
Vol.:(0123456789)

SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9

Research Article

Tunability of auto resonance network

V. M. Aparanji1 · Uday V. Wali2 · R. Aparna3

Received: 19 October 2019 / Accepted: 9 April 2020 / Published online: 18 April 2020
© Springer Nature Switzerland AG 2020

Abstract
This paper proposes a new type of Artificial Neural Network called Auto-Resonance Network (ARN) derived from syner-
gistic control of biological joints. The network can be tuned to any real valued input without any degradation of learning
rate. Neuronal density of the network is low and grows at a linear or low order polynomial rate with input classification.
Input coverage of the neuron can be tuned dynamically to match properties of input data. ARN can be used as a part of
hierarchical structures to support deep learning applications.

Keywords Artificial neural network · Auto resonance network · Self organizing maps · Adaptive resonance theory

1 Introduction

Classical neural networks suffer from size and temporal
superposition, generally called stability-plasticity dilemma
in Artificial Neural Network (ANN) literature [1–3]. Neuro-
science studies describe these effects as the binding prob-
lem and superposition catastrophe [4]. Some researchers
take this a step further and state that the electrical oscil-
lations in the biological sensory systems trigger the cells
in a sequence, effectively serializing certain recognition
activity in time, adding a new Degree of Freedom (DoF) to
the biological recognition engine [5]. As the neural cells in
a network do not increase over time, the size of the initial
neural network has to be large enough to accommodate
the likely size of knowledge that will be acquired over
time. Each learning experience has to bind to a subset of
the existing neural infrastructure. However, as the knowl-
edge base increases, newer knowledge has to superim-
pose on existing infrastructure, possibly fragmenting the
existing subsets. Old knowledge is replaced or distorted by
new knowledge, effectively destabilizing the established
subsets. This may not always have a damaging effect but
does distort/refine old subsets.

Kohonen networks called the Self Organizing Maps
(SOM) start with pre defined set of nodes initialized to
random weights [6]. As the input is applied, some of the
input nodes produce maximum output and one among
them will be chosen as winner. The key to Kohonen’s net-
works is that the neighbors of the winner node adjust their
weights towards that of the winner. Over period of time,
repetition of this process creates a neighborhood of nodes
that recognize similar inputs. Each of such neighborhoods
represents one class of input. As the neighborhood is not
constrained to be convex, it should be possible to support
nonlinear classification. If the number of classes of inputs
exceeds a certain number in relation to the total number
of nodes in the network, the neighborhoods have to split
and merge to accommodate new classes. Therefore, SOMs
are subject to superposition catastrophe. Notice that they
do not suffer from the binding problem as data classes are
associated with sets of nodes.

On the other hand, neural networks based on Adap-
tive Resonance Theory (ART) [1] start with very few or no
cells at all and add cells to the network when an input set
cannot be recognized (classified). In these networks, a cell
generates winning output when input matches its stored

 * V. M. Aparanji, vma1508@gmail.com; Uday V. Wali, udaywali@gmail.com; R. Aparna, raparna27@gmail.com | 1Department
of E&CE, Siddaganga Inst. of Technology, Tumakuru, Karnataka, India. 2Department of E&CE, KLE Dr MSS CET, Belagavi, Karnataka,
India. 3Department of ISE, Siddaganga Inst. of Technology, Tumakuru, Karnataka, India.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2737-9&domain=pdf

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9

value. Other cells will have lesser output. Input range cov-
ered by a cell and the number of cells for a given range
of values are both dynamically optimizable. Therefore,
ART networks are minimal in terms of number of nodes
required to build the network. Extensions of ART networks
using real inputs and outputs, called ART2 scale and trans-
late the input before storing in short term memory [1, 7].
However, the complexity of ART2 networks alters the sim-
plicity and elegance of ART1 to the extent that these net-
works lose their relation with biological equivalents: A bio-
logical neuron would be simple, repetitive and connected.

In the following sections, a new type of neural network
called Auto Resonance Network (ARN) is described. ARN
can classify real valued multi-dimensional input and have
an adjustable acceptance threshold (ρ) for each node in
the network. These networks can be used as generic data
classifiers by adding node labeling method or a neuronal
layer and find applications in various areas of artificial
intelligence.

