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Abstract
The main purpose of this research is to predict the ground surface settlement in tunneling of a single circular tunnel 
with simultaneous changes in the mechanical properties of soil and geometrical properties of the tunnel section. In this 
research, numerical and parametric analysis of circular tunneling in frictional–cohesive saturated soil has been investi-
gated using 2D finite element method by ABAQUS. In other words, the behavior of ground surface, considering to change 
the different values of depth-to-diameter ratio (H/D), soil cohesion, internal friction angle, permeability coefficient, and 
the influence of these variables on settlement of surface in each model, has been separately evaluated. Then, a multilayer 
perceptron (MLP) artificial neural network is designed to predict the ground surface settlement. MLP is a type of feed-
forward artificial neural network utilizing backpropagation technique for training phase, and the Levenberg–Marquardt 
method is used to reduce the errors and the distance between the network outputs and finite element method results. 
There are some independent variables in the input layer and a dependent variable in the output layer. The middle layer 
consists of seven neurons. Finally, the high potential of the artificial neural network with a correlation coefficient of 0.98 
is shown in the prediction of ground surface settlement.
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1  Introduction

In recent years, there has been an increasing interest in the 
tunnel construction [1–4]. Ground surface settlement due 
to tunneling is one of the inevitable problems in tunnel 
engineering. The long-term settlement and differential set-
tlement of tunnels have led to serious longitudinal defor-
mation. The deformation pattern of tunnels is the step 
between rings rather than by the beam/cylindrical shell 
bending. Most of the lining rings distort into the shape of 
a horizontal ellipse (tunnel squat), but a few acquire the 
shape of a vertical ellipse. Large tunnel deformation has 
caused groundwater infiltration and the separation of bal-
lastless track bed and lining. Further analysis shows that 
long-term tunnel settlement is mainly due to urbanization 

induced land settlements in Shanghai. The magnitude of 
tunnel settlement is correlated with sublayer settlement 
rather than ground surface settlement. In the early opera-
tional years, post-construction settlement induced by 
tunneling and the cyclic loading of trains may contribute 
significantly to the tunnel settlement. However, at some 
special places, nearby construction and groundwater infil-
tration are responsible for the long-term settlement of the 
tunnel [5].

In the past few decades, as a new tool for analysis of 
the tough geotechnical problems, artificial neural net-
works (ANNs) have been successfully applied to address a 
number of engineering problems, including deformation 
due to tunneling in various types of rock mass. Unlike the 
classical regression methods in which a certain form for 
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the approximation function must be presumed, ANNs do 
not require the complex constitutive models. Additionally, 
it is traced that the ANN prediction system is one of the 
most effective ways to predict the rock mass deformation. 
Furthermore, it could be envisaged that ANNs would be 
more feasible for the dynamic prediction of displacements 
in tunneling in the future, especially if ANN models are 
combined with other research methods [6].

In this study, the ground surface settlement has been 
investigated by tunnel depth, diameter, internal friction 
angle, adhesion, and soil permeability coefficients. Then, 
by transferring the data obtained from ABAQUS, as input 
data to MATLAB and by creating a multilayer perceptron 
network, the ground surface settlement prediction model 
is designed. First, in 1958, Martos, and Peck in 1969 carried 
out their studies to model, calculate, and predict ground 
surface settlement during tunneling [7, 8]. Pack developed 
his model with respect to the inverse normal distribution 
model. According to this theory, the ground surface settle-
ment is obtained from Fig. 1 and the following equation.

where s is the vertical ground surface settlement at any 
point, Smax is the maximum settlement of ground surface 
on the tunnel axis, i is the horizontal distance of the tunnel 
axis from the turning point of the settlement curve, and x 
is the horizontal distance from the tunnel axis.

