how to perform goal-oriented error estima-
tion for mixed discretisations with discontinuous compo-
nents. The derivation of this estimate follows the proce-
dure used in [22], which considers DG discretisations for 
advection-diffusion-reaction problems.

The anisotropic mesh adaptation algorithm used in this 
work is based on that described in [12], which also focuses 
on advection-diffusion-reaction problems. This element-
based approach is advantageous because it straight-
forwardly permits the incorporation of discontinuous 
goal-oriented error indicators, such as arise from DG dis-
cretisations. As in the numerical experiments considered 
in [12], we observe convergence of the QoI to reference 
values computed on a high resolution mesh. In agree-
ment with the numerical experiments considered in [22], 
we found that, for a given number of DOFs, the relative 
error in evaluating the QoI was smaller under anisotropic 
adaptation than under isotropic adaptation.

6 � Conclusion

The main achievement of this paper is the formulation 
of a goal-oriented error estimate for the nonlinear shal-
low water equations solved using a mixed discontinuous/
continuous finite element method, along with the imple-
mentation of isotropic and anisotropic mesh adaptation 
algorithms using this estimate.

Fig. 4   QoI convergence analysis under uniform refinement, isotropic adaptation and anisotropic adaptation for the a aligned and b offset 
array configurations
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Convergence analysis is performed in the context of 
the power output of a steady-state tidal turbine prob-
lem. This analysis illustrates that fewer DOFs are required 
to achieve a certain QoI error threshold using goal-ori-
ented approaches than uniform refinement.

In future work, we intend to use the goal-oriented 
adaptation framework discussed in this paper for mod-
elling proposed tidal farms, with the aim of accurately 
approximating the associated power output.
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