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Abstract
This paper proposes a new type of Artificial Neural Network called Auto-Resonance Network (ARN) derived from syner-
gistic control of biological joints. The network can be tuned to any real valued input without any degradation of learning 
rate. Neuronal density of the network is low and grows at a linear or low order polynomial rate with input classification. 
Input coverage of the neuron can be tuned dynamically to match properties of input data. ARN can be used as a part of 
hierarchical structures to support deep learning applications.
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1 Introduction

Classical neural networks suffer from size and temporal 
superposition, generally called stability-plasticity dilemma 
in Artificial Neural Network (ANN) literature [1–3]. Neuro-
science studies describe these effects as the binding prob-
lem and superposition catastrophe [4]. Some researchers 
take this a step further and state that the electrical oscil-
lations in the biological sensory systems trigger the cells 
in a sequence, effectively serializing certain recognition 
activity in time, adding a new Degree of Freedom (DoF) to 
the biological recognition engine [5]. As the neural cells in 
a network do not increase over time, the size of the initial 
neural network has to be large enough to accommodate 
the likely size of knowledge that will be acquired over 
time. Each learning experience has to bind to a subset of 
the existing neural infrastructure. However, as the knowl-
edge base increases, newer knowledge has to superim-
pose on existing infrastructure, possibly fragmenting the 
existing subsets. Old knowledge is replaced or distorted by 
new knowledge, effectively destabilizing the established 
subsets. This may not always have a damaging effect but 
does distort/refine old subsets.

Kohonen networks called the Self Organizing Maps 
(SOM) start with pre defined set of nodes initialized to 
random weights [6]. As the input is applied, some of the 
input nodes produce maximum output and one among 
them will be chosen as winner. The key to Kohonen’s net-
works is that the neighbors of the winner node adjust their 
weights towards that of the winner. Over period of time, 
repetition of this process creates a neighborhood of nodes 
that recognize similar inputs. Each of such neighborhoods 
represents one class of input. As the neighborhood is not 
constrained to be convex, it should be possible to support 
nonlinear classification. If the number of classes of inputs 
exceeds a certain number in relation to the total number 
of nodes in the network, the neighborhoods have to split 
and merge to accommodate new classes. Therefore, SOMs 
are subject to superposition catastrophe. Notice that they 
do not suffer from the binding problem as data classes are 
associated with sets of nodes.

On the other hand, neural networks based on Adap-
tive Resonance Theory (ART) [1] start with very few or no 
cells at all and add cells to the network when an input set 
cannot be recognized (classified). In these networks, a cell 
generates winning output when input matches its stored 
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value. Other cells will have lesser output. Input range cov-
ered by a cell and the number of cells for a given range 
of values are both dynamically optimizable. Therefore, 
ART networks are minimal in terms of number of nodes 
required to build the network. Extensions of ART networks 
using real inputs and outputs, called ART2 scale and trans-
late the input before storing in short term memory [1, 7]. 
However, the complexity of ART2 networks alters the sim-
plicity and elegance of ART1 to the extent that these net-
works lose their relation with biological equivalents: A bio-
logical neuron would be simple, repetitive and connected.

In the following sections, a new type of neural network 
called Auto Resonance Network (ARN) is described. ARN 
can classify real valued multi-dimensional input and have 
an adjustable acceptance threshold (ρ) for each node in 
the network. These networks can be used as generic data 
classifiers by adding node labeling method or a neuronal 
layer and find applications in various areas of artificial 
intelligence.

2  Auto resonance network (ARN)

Auto Resonance Network will have a single layer of sev-
eral neuronal nodes, each containing a pattern to match 
a particular input set. Each node has a specific stored pat-
tern that is different from other nodes. At the basic level, 
behaviour of the network would be as follows: Input will 
be applied as a set, one set at a time. Output layer would 
consist of a single layer of nodes all of which are con-
nected to all inputs. Each node is tuned to recognize a 
specific pattern of input vector. Internal memory of the 
node may have an exact or approximate or transformed 
version of input it matches. When a new input is applied 
(i) one of the nodes is at resonance or (ii) some nodes are 
near resonance or (iii) none of the nodes are in resonance. 
In the first case it is the winner. In second case, the node 
with the highest output is selected as winner if the output 
is above a selection threshold. In all other cases, there is 
no recognition. When there is no recognition, a new node 
may be created such that it is tuned to match the input. 
Success of this network depends on finding a suitable 
function that offers good tunability and variable cover.