Thereafter, many researchers investigated and pre-
dicted the ground surface settlement and displacement, 
by modifying the parameters introduced by Pack et al. 
Research in this field can be divided into four categories. 
The first category is analytical studies that utilize relation-
ships in soil and rock mechanics and combine them with 
mathematical foundations to predict the amount of settle-
ment in single and twin circular tunnels [9–16]. Experimen-
tal and laboratory research falls into the second category. 
Most studies in this field are carried out by creating a tun-
nel element and its surroundings at a very smaller scale in 

(1)Sv = S
max

e
−x2

2i2

the laboratory environment than the actual element and 
utilizing a centrifuge system [17–20]. The next category 
of research is numerical studies. Most numerical studies 
using finite element methods and finite difference meth-
ods have investigated surface settlement and subterrane-
ous displacement due to tunneling [21–29]. Finally, artifi-
cial intelligence research and neural networks are used in 
most studies today. The high accuracy and speed of com-
putation in predicting different parameters, taking into 
account the maximum of independent variables affect-
ing the parameter in question, have led to the increasing 
use of neural networks in different researches [30–35]. In 
this study, it has been tried to predict the ground surface 
settlement due to tunneling by combining two numerical 
methods and using artificial neural networks.

2 � Problem definition

The two-dimensional model created using ABAQUS finite 
element software, which is highly capable of analyzing 
soil environments, is 40 × 80. The type of analysis used in 
this model is standard analysis. The general form of the 
model considered in this study is given in Fig. 2. This model 
includes a frictional–adhesive homogeneous soil. The 
parameters investigated in this study are listed in Table 1. 
Other geometrical and mechanical parameters of the tun-
nel, such as tunnel diameter and modulus of elasticity, are 
assumed to be constant. In fact, this study analyzed three 
separate situations in accordance with Fig. 1 and that pre-
sented in Table 1. The behavioral model considered for the 
soil is the Mohr–Coulomb model.

The mesh created for the value H∕D = 1 is shown in 
Fig. 3. The model is divided into 5700 square corners. 
However, at points close to the tunnel section, the ele-
ments are rectangular in order to provide a more accu-
rate analysis of the area. In both H∕D = 1 and H∕D = 2 
models, in addition to the element geometry, the 
number of elements is equal to or near the number of 

Fig. 1   Ground surface set-
tlement above single tunnel 
described [8]
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elements in the first case. The finer elements are used in 
the surroundings of the tunnel section to increase the 
accuracy of the analysis. Also, the overall dimensions of 
the model are chosen to minimize the impact of lateral 
and lower boundaries. The groundwater level is selected 
7 m below ground surface in all scenarios. As a result, in 
all the analyses, the tunnel drilling section is saturated. 
The mechanical properties of the soil with respect to φ 

and C and in situ stresses are assumed to be effective, 
given the saturation of the environment. Also, the rela-
tion 2 was used to calculate the lateral coefficient in the 
soil.

It should be noted that the amount of ground surface set-
tlement is measured immediately after drilling. The analy-
sis and measurement of settlements have been examined 
without considering the tools for tunnel stability. In fact, 
all the settlement values are obtained immediately after 
drilling.

In 2011, Yamamoto, in order to analyze the tunnel 
stability, using the upper and lower bound limit analysis 
method, which is considered one of the plastic analyses, 
obtained numbers as the stability number [36] and then 
similarly analyzed the tunneling settlements that used the 
Yamamoto method to utilize the upper and lower bound 
limit analysis [37]. The difference between the present 
study and the mentioned methods is considered the pore 
water pressure and soil saturation at the time of analysis.

Since the geometry of the model is complete, the 
finite element model, or mesh, is produced in Fig. 3.

(The program automatically generates the mesh and 
divides the geometric model according to the model 
structure into basic elements, according to which it fits 
the best base triangles in the model. Due to the fact that 
the analyses are performed in different phases, In all 
phases, an attempt has been made to select the coarse-
ness mesh option and place the distribution element 
option on the fine every mode, and by reselecting the 
mass inside the tunnel and selecting a smaller mesh, the 
movement around the tunnel is calculated and observed 
more accurately. Specifications for the main model mesh 
are given in Table 2 (shown).