2 Auto resonance network (ARN)

Auto Resonance Network will have a single layer of sev-
eral neuronal nodes, each containing a pattern to match
a particular input set. Each node has a specific stored pat-
tern that is different from other nodes. At the basic level,
behaviour of the network would be as follows: Input will
be applied as a set, one set at a time. Output layer would
consist of a single layer of nodes all of which are con-
nected to all inputs. Each node is tuned to recognize a
specific pattern of input vector. Internal memory of the
node may have an exact or approximate or transformed
version of input it matches. When a new input is applied
(i) one of the nodes is at resonance or (ii) some nodes are
near resonance or (iii) none of the nodes are in resonance.
In the first case it is the winner. In second case, the node
with the highest output is selected as winner if the output
is above a selection threshold. In all other cases, there is
no recognition. When there is no recognition, a new node
may be created such that it is tuned to match the input.
Success of this network depends on finding a suitable
function that offers good tunability and variable cover.

When a new node is appended to ARN, it is pre-tuned to
resonate with current input. We will illustrate the concept
with a single input network. Resonance of a node can be
described using a simple equation

where, x is The input represented by a real number
assumed to be normalized to a range of {0…1}. Equa-
tion (1) will yield a maximum value of 1∕4 when the input

(1)yp = x(1 − x)

x = 1∕2 , i.e., the node will resonate if the input is 1∕2 .
Therefore, we can use

to normalize the result to 1. In order to set the reso-
nance at any value of xr ∈ {0… 1} , we can scale the input
such that

and calculate the output of the node as

The resonant weight w is computed when the node is
inserted in the network and remains largely unaltered as
a memory impression of the input xr present at the time
of creating the node.

The chart in Fig. 1 shows the behavior of nodes tuned at
various points of resonance identified by xr . Overall struc-
ture of ARN is shown in Fig. 2. In Fig. 2a, scaling of single
input by the resonant weight and computation of resona-
tor output is shown. This is a basic module of ARN. A node
with N input nodes is shown in Fig. 2b. The input to a node
consists of a vector

(2)y = 4(1 − x)x

(3)wxr =
1

2
or w = 1∕(2xr)

(4)y = 4 ∗ (1 − wx)wx

Fig. 1 Resonance curves for various xr

Fig. 2 Auto Resonance Network structure

Vol.:(0123456789)

SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9 Research Article

For each of the inputs, output of each resonator module
given by (2) are summed and normalized as at the output
of the node. A layer of ARN will have several such nodes
as shown in Fig. 2c. Assuming that there are K nodes, each
one is tuned to a different input vector Xk|t=tk where tk is
the time at which k-th node was created. We can extend
(2) to describe output of a k-th node as

where,wki is the scaling factor for i-th input of k-th node.
The resonant weight wki represents the in-the-node
impression of input xki stored as memory in the node. Note
that xi is the i-th element of the input vector while xki rep-
resents the resonating input xi for k-th node. This k-th node
will produce maximum value of 1 when xi =

1

2wki

, i = 1…N .

In Fig. 2, the resonator function is indicated as d(1 − d)
where d = wx.

To summarize, each resonator corresponds to one input
of one node. Each node has N inputs and same number
of resonators. The output of a node is maximal when all
the resonators produce maximum output. Therefore, the
resonant weight of a node is expressed as W = 1∕2Xr . The
resonant weights are calculated only once, when the node
is added to the network. There will be only one node that
maximally matches exact combination of inputs. For these
reasons, we call this network as Auto Resonance Network
(ARN).

2.1 Envelop functions

It can be seen from Fig. 1 that output of a resonating node
decreases as a continuous function of input on either side
of input values. If the output of a node is above a thresh-
old value the node is a winner. By reducing or increasing
the threshold the range of input values to which a node
resonates can be adjusted. For example, if the threshold
is reduced, the range increases and vice versa. Set of all
inputs when the output of a node is above a threshold is
called coverage of the node.

Coverage of k-th node can be expressed as

 where ρ is the threshold value.
We may further note from Fig. 1 that coverage of

area for each node is not same for a given threshold.
For example the peak for Xr = 0.1 is significantly sharper
than the one at Xr = 0.2 . We could set separate thresh-
olds to individual nodes such that all nodes have similar

(5)X =
{
x1, x2,… xN

}
, xi ∈ {0… 1}, i = 1…N

(6)yk =
4

N

∑
i

(
1 − wkixi

)(
wkixi

)
, i = 1…N, k = 1… K

(7)Ck = {X|(yk > ρ) and (yk > yi, ∀i ≠ k)}

coverage. However, a better way to correct this situation
is to use a non-linear scaling of input. We call these func-
tions as envelop functions.