When a new node is appended to ARN, it is pre-tuned to 
resonate with current input. We will illustrate the concept 
with a single input network. Resonance of a node can be 
described using a simple equation

where, x  is The input represented by a real number 
assumed to be normalized to a range of {0…1}. Equa-
tion (1) will yield a maximum value of 1∕4 when the input 

(1)yp = x(1 − x)

x = 1∕2 , i.e., the node will resonate if the input is 1∕2 . 
Therefore, we can use

to normalize the result to 1. In order to set the reso-
nance at any value of xr ∈ {0… 1} , we can scale the input 
such that

and calculate the output of the node as

The resonant weight w is computed when the node is 
inserted in the network and remains largely unaltered as 
a memory impression of the input xr present at the time 
of creating the node.

The chart in Fig. 1 shows the behavior of nodes tuned at 
various points of resonance identified by xr . Overall struc-
ture of ARN is shown in Fig. 2. In Fig. 2a, scaling of single 
input by the resonant weight and computation of resona-
tor output is shown. This is a basic module of ARN. A node 
with N input nodes is shown in Fig. 2b. The input to a node 
consists of a vector

(2)y = 4(1 − x)x

(3)wxr =
1

2
or w = 1∕(2xr)

(4)y = 4 ∗ (1 − wx)wx

Fig. 1  Resonance curves for various  xr

Fig. 2  Auto Resonance Network structure
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For each of the inputs, output of each resonator module 
given by (2) are summed and normalized as at the output 
of the node. A layer of ARN will have several such nodes 
as shown in Fig. 2c. Assuming that there are K nodes, each 
one is tuned to a different input vector Xk|t=tk where tk is 
the time at which k-th node was created. We can extend 
(2) to describe output of a k-th node as

where,wki is the scaling factor for i-th input of k-th node. 
The resonant weight wki represents the in-the-node 
impression of input xki stored as memory in the node. Note 
that xi is the i-th element of the input vector while xki rep-
resents the resonating input xi for k-th node. This k-th node 
will produce maximum value of 1 when xi =

1

2wki

, i = 1…N . 

In Fig. 2, the resonator function is indicated as d(1 − d) 
where d = wx.

To summarize, each resonator corresponds to one input 
of one node. Each node has N inputs and same number 
of resonators. The output of a node is maximal when all 
the resonators produce maximum output. Therefore, the 
resonant weight of a node is expressed as W = 1∕2Xr . The 
resonant weights are calculated only once, when the node 
is added to the network. There will be only one node that 
maximally matches exact combination of inputs. For these 
reasons, we call this network as Auto Resonance Network 
(ARN).

2.1  Envelop functions

It can be seen from Fig. 1 that output of a resonating node 
decreases as a continuous function of input on either side 
of input values. If the output of a node is above a thresh-
old value the node is a winner. By reducing or increasing 
the threshold the range of input values to which a node 
resonates can be adjusted. For example, if the threshold 
is reduced, the range increases and vice versa. Set of all 
inputs when the output of a node is above a threshold is 
called coverage of the node.

Coverage of k-th node can be expressed as

 where ρ is the threshold value.
We may further note from Fig.  1 that coverage of 

area for each node is not same for a given threshold. 
For example the peak for Xr = 0.1 is significantly sharper 
than the one at Xr = 0.2 . We could set separate thresh-
olds to individual nodes such that all nodes have similar 

(5)X =
{
x1, x2,… xN

}
, xi ∈ {0… 1}, i = 1…N

(6)yk =
4

N

∑
i

(
1 − wkixi

)(
wkixi

)
, i = 1…N, k = 1… K

(7)Ck = {X|(yk > ρ) and (yk > yi, ∀i ≠ k)}

coverage. However, a better way to correct this situation 
is to use a non-linear scaling of input. We call these func-
tions as envelop functions.

Envelop functions can provide several advantages. For 
example, they can transform unbound input x ∈ ℝ into 
bound region like {0…1}. If the envelop function modi-
fies the input xs = g(x) then, the resonant weights also 
should be scaled with identical function.

Envelop functions stretch or compress a specific part 
of the input range in order to exemplify an area of inter-
est. Effect of some of these functions is shown in Fig. 3.