In general, all boundaries in each direction must have 
boundary conditions applied to them. If no boundary con-
ditions are assigned to the model (free boundary), natural 
conditions apply. That is, the prescribed forces are equal to 
zero and the boundaries move freely. The software auto-
matically sets a standard boundary to avoid the situation 
of indeterminate displacements, so that by designating 
reference points, the software completely rigs the hori-
zontal boundary and by creating rolling boundaries in a 
vertical direction, it allows the soil to move and settle.

(2)k = 1 − sin�

Fig. 2   Scheme of tunnel drilled in three depth modes

Table 1   Soil properties and used parameters [36]

Parameter Unit Value

Dry unit weight �
d
(KN∕m3) 17

Saturated unit weight �
sat
(KN∕m3) 20.7

Young’s modulus E(kPa) 5000
Coefficient of permeability k(m∕s) 1*10–8, 1*10–5, 1*10–2

Angle of internal friction �(−) 20, 30, 35, 40, 45
Cohesive strength C(kPa) 20, 40, 60, 80
Poisson’s ratio �(−) 0.3

Fig. 3   Generally designed mesh in ABAQUS

Table 2   Modeling mesh specifications

Type Element type Number of elements Average size element 
(m)

Soil 15 nodded 4790 7.08 E−0.1
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In this study, the urban tunnel with no overburden is 
considered at ground surface and the porosity ratio for 
the whole model is considered to be 0.58 with respect to 
its specific gravity and weight density of solid grains. The 
analysis is done in two steps. The first step includes enter-
ing the necessary information into the software, creat-
ing appropriate boundary conditions, and applying pore 
water pressures and effective in situ stresses in the soil 
model, and then, performing drilling operations, in which, 
immediately after drilling, ground surface settlement val-
ues are measured.

3 � Results

Artificial neural network (ANN) is one of the scientific 
methods for predicting a variable through one or more 
other variables. Among the different methods of artificial 
neural networks is multilayer perceptron neural network, 
due to the use of post-diffusion algorithm. The method 
used in this study was used to calculate the error and 
reduce the error rate as much as possible and also to 
correct the error values by repeating the computational 
process.

In the study, after the set data required for network 
use were calculated and collected through finite element 
method software in 119 modes. A multilayered artificial 
neural network with a single input layer, the output layer 
and a hidden layer consisting of seven neurons or nodes 
was designed and built. Finally, the network is created by 
receiving three input variables, which include the diameter 
of the tunnel, the distance from the center to the center of 
the tunnel, and the depth of the center of the tunnel to the 
ground level, calculating the maximum subsidence value 
after passing through the network. The results indicate 
that the creation of a neural network, due to its very high 
speed and cost-effectiveness, is able to predict the surface 
subsidence resulting from the tunneling of twin tunnels.

The effect of the soil permeability coefficient and 
pore water pressure on the amount of ground surface 
settlement and soil displacement around the tunnel 
was investigated. As the permeability coefficient in the 
soil increased, the surface settlement due to tunneling 
decreased. According to the results obtained from H, as 
the ground depth increased, the higher the permeabil-
ity coefficient in soil, the higher amount of surface set-
tlement. However, as the angle of internal friction and 
adhesion in the soil increases, the intensity of this process 
is reduced, approaching the same trend for the other 
depths. Lowering the permeability beyond the values 
of a and b would have little effect on the surface settle-
ment. Increasing the amount of adhesion in all the states 
and analyses has reduced the amount of ground surface 

settlement. Increasing the angle of internal friction of the 
soil, in most cases, has reduced the ground surface settle-
ment. However, as soil adhesion increased simultaneously, 
this decreasing trend was less observed. In some cases, for 
larger adhesions up to 40 kPa, with increasing internal fric-
tion angle, the surface settlement has increased or been 
constant, which this trend has been observed more for 
tunnels closer to the surface. Ground surface settlement 
at different depths is completely dependent on the shear 
strength parameters of the soil. When the permeability 
coefficient is highest, and the internal friction angle of 
the soil was at its lowest, the surface settlement is a func-
tion of depth, which increased significantly with increas-
ing depth. With increasing shear strength parameters, 
the dependence of ground surface settlement on depth 
is seen to be lower, so that when these parameters reach 
their maximum, it can be said that the surface settlement 
is independent of the depth of drilling.