Envelop functions can provide several advantages. For
example, they can transform unbound input x ∈ ℝ into
bound region like {0…1}. If the envelop function modi-
fies the input xs = g(x) then, the resonant weights also
should be scaled with identical function.

Envelop functions stretch or compress a specific part
of the input range in order to exemplify an area of inter-
est. Effect of some of these functions is shown in Fig. 3.

A simple scaled log function is shown in Fig. 3a uses:

where σ is scaling factor. By adjusting σ we can effectively
compensate for the non-linear coverage of (4). Figure 3a
shows the effect of (10) on coverage with σ = 1 . A modified
sigmoid function shown in Fig. 3b exhibits a controllable
linear coverage. It uses an envelope function

A value of σ = 4 is used for illustration. It is clear that
envelop functions can reduce the non-uniform coverage
across the input range.

2.2 Extending the input range

Though accepting input in the limited range of {0…1}
need not be a limitation, it would be convenient if there
are other functions that provide a larger input range yet
maintain the resonance property. Interestingly, there are
many other monotonic functions to implement such res-
onance and build an ARN. A generic approach would be
to define an additive inverse of the function over a range
and multiply the two to get a resonance function. One
such simple function is the difference function given by (
Mki − xi

)
 such that

where M is the memory copy of the tuned input.
Another good candidate is the Scaled and Shifted Sig-

moid Function (3SF) given below:

(8)wki =
1

2g
(
xki

)

(9)yk =
4

N

∑

i

wkig
(
xi
)
(1 − wkig(xi))

(10)g(x) = ln(x)

(11)g(x) =
1

(1 + e−(x−1))

(12)yk = 1 +
∑

i

(
Mki − xi

)
(xi −Mki)

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9

will map a real number in the range of −∞ ∶ ∞ to a mono-
tonically increasing value in the range 0:1. Interestingly,
the function has a value of 0.5 at x = M . Therefore, we
could replace wkixi in (4) with this function. It may be noted
that (1 − ys) can be easily computed as

Therefore, for N = 1, we can rewrite (2) as

(13)ys =
1

(1 + e−(x−M))

(14)ys− =
1

(1 + e(x−M))

(15)y = 4

[
1(

1 + e−(x−M)
)

][
1(

1 + e(x−M)
)

]

The sigmoid nature of this curve fits well with a physi-
cal neuron activation which shows saturation as the input
increases, rather than growing monotonically. Equation (15)
allows a node to be set to resonate at any xi ∈ ℝ . Note that M
can be used to select the point of resonance while � can be
used to control the tuning and hence coverage of the node
as shown in Fig. 4a and b respectively. Equation (15) provides
a generalized function for implementing ARN nodes, albeit
with increased complexity. The tradeoff between complex-
ity versus flexibility can tilt towards (4) or (15) depending
on end use.

2.3 Tuning the nodes and coverage

Coverage of a node acts like noise margin by provid-
ing near maximal output when the input is close to the

Fig. 3 Effect of envelop functions on classification

Fig. 4 Tunability of ARN using (15)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9 Research Article

resonating value. Therefore, each node can recognize
noisy input if it is within the coverage area. Coverage of
the node can vary dynamically. Node may slowly shift
to a different tuning point depending on the statistical
properties of incoming data but stays close to the origi-
nal tuned location.

Controlling the quality of resonance as shown in
Fig. 4b can be used to sharpen the performance of
ARN nodes. For example, if a node receives exactly the
same input repeatedly, we can increase its sharpness by
increasing σ. On the other hand, if the input value var-
ies around the resonance value but within a threshold,
we can reduce the value of σ to increase its coverage. A
simple relation that can be used to tune the resonance
is given by,

where, η is learning rate, κ is a proportionality constant
related to f statistical frequency, number of times the
node matched the input and ν is related to signal variance.
Therefore, this equation provides basis for reinforcement
learning on ARN nodes.

Stable nodes can undergo further tuning to increase
or decrease the area covered by the nodes. This can be
achieved by varying the selection threshold or the σ
value associated with the node. This requires that the
nodes compute statistical moments as they are accessed.
For a node described by (15), and knowing that ymax = 1
and assuming xr = 0, we can write the value of x for
threshold of y = as,

which gives an expression for coverage of an ARN node
as a function of threshold and tuning factor. Equation (17)
can be rewritten as

(16)σ(n+1) = σn + κf∕(1 − ν)

(17)ρ =
4

N
{

1

(1 + e−x)(1 + ex)
}

(18)x =
1

σ
cosh−1(

2

N
− 1)

which gives the coverage of an ARN node for various val-
ues of threshold and scale factor around the peak value.