A simple scaled log function is shown in Fig. 3a uses:

where σ is scaling factor. By adjusting σ we can effectively 
compensate for the non-linear coverage of (4). Figure 3a 
shows the effect of (10) on coverage with σ = 1 . A modified 
sigmoid function shown in Fig. 3b exhibits a controllable 
linear coverage. It uses an envelope function

A value of σ = 4 is used for illustration. It is clear that 
envelop functions can reduce the non-uniform coverage 
across the input range.

2.2  Extending the input range

Though accepting input in the limited range of {0…1} 
need not be a limitation, it would be convenient if there 
are other functions that provide a larger input range yet 
maintain the resonance property. Interestingly, there are 
many other monotonic functions to implement such res-
onance and build an ARN. A generic approach would be 
to define an additive inverse of the function over a range 
and multiply the two to get a resonance function. One 
such simple function is the difference function given by (
Mki − xi

)
 such that

where M is the memory copy of the tuned input.
Another good candidate is the Scaled and Shifted Sig-

moid Function (3SF) given below:

(8)wki =
1

2g
(
xki

)

(9)yk =
4

N

∑

i

wkig
(
xi
)
(1 − wkig(xi))

(10)g(x) = ln(x)

(11)g(x) =
1

(1 + e−(x−1))

(12)yk = 1 +
∑

i

(
Mki − xi

)
(xi −Mki)
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will map a real number in the range of −∞ ∶ ∞ to a mono-
tonically increasing value in the range 0:1. Interestingly, 
the function has a value of 0.5 at x = M . Therefore, we 
could replace wkixi in (4) with this function. It may be noted 
that (1 − ys) can be easily computed as

Therefore, for N = 1, we can rewrite (2) as

(13)ys =
1

(1 + e−(x−M))

(14)ys− =
1

(1 + e(x−M))

(15)y = 4

[
1(

1 + e−(x−M)
)

][
1(

1 + e(x−M)
)

]

The sigmoid nature of this curve fits well with a physi-
cal neuron activation which shows saturation as the input 
increases, rather than growing monotonically. Equation (15) 
allows a node to be set to resonate at any xi ∈ ℝ . Note that M 
can be used to select the point of resonance while � can be 
used to control the tuning and hence coverage of the node 
as shown in Fig. 4a and b respectively. Equation (15) provides 
a generalized function for implementing ARN nodes, albeit 
with increased complexity. The tradeoff between complex-
ity versus flexibility can tilt towards (4) or (15) depending 
on end use.

2.3  Tuning the nodes and coverage

Coverage of a node acts like noise margin by provid-
ing near maximal output when the input is close to the 

Fig. 3  Effect of envelop functions on classification

Fig. 4  Tunability of ARN using (15)
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resonating value. Therefore, each node can recognize 
noisy input if it is within the coverage area. Coverage of 
the node can vary dynamically. Node may slowly shift 
to a different tuning point depending on the statistical 
properties of incoming data but stays close to the origi-
nal tuned location.

Controlling the quality of resonance as shown in 
Fig.  4b can be used to sharpen the performance of 
ARN nodes. For example, if a node receives exactly the 
same input repeatedly, we can increase its sharpness by 
increasing σ. On the other hand, if the input value var-
ies around the resonance value but within a threshold, 
we can reduce the value of σ to increase its coverage. A 
simple relation that can be used to tune the resonance 
is given by,

where, η is learning rate, κ is a proportionality constant 
related to f statistical frequency, number of times the 
node matched the input and ν is related to signal variance. 
Therefore, this equation provides basis for reinforcement 
learning on ARN nodes.

Stable nodes can undergo further tuning to increase 
or decrease the area covered by the nodes. This can be 
achieved by varying the selection threshold or the σ 
value associated with the node. This requires that the 
nodes compute statistical moments as they are accessed. 
For a node described by (15), and knowing that ymax = 1 
and assuming xr = 0, we can write the value of x for 
threshold of y = as,

which gives an expression for coverage of an ARN node 
as a function of threshold and tuning factor. Equation (17) 
can be rewritten as

(16)σ(n+1) = σn + κf∕(1 − ν)

(17)ρ =
4

N
{

1

(1 + e−x)(1 + ex)
}

(18)x =
1

σ
cosh−1(

2

N
− 1)

which gives the coverage of an ARN node for various val-
ues of threshold and scale factor around the peak value.