4 � Discussion

4.1 � Investigation of the influence of permeability 
coefficient

One of the main objectives of this study is to investigate 
the effect of the soil permeability coefficient and pore 
water pressure on the amount of ground surface settle-
ment and soil displacement around the tunnel environ-
ment. By investigating the changes in soil permeability, 
according to Table 3 and Fig. 4, with increasing soil perme-
ability coefficient, the amount of ground surface settle-
ment due to tunneling has decreased. This trend is clearly 
seen in the values obtained for H∕D = 1 . The results for 
H∕D = 2 and H∕D = 3 in most cases illustrate this trend. 
With increasing depth, the angle of internal friction and 
adhesion in soil increased, and the inverse relationship 
between soil permeability coefficient and ground surface 
settlement was more pronounced.

It should be noted that, at less internal friction angles, 
this relationship is not true. Hence, for different values of 
the settlement with the permeability coefficient H∕D = 3 , 
the ground surface settlement was higher than the values 
for the settling with the other values with less permeability 
coefficient. Also, according to the results obtained from A, 
with increasing penetration in the soil, the higher the per-
meability coefficient in the soil, the higher the saturation 
value of the soil, approaching the same trend for the other 
depths. Another point is that, with respect to the values 
in Table 3, the amount of settlement for the values of Η/D 
and k, especially for the values obtained in H∕D = 2 and 
H∕D = 3 , are almost equal in all cases and follow a similar 
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trend. It seems that more decreasing permeability values 
will not have a significant effect on the ground settlement.

4.2 � Investigation of the effect of adhesion changes 
in soil

By increasing the values obtained from Table 3 and Fig. 5, 
the increase in adhesion in all scenarios and analyses has 
reduced the amount of ground settlement. However, as 

illustrated in Fig. 5, as the internal friction angle of the 
soil increases, their corresponding points get closer to 
the center of the diagram, indicating a decrease in set-
tlement at the surface as the soil adhesion increases. It 
can also be said that the trend of subsidence difference 
is more pronounced with the simultaneous change of 
soil adhesion and internal friction angle at lower depths, 
for values of H∕D = 1 and H∕D = 2 than in the other case.

Table 3   Ground surface 
settlement in various modes

c’ ϕ’

20˚ 30˚ 35˚ 40˚ 45˚

H/D = 3
k = 1 × 10–2 (m/s) 20 KPa 33.57 22.83 21.12 20.19 19.77

40 kPa 24.74 19.84 18.87 18.33 18.08
60 kPa 20.84 18.13 17.57 17.26 17.11
80 kPa 18.63 17.03 16.70 16.51 16.44

k = 1 × 10–5 (m/s) 20 KPa 33.36 22.71 21 20.07 19.62
40 kPa 24.62 19.74 18.77 18.24 17.95
60 kPa 20.74 18.04 17.47 17.17 17.01
80 kPa 18.57 16.95 16.61 16.83 16.35

k = 1 × 10–8 (m/s) 20 KPa – – – – –
40 kPa 37.57 23.62 20.15 17.52 15.8
60 kPa 25.21 17.87 15.85 14.32 13.05
80 kPa 18.96 14.70 13.41 12.73 12.02