2.4 Types of ARN nodes

Typically, ARN nodes are created when an input does not
produce resonance in existing nodes and the expected
value of output is known. Such nodes have a well defined
point of resonance, output mapping and adjustable cover-
age. We will call these as Type-1 nodes. Additional nodes
can be created in absence of input by interpolating prop-
erties derived from Type-1 nodes. The output and associ-
ated data can be estimated as a perturbation of values
of Type-1 nodes or interpolated using piecewise linear or
other suitable approximation. We will call them as Type-2
nodes.

3 Results

ARN can perform real-world input classification. Figures 5,
6 and 7 show the Pattern classification using scaled shifted
sigmoid envelop function for different thresholds. Each
bubble indicates an input. Each color represents a node.
If a node resonates on application of an input it is rep-
resented by the color of resonating node and shown at
the location specified by input. If there is no resonating
node, then the network is not resonating. In such a case a
new node is created and appended to existing network.
In other words, a new node is added when maximum out-
put value of all nodes in the recognition layer is below the
threshold. The node is assigned a color from a fixed list of
colors. Therefore, color of the node depends on the order
in which an input arrives during training and may vary
from run to run. Group of inputs that drive the same node
towards resonance (represented by same color) represent
the coverage of the node. Increasing the threshold from
0.7 to 0.9 has increased the number of output nodes.

Fig. 5 1D Pattern classification
using scaled shifted sigmoid
envelop function for different
thresholds

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9

4 Discussion

Existing neural models may not always work in newer
application domains. Therefore, application of ANN for
specific functionality may require development of spe-
cific neural structures. For example, Convolution Neural
Networks (CNN) are used in image recognition [8] while
Long Short-Term Memory (LSTM) networks are used for
time series prediction [9]. More recently, spiking neural
networks are being explored for robotics and several
other areas in Artificial General Intellignce (AGI). In this
paper, we described a novel neural network structure
based on synergistic control of musculo-skeletal systems
called as Auto Resonance Network (ARN). ARN can clas-
sify real valued multi-dimensional input and have an
adjustable acceptance threshold (ρ) for each node in
the network. Each layer of ARN has a specific goal and
searches are always local to a layer. Hierarchical ARN rep-
resents a feed forward network of ARN layers and other

cellular automata. Every node in ARN resonates with in a
small controllable volume in input space, called the cov-
erage of the node. Resonance allows approximation to
the locus of resonance, giving the network an ability to
respond to input different from training set. This tunable
approximation is critical to working of ARN architecture.
To a certain extent, ARN is similar to Radial Basis Func-
tion (RBF) network but with different control algorithm.
The size of the network grows with input and therefore
overcomes the binding problem and plasticity stability
dilemma. These networks can be used as generic data
classifiers by adding node labeling method or a neuronal
layer. We illustrate their application to robotic motion.

An original heuristic modelling algorithm expressed in
terms of homogenous combinations of the classical sys-
tem dynamics and the Bayesian degree of truth employed
in modeling is reported in [10]. Multi-relational data can
be on relational databases where they consist of multiple
relations that are linked together by entity-relationship
links. The class label can be predicted by correlating the

Fig. 6 2D Pattern classification
for different thresholds

Fig. 7 3D Pattern classification
for different thresholds

Vol.:(0123456789)

SN Applied Sciences (2020) 2:921 | https://doi.org/10.1007/s42452-020-2737-9 Research Article

information of related data. Labels can then be propa-
gated to crate the paths [11].

Deep learning methods for different applications are
reported in [12]. It is possible to use several of the exist-
ing types of neural networks discussed in [13, 14] for path
planning of robotic motion. A hierarchical network for
path planning built using ARN has been reported in [15,
16]. However, they can be used as generic data classifiers
and find applications in various areas of artificial intel-
ligence. A modified version of the algorithm has been
reported for image classification [17].

5 Conclusions

The sparseness of ARN and the simplicity of resonance
equations can make ARN suitable for implementations
in embedded systems. An important advantage of ARN
is ease of control over coverage and sparse node assign-
ment. It is obvious that the order in which input is applied
has a strong effect on how the ARN network gets created.
But nodes that are responsible for a specific output can
be identified. The network can be refined by successively
applying new data that covers the labeled data class to
increase the accuracy of classification. Therefore, it is easy
to see how the network has interpreted the data. A sin-
gle layer ARN can classify convex data sets and therefore
require labeling at higher levels of hierarchy in a typical
deep learning neural network. ARN can be used in lower
levels of such structures to provide data classification.
Efforts are on the way to use this structure in various areas
of current research.