2.4  Types of ARN nodes

Typically, ARN nodes are created when an input does not 
produce resonance in existing nodes and the expected 
value of output is known. Such nodes have a well defined 
point of resonance, output mapping and adjustable cover-
age. We will call these as Type-1 nodes. Additional nodes 
can be created in absence of input by interpolating prop-
erties derived from Type-1 nodes. The output and associ-
ated data can be estimated as a perturbation of values 
of Type-1 nodes or interpolated using piecewise linear or 
other suitable approximation. We will call them as Type-2 
nodes.

3  Results

ARN can perform real-world input classification. Figures 5, 
6 and 7 show the Pattern classification using scaled shifted 
sigmoid envelop function for different thresholds. Each 
bubble indicates an input. Each color represents a node. 
If a node resonates on application of an input it is rep-
resented by the color of resonating node and shown at 
the location specified by input. If there is no resonating 
node, then the network is not resonating. In such a case a 
new node is created and appended to existing network. 
In other words, a new node is added when maximum out-
put value of all nodes in the recognition layer is below the 
threshold. The node is assigned a color from a fixed list of 
colors. Therefore, color of the node depends on the order 
in which an input arrives during training and may vary 
from run to run. Group of inputs that drive the same node 
towards resonance (represented by same color) represent 
the coverage of the node. Increasing the threshold from 
0.7 to 0.9 has increased the number of output nodes.

Fig. 5  1D Pattern classification 
using scaled shifted sigmoid 
envelop function for different 
thresholds
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4  Discussion

Existing neural models may not always work in newer 
application domains. Therefore, application of ANN for 
specific functionality may require development of spe-
cific neural structures. For example, Convolution Neural 
Networks (CNN) are used in image recognition [8] while 
Long Short-Term Memory (LSTM) networks are used for 
time series prediction [9]. More recently, spiking neural 
networks are being explored for robotics and several 
other areas in Artificial General Intellignce (AGI). In this 
paper, we described a novel neural network structure 
based on synergistic control of musculo-skeletal systems 
called as Auto Resonance Network (ARN). ARN can clas-
sify real valued multi-dimensional input and have an 
adjustable acceptance threshold (ρ) for each node in 
the network. Each layer of ARN has a specific goal and 
searches are always local to a layer. Hierarchical ARN rep-
resents a feed forward network of ARN layers and other 

cellular automata. Every node in ARN resonates with in a 
small controllable volume in input space, called the cov-
erage of the node. Resonance allows approximation to 
the locus of resonance, giving the network an ability to 
respond to input different from training set. This tunable 
approximation is critical to working of ARN architecture. 
To a certain extent, ARN is similar to Radial Basis Func-
tion (RBF) network but with different control algorithm. 
The size of the network grows with input and therefore 
overcomes the binding problem and plasticity stability 
dilemma. These networks can be used as generic data 
classifiers by adding node labeling method or a neuronal 
layer. We illustrate their application to robotic motion.

An original heuristic modelling algorithm expressed in 
terms of homogenous combinations of the classical sys-
tem dynamics and the Bayesian degree of truth employed 
in modeling is reported in [10]. Multi-relational data can 
be on relational databases where they consist of multiple 
relations that are linked together by entity-relationship 
links. The class label can be predicted by correlating the 

Fig. 6  2D Pattern classification 
for different thresholds

Fig. 7  3D Pattern classification 
for different thresholds
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information of related data. Labels can then be propa-
gated to crate the paths [11].

Deep learning methods for different applications are 
reported in [12]. It is possible to use several of the exist-
ing types of neural networks discussed in [13, 14] for path 
planning of robotic motion. A hierarchical network for 
path planning built using ARN has been reported in [15, 
16]. However, they can be used as generic data classifiers 
and find applications in various areas of artificial intel-
ligence. A modified version of the algorithm has been 
reported for image classification [17].

5  Conclusions

The sparseness of ARN and the simplicity of resonance 
equations can make ARN suitable for implementations 
in embedded systems. An important advantage of ARN 
is ease of control over coverage and sparse node assign-
ment. It is obvious that the order in which input is applied 
has a strong effect on how the ARN network gets created. 
But nodes that are responsible for a specific output can 
be identified. The network can be refined by successively 
applying new data that covers the labeled data class to 
increase the accuracy of classification. Therefore, it is easy 
to see how the network has interpreted the data. A sin-
gle layer ARN can classify convex data sets and therefore 
require labeling at higher levels of hierarchy in a typical 
deep learning neural network. ARN can be used in lower 
levels of such structures to provide data classification. 
Efforts are on the way to use this structure in various areas 
of current research.

Compliance with ethical standards 

Conflict of interest All author states that there is no conflict of inter-
est. We used our own data.