H/D = 1
k = 1 × 10–2 (m/s) 20 KPa 35.34 32.74 28.04 26.57 26.21

40 kPa 21.38 18.07 17.65 17.61 17.81
60 kPa 15.74 15.21 15.32 15.56 15.91
80 kPa 15.51 13.81 14.10 14.45 14.85

k = 1 × 10–5 (m/s) 20 KPa 23.32 25.64 24.38 22.38 21.88
40 kPa 21.06 17.88 17.52 17.38 17.55
60 kPa 15.58 15.04 15.24 15.38 15.70
80 kPa 13.40 13.67 13.93 14.30 14.68

k = 1 × 10–8 (m/s) 20 KPa – – – – –
40 kPa 20.15 16.28 14.7 13.60 13.26
60 kPa 13.15 11.6 11.5 11.70 11.50
80 kPa 9.64 10 10.5 10.80 11.22

H/D = 2
k = 1 × 10–2 (m/s) 20 KPa 39.37 32.36 22.08 21.26 21.06

40 kPa 23.37 23.97 18.37 18.07 18.04
60 kPa 15.81 19.07 16.53 16.52 16.53
80 kPa 16.04 16.76 15.45 15.45 15.78

k = 1 × 10–5 (m/s) 20 KPa 38.92 23.79 21.90 21.07 20.86
40 kPa 23.24 18.96 18.25 17.96 17.76
60 kPa 18.39 16.66 16.41 16.40 16.40
80 kPa 15.94 15.35 15.35 15.47 15.48

k = 1 × 10–8 (m/s) 20 KPa – – – – –
40 kPa 32.70 20.54 17.69 15.30 14.42
60 kPa 19.41 14.49 13.41 12.69 11.65
80 kPa 13.51 11.91 11.40 10.99 10.94
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Fig. 4   Ground surface settlement curve for different permeability coefficients in three depths: a H/D = 1, b H/D = 2, c H/D = 3
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In this section, the simultaneous influence of the geo-
metrical parameters of the tunnel depth and diameter is 
simultaneously observed and investigated. The ground 
surface behavior due to tunneling at different depths is 
not the same. As shown in Table 3 and the diagrams in 
Fig. 6, the influence of tunneling depth on the ground 
surface settlement cannot be conclusively commented. 
This means that the ground surface settlement at differ-
ent depths is completely dependent on the shear strength 
parameters of the soil.

When the permeability coefficient is highest and 
the internal friction angle of the soil is at its lowest, 
the ground surface settlement is a function of depth 
that has increased markedly with increasing subsurface 
depth. However, with increasing soil shear strength 

parameters, the dependence of the ground surface set-
tlement on the depth is seen to be less so that when 
these parameters reach their maximum, it can be said 
that the ground settlement is independent of the depth 
of drilling. However, by decreasing the permeability 
coefficient in the soil, in almost all cases, when the 
internal friction angle is at its maximum, the ground 
settlement is independent of depth and converges to 
a constant settlement value at all depths. Increasing 
the angle of internal friction at these depths seems to 
have little effect on the settlement. But when soil adhe-
sion and soil permeability coefficients are at their low-
est value, the amount of ground settlement obtained 
increases with the approaching ground surface and 
decreases with increasing depth.

Fig. 5   Ground surface settlement curve for different Cohesion strength in three depths: a H/D = 1, b H/D = 2, c H/D = 3
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4.3 � Investigation of the effect of internal friction 
angle of soil

It was expected that as the angle of internal friction 
increased and the density of soil particles increased, the 
amount of ground surface settlement caused by tun-
neling would decrease. According to the results of Table 3 
and Fig. 6, with increasing soil internal friction angle, in 
most cases this decreasing trend for surface settlement 
is obtained. However, as the amount of soil adhesion 
increased simultaneously, this trend decreased, and in the 
analyses with greater adhesion, the difference between 
the maximum and minimum of settlement values for the 
different values of the internal friction angle was less.

Therefore, in some cases for adhesions larger than 
40 kPa, as the internal friction angle of the soil increased, 
the surface settlement increased or was constant. This 
trend has been observed for tunnels closer to ground level. 
In general, the decrease in ground settlement due to the 
increase in the internal friction angle of the soil is evident 
for all three values of soil permeability coefficient and for 
tunnels with greater depth. Figure 7 shows the maximum 
settlement value for all three depths and in the three per-
meability coefficients, and as the angle of internal friction 
increases, the downward trend of the ground settlement 
was observed.