Compliance with ethical standards

Conflict of interest All author states that there is no conflict of inter-
est. We used our own data.

Research involving human and animal rights Animals/Humans are not
involved in this research work.

References

 1. Grossberg S (1987) Competative learning—from interactive to
action to adaptive resonance. Cognitive Science 11:23–63

 2. von der Malsburg C (1987) Synaptic plasticity as basis of brain
organization, the neural and molecular bases of learning. Wiley,
New York, pp 1–24

 3. von der Malsburg C (1999) The what and why of binding, the
modeler’s perspective, open archive, vol 254. Elsevier, Amster-
dam, pp 95–104

 4. Burwick T (2006) Oscillatory networks: pattern recognition with-
out a superposition catastrophe. Neural Comput 18(2):356–380

 5. Valerie GH (1996) The binding problem and neurobiological
oscillations, Chapter 4, Towards a science of consiousness, first
Tuscon discussions and debates. In: Hameroff SR, Kaszniak AW,
Scott AC (eds) A Bradford book. The MIT Press, Cambridge, MA

 6. Kohonen T (1990) The self-organizing map, invited paper. Proc
IEEE 78(9):1464–1480

 7. Hochreiter S, Schmidhuber J (1997) The long short-term mem-
ory. Neural Comput 9(8):1735–1780

 8. Yangqing J, Evan S, Jeff D, Sergey K, Jonathan L, Ross G, Sergio
G, Trevor D (2014) Caffe: convolutional architecture for fast fea-
ture embedding. Cornell University[cs.CV] 20. https ://arxiv .org/
abs/1408.5093v 1

 9. Jurgen S, Sepp H (1997) Long short-term memory. Neural Com-
put 9(8):1735–1780

 10. Pozna C, Precup RE, Tar J, Škrjanc I, Preitl S (2010) New results
in modelling derived from Bayesian filtering. Knowl-Based Syst
23(2):182–194

 11. Zall R, Mohammad Reza K (2019) On the construction of multi-
relational classifier based on canonical correlation analysis. Int
J Artifi Intell 17(2):23–43

 12. He H, McGinnity TM, Coleman S, Gardiner B (2014) Linguistic
decision making for robot route learning. IEEE Trans Neural
Netw Learn Syst 25(1):203–215

 13. Aparanji VM, Wali UV, Aparna R (2016) A novel neural network
structure for motion control in joints. ICEECCOT Mysore, pp
227–232. IEEE Xplore Digital Library. https ://ieeex plore .ieee.
org/docum ent/79552 20/

 14. Aparanji VM, Wali UV, Aparna R (2017) Robotic motion control
using machine learning techniques. In: 6th IEEE international
conference on communication and signal processing, Melmara-
vattur, (ICCSP 2017), pp 1241–1245. IEEE Xplore Digital Library

 15. Aparanji VM, Wali UV, Aparna R (2017) Automated path
search and optimization of robotic motion using hybrid
ART-SOM neural networks. In: International conference on
recent advancement in computer and communication, Bho-
pal, (ICRAC-2017), Springer LNNS, pp 415–423. https ://doi.
org/10.1007/978-981-10-8198-9_43

 16. Aparanji VM, Wali UV, Aparna R (2018) Robotic motion control
using machine learning techniques. In: International conference
on conference on cognitive computing & information process-
ing, Bangalore, (CCIP 2017). Springer CCIS801, pp 386–394. https
://doi.org/10.1007/978-981-10-9059-2_34

 17. Mayannavar S, Wali U (2019) A noise tolerant auto resonance
network for image recognition. In: 4th Int conf information,
communication and computing technology, IIC, New Delhi.
CCIS, Springer

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1408.5093v1
http://arxiv.org/abs/1408.5093v1
http://ieeexplore.ieee.org/document/7955220/
http://ieeexplore.ieee.org/document/7955220/
https://doi.org/10.1007/978-981-10-8198-9_43
https://doi.org/10.1007/978-981-10-8198-9_43
https://doi.org/10.1007/978-981-10-9059-2_34
https://doi.org/10.1007/978-981-10-9059-2_34

	Tunability of auto resonance network
	Abstract
	1 Introduction
	2 Auto resonance network (ARN)
	2.1 Envelop functions
	2.2 Extending the input range
	2.3 Tuning the nodes and coverage
	2.4 Types of ARN nodes

	3 Results
	4 Discussion
	5 Conclusions
	References