Research involving human and animal rights Animals/Humans are not 
involved in this research work.

References

 1. Grossberg S (1987) Competative learning—from interactive to 
action to adaptive resonance. Cognitive Science 11:23–63

 2. von der Malsburg C (1987) Synaptic plasticity as basis of brain 
organization, the neural and molecular bases of learning. Wiley, 
New York, pp 1–24

 3. von der Malsburg C (1999) The what and why of binding, the 
modeler’s perspective, open archive, vol 254. Elsevier, Amster-
dam, pp 95–104

 4. Burwick T (2006) Oscillatory networks: pattern recognition with-
out a superposition catastrophe. Neural Comput 18(2):356–380

 5. Valerie GH (1996) The binding problem and neurobiological 
oscillations, Chapter 4, Towards a science of consiousness, first 
Tuscon discussions and debates. In: Hameroff SR, Kaszniak AW, 
Scott AC (eds) A Bradford book. The MIT Press, Cambridge, MA

 6. Kohonen T (1990) The self-organizing map, invited paper. Proc 
IEEE 78(9):1464–1480

 7. Hochreiter S, Schmidhuber J (1997) The long short-term mem-
ory. Neural Comput 9(8):1735–1780

 8. Yangqing J, Evan S, Jeff D, Sergey K, Jonathan L, Ross G, Sergio 
G, Trevor D (2014) Caffe: convolutional architecture for fast fea-
ture embedding. Cornell University[cs.CV] 20. https ://arxiv .org/
abs/1408.5093v 1

 9. Jurgen S, Sepp H (1997) Long short-term memory. Neural Com-
put 9(8):1735–1780

 10. Pozna C, Precup RE, Tar J, Škrjanc I, Preitl S (2010) New results 
in modelling derived from Bayesian filtering. Knowl-Based Syst 
23(2):182–194

 11. Zall R, Mohammad Reza K (2019) On the construction of multi-
relational classifier based on canonical correlation analysis. Int 
J Artifi Intell 17(2):23–43

 12. He H, McGinnity TM, Coleman S, Gardiner B (2014) Linguistic 
decision making for robot route learning. IEEE Trans Neural 
Netw Learn Syst 25(1):203–215

 13. Aparanji VM, Wali UV, Aparna R (2016) A novel neural network 
structure for motion control in joints. ICEECCOT Mysore, pp 
227–232. IEEE Xplore Digital Library. https ://ieeex plore .ieee.
org/docum ent/79552 20/

 14. Aparanji VM, Wali UV, Aparna R (2017) Robotic motion control 
using machine learning techniques. In: 6th IEEE international 
conference on communication and signal processing, Melmara-
vattur, (ICCSP 2017), pp 1241–1245. IEEE Xplore Digital Library

 15. Aparanji VM, Wali UV, Aparna R (2017) Automated path 
search and optimization of robotic motion using hybrid 
ART-SOM neural networks. In: International conference on 
recent advancement in computer and communication, Bho-
pal, (ICRAC-2017), Springer LNNS, pp 415–423. https ://doi.
org/10.1007/978-981-10-8198-9_43

 16. Aparanji VM, Wali UV, Aparna R (2018) Robotic motion control 
using machine learning techniques. In: International conference 
on conference on cognitive computing & information process-
ing, Bangalore, (CCIP 2017). Springer CCIS801, pp 386–394. https 
://doi.org/10.1007/978-981-10-9059-2_34

 17. Mayannavar S, Wali U (2019) A noise tolerant auto resonance 
network for image recognition. In: 4th Int conf information, 
communication and computing technology, IIC, New Delhi. 
CCIS, Springer

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1408.5093v1
http://arxiv.org/abs/1408.5093v1
http://ieeexplore.ieee.org/document/7955220/
http://ieeexplore.ieee.org/document/7955220/
https://doi.org/10.1007/978-981-10-8198-9_43
https://doi.org/10.1007/978-981-10-8198-9_43
https://doi.org/10.1007/978-981-10-9059-2_34
https://doi.org/10.1007/978-981-10-9059-2_34

	Tunability of auto resonance network
	Abstract
	1 Introduction
	2 Auto resonance network (ARN)
	2.1 Envelop functions
	2.2 Extending the input range
	2.3 Tuning the nodes and coverage
	2.4 Types of ARN nodes

	3 Results
	4 Discussion
	5 Conclusions
	References