5 � Artificial neural networks

The application of artificial neural networks and their 
advantages in numerical modeling has been discussed 
by many researchers [38, 39]. As regards, the purpose of 
the study was to predict the maximum of ground surface 
settlement. The neural network was used because of the 
high capability of the prediction model. Also, the maxi-
mum variation affecting soil behavior during tunneling, 

which included geometrical and soil mechanical variables, 
was used as input variables in the model. In general, it can 
be said that the artificial neural network is a model of the 
human brain, except that its speed is much higher than 
that of the human brain. Neural networks first process 
data by analyzing the relationship between data, and after 
the learning process, with high power and speed. Artifi-
cial neural networks that are used for prediction usually 
include an input layer, an output layer, and one or more 
middle layer. The network used in this study is a powerful 
multilayer perceptron network that has high power in pre-
dicting the desired variable. Each layer consists of nodes 
or nodes, also known as neurons. In the input layer, each 
node represents an independent variable, and in the out-
put layer of each node, it represents a variable or depend-
ent variable. The master brain of any neural network is the 
middle layer of that network. In fact, all math operations 
are done on this layer or layers. That is, each neuron in the 
input layer connects to all the middle layer (hidden layer) 
neurons through a connector. Each neuron in the mid-
dle layer stores the weighted variables of the input layer 
and adds them together. Then, a predetermined function 
designed by the user and known as the activating func-
tion calculates the desired output variable by applying the 
sum of the neurons. During the design of the network, 
the mean square error estimation criterion was used to 
calculate the error generated in the network and evaluate 
its optimal performance in predicting the dependent vari-
able. Another criterion is also called the root mean square 
error. This criterion more clearly represents the amount of 
errors. In fact, the lower this value and the closer to zero, 
the neural network predicts the value of the dependent 
variable more accurately. The relationship between mean 
square error and root mean square error is given in Eqs. 3 
and 4 [40].

In recent years, outcome prediction models using arti-
ficial neural network and multivariable logistic regression 

Fig. 6   Maximum ground surface settlement curve for three depths with different Cohesion strengths in three permeability coefficients: a 
k = 1e − 2 , b k = 1e − 5 , c k = 1e − 8
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analysis have been developed in many areas of engineer-
ing research. Both these methods have advantages and 
disadvantages. Artificial neural networks are algorithms 
that can be used to perform nonlinear statistical modeling 
and provide a new alternative to logistic regression, the 
most commonly used method for developing predictive 
models for engineering purposes. Neural networks offer 

a number of advantages, including requiring less formal 
statistical training, ability to implicitly detect complex non-
linear relationships between dependent and independ-
ent variables, ability to detect all possible interactions 
between predictor variables, and the availability of mul-
tiple training algorithms. Disadvantages include its “black 
box” nature, greater computational burden, proneness to 

Fig. 7   Ground surface settlement curve for different cohesion strengths in three depths: a k = 1e − 8 , b k = 1e − 5 , c k = 1e − 2
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overfitting, and the empirical nature of model develop-
ment. An overview of the features of neural networks and 
logistic regression is presented, and the advantages and 
disadvantages of using this modeling technique are dis-
cussed [41, 42].

where n is the number of data, b is the value of calculat-
ing dependent variable and b is the value of dependent 
variable predicted by the network. When the measured 
error reaches its minimum value, the network will show 
better performance. The network error is calculated based 
on a set of algorithms that are created by the user when 
designing.

A common way to improve the network and reduce the 
error in the MLP network is to use a feedforward algorithm. 
In this way, the data series are divided into three catego-
ries: training data, evaluation data, and test data.

The value of the allowed error (minimum computa-
tional error) is also determined by the user. In the training 
data series, after the output of this data is obtained, this 
value is compared with the actual value and its difference 
is determined as a network error. Then, this error value is 
distributed over the weighted connections between the 
input and the middle layer to reduce the error and this 
process continues until the network reaches the mini-
mum possible error. In Table 4 the input layer variables 
are shown as independent variables. Also, the output layer 
variable (ground surface settlement) is defined as the 
dependent variable. In this research, after data handling 
in ABAQUS, ground surface settlement prediction model 
using an MLP artificial neural network has been created, 
in which, according to Table 5, 70% of the data series are 
considered as training data, 15% for the evaluation data, 
and 15% for the testing data.

The Levenberg–Marquardt algorithm is also used to 
train the network and reduce the computational error. 
The Levenberg–Marquardt algorithm is used to solve 
nonlinear least-squares problems. The schematic diagram 
of the MLP artificial neural network is illustrated in Fig. 8. 
Among the different ways for artificial neural network 
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1
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training in feedforward backpropagation methods, the 
Levenberg–Marquardt algorithm has been chosen for use 
in the present study because of its faster convergence in 
the training of medium-sized networks.

In this division, the parameter x1 represents the diam-
eter of the tunnel, x2 represents the distance from the 
center to the center of the tunnels, x3 shows the depth 
of the center of the second tunnel from the ground, and 
Y represents the maximum settlement of the earth’s sur-
face. Figure 8 shows the general structure of the network 
designed in this study, which uses the post-diffusion 
algorithm.

The design network consists of an input layer, an output 
layer, and a hidden layer with 7 nodes or neurons. The w11 
represents the weighted connection of the first input to 
the first layer of the hidden layer. The w11 also indicates the 
weighted connection of the node or node of the output 
layer to the first hidden node. The w73 connection indi-
cates the weighted connection of the third node or the 
neuron of the input layer to the seventh node or the hid-
den layer of the neuron. The w17 connection also shows 
the connection of the seventh neuron or the node of the 
output layer to the neuron or the node of the output layer. 
The grid shown in Fig. 8 is an artificial multilayer artificial 
neural network that uses a forward-looking post-propaga-
tion algorithm to reduce its error rate. The network uses 
the Marquardt–Levenberg law for its training phase. Also, 
the error calculation method is the MSE method, which 
calculates the error of each step of this method and is the 
main criterion for continuing the network training process. 
The data selection method is random in all three stages of 
network formation, which include training, evaluation, and 
network testing stages.

In each neural network, the number of middle layers 
and its neurons is usually determined and calculated 
according to the user experience as well as the number of 
input layer variables. This network contains seven neurons 
for the middle layer. The middle layer activator function 

Table 4   Number of data and variables

All data Training data Evaluating data Test data Input variables Output variables Neuron of hidden layer

170 118 26 26 4 1 7

Table 5   Input variables of ANN

Parameter Unit Value

Crown depth-to-diameter ratio H/D 1, 2, 3
Coefficient of permeability k(m∕s) 1*10–8, 1*10–5, 1*10–2

Angle of internal friction �(−) 20, 30, 35, 40, 45
Cohesive strength C(kPa) 20, 40, 60, 80
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is used in accordance with relation 5, which is called the 
sigmoid function. A linear function is also used to transfer 
the output from the middle layer to the last layer.

The data and neurons of the multilayer perceptron neural 
network are presented in Table 5, which separately repre-
sents the number of data used in the different categories, 
the number of independent and dependent variables, and 
the number of neurons in the different layers.

Table 6 presents the statistical results of the artificial 
neural network, which shows the accuracy of the predic-
tion of the dependent variable, which is ground surface 
settlement. The closer correlation coefficient (R) value to 1 
indicates the linear relationship between the independent 
variables of the input layer and the dependent variable of 
the output layer.

Figure 9 shows the regression diagrams obtained for 
the training data sets, evaluation data sets, test data sets, 
and finally all data. The concentration of regression data 

(5)F(n) =
1

1 + e−n

on the x = y line indicates the highest power and accuracy 
of the network in predicting real values.

Table 7, in addition to the statistical results obtained 
from this study, compares the accuracy of the multilayer 
perceptron neural network with other intelligent networks 
and regression methods, where MLP is multilayer percep-
tron, ICA is an imperialist competitive algorithm, ANN is 
a new hybrid model of artificial neural network, MLR is 
multiple linear regression, and ABC is artificial bee colony.

6 � Conclusion

In this study, parametric finite element analysis in ABAQUS 
software is carried out for investigating the ground surface 
settlement of a circular cross section single tunnel, with 
changes in geometrical characteristics such as diameter 
and depth of the tunnel (depth-to-diameter ratio) and 
changes in soil mechanical properties such as adhesion, 
internal friction angle, and soil permeability performed. 
Then, the values obtained for the surface settlement in 
different modes as dependent variables (output data) and 
four variables of adhesion, internal friction angle, perme-
ability coefficient, and the depth-to-diameter ratio of the 
tunnel as independent variables (input data) are used to 
produce multilayer perceptron artificial neural network in 
MATLAB software. Multilayer perceptron artificial neural 
network, using the Levenberg–Marquardt error correction 
algorithm and using the feedforward backpropagation 
model, has demonstrated its ability to predict the surface 
settlement.

Fig. 8   General scheme of 
multilayer perceptron artificial 
neural network

Table 6   Statistical results of ANN

Data categories Correlation coef-
ficient (R)

MSE RMSE

Training data 0.99097 0.2932 0.5414
Evaluating data 0.95374 0.3564 0.5969
Test data 0.95415 0.3532 0.5943
All data 0.98409 0.3162 0.5623
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(1)	 The correlation and determination coefficients indi-
cate the direct and linear relationship between the 
results obtained in the ABAQUS and the results of 
ANN. A comparison between this predictive model 
based on correlation coefficient (R) indices shows 
that the MLP-ANN with R = 0.99097 for training data 
and R = 0.98409 for all data is more accurate than the 
other intelligent network and regression models.

(2)	 All boundaries in each direction must have bound-
ary conditions applied to them. If no boundary con-
ditions are assigned to the model (free boundary), 
natural conditions apply. That is, the prescribed forces 
are equal to zero and the boundaries move freely. The 
software automatically sets a standard boundary to 

avoid the situation of indeterminate displacements, 
so that by designating reference points, the software 
completely rigs the horizontal boundary and by 
creating rolling boundaries in a vertical direction, it 
allows the soil to move and settle.

(3)	 The urban tunnel with no overburden is considered at 
ground surface, and the porosity ratio for the whole 
model is considered to be 0.58 with respect to its spe-
cific gravity and weight density of solid grains. The 
analysis is done in two steps. The first step includes 
entering the necessary information into the software, 
creating appropriate boundary conditions and apply-
ing pore water pressures and effective in situ stresses 
in the soil model, and then, performing drilling opera-

Fig. 9   Regression curve for different data in the MLP artificial neural network

Table 7   Comparison of the 
performance of different 
intelligent networks

Data categories This study 
(MLP-ANN)

Moghaddasi et al. 
[35] (ICA-ANN)

Moghaddasi 
et al. [35] (ANN)

Moghaddasi 
et al. [35] (MLR)

Koopialipoor 
et al. [31] (ABC-
ANN)

Training data 0.99097 0.9806 0.9402 0.9016 0.9351
All data 0.98409 09,729 0.9377 0.9036 0.9467
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tions, in which, immediately after drilling, ground sur-
face settlement values are measured

(4)	 Surface settlement and crown of the tunnel are 
directly related to the simultaneous increase in the 
diameter of tunnels. This means that increasing the 
diameter of the tunnels will increase the surface set-
tlement and crown of the tunnel.

(5)	 When the tunnels are located closer to the ground, 
we see more settlements, both on the surface and in 
the crown of the tunnels; while increasing the depth, 
we saw a decrease in the settlement. This reduction 
in settlement continued until the depth-to-diameter 
ratio of the tunnel reached a certain value, and since 
then we have again seen an increase in the surface 
settlement and crown of the tunnels.
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