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Abstract
The photodegradation and mineralization of the metalaxyl [methyl N-(2,6-dimethyl-phenyl)-N-(methoxyacetyl)-alani-
nate], which is a popular benzenoid fungicide, was conducted in the presence of TiO2 photocatalyst under solar irradia-
tion. An initial metalaxyl concentration of 50 ppm was completely degraded in presence of TiO2 after 30 min irradiation, 
while no degradation was observed in absence of TiO2 under solar irradiation. The effect of different parameters, such as 
amount of TiO2, initial pH, light intensity, reaction temperature and irradiation time, on the photocatalytic degradation of 
metalaxyl was evaluated. The drop of total organic carbon as a consequence of mineralization of metalaxyl was detected 
during the photocatalytic process. The kinetics of photocatalytic degradation followed a pseudo-first order law according 
to Langmuir–Hinshelwood model, and the rate constant was 0.105 min−1. Ammonium ion and CO2 were speculated as 
the end-products after completing degradation of metalaxyl. The five types of intermediate products were identified by 
GC–MS during the decomposition of metalaxyl. In order to investigate the degradation pathway of metalaxyl, the point 
charge and frontier electron density at each atom on the molecule were determined by using MOPAC stimulation. The 
degradation mechanism was proposed from the identified intermediates. The solar photocatalytic degradation method 
can become an effective technique for the treatment of metalaxyl-polluted water.
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1  Introduction

Metalaxyl is a fundamental benzenoid fungicide, and 
can be immensely applied to the plant diseases caused 
by Oomycete fungi [1]. Its IUPAC name is methyl N-(2, 
6-dimethyl-phenyl)-N-(methoxyacetyl)-alaninate and 
molecular weight is 279.33 g/mol. The molecular structure 
of metalaxyl is shown in Fig. 1. This fungicide is very active 

across soil-borne and foliaceous diseases. It is continuously 
used in agricultural purpose because of its great toler-
ance for light, temperature and pH of soil [2]. Metalaxyl is 
frequently sprayed on plant after dilution [3]. It has long 
half-life in soil and it is greatly soluble in water (solubility: 
8400 mg/L) which can issue a great threat of environment 
[4, 5]. The excessive application of metalaxyl can stimulate 
the contamination of soil and ground water, owing to high 

All experiments were conducted at Mie University. Any opinions, findings, conclusions or recommendations expressed in this paper are 
those of the authors and do not necessarily reflect the view of the supporting organizations.

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s4245​2-020-2722-3) contains 
supplementary material, which is available to authorized users.

 *  Jahida Binte Islam, jbislam07@gmail.com; Mai Furukawa, maif@chem.mie‑u.ac.jp; Ikki Tateishi, tateishi@gecer.mie‑u.ac.jp;  
Hideyuki Katsumata, hidek@chem.mie‑u.ac.jp; Satoshi Kaneco, kaneco@chem.mie‑u.ac.jp | 1Department of Chemistry for Materials, 
Graduate School of Engineering, Mie University, Mie 514‑8507, Japan. 2Global Environment Center for Education and Research,  
Mie University, Mie 514‑8507, Japan.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2722-3&domain=pdf
https://doi.org/10.1007/s42452-020-2722-3


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:925 | https://doi.org/10.1007/s42452-020-2722-3

mobility and a low soil adsorption of metalaxyl [6, 7]. In 
addition, metalaxyl is characterized as a stable compound 
in environment for the hydrolysis at normal pH values [8, 
9]. These behaviors present the persistence and toxicity of 
metalaxyl in the environment. In addition, the minimum 
detection limit (MDL) of metalaxyl is tentatively 0.01 μg/L 
based on the report, provided by effluent characterization 
program [10]. Admittedly, up to 0.49 mg/L of metalaxyl, 
which exceeds the 0.1 mg/L EU limit, has been recorded 
in groundwater [11]. Therefore, the degradation of meta-
laxyl is essential to control its toxicity in the environment. 
As far, the degradation of metalaxyl has been reported by 
some traditional, physiochemical methods such as, micro-
organisms [12], Mucorales strains [13], sorption–desorp-
tion process [14], biotic process [15] and filamentous fungi 
[16], etc. These traditional physical or chemical methods 
have some major drawbacks such as costly, ineffective, 
time consuming and an incomplete degradation [17]. For 
example, Sukul et al. [14] has reported that a significant 
amount of metalaxyl kept tightly bound to the adsorbents 
after desorption cycle. Thus, desorption of 22–56% of the 
total amount of the retained metalaxyl was even deter-
mined. Therefore, many researchers have started to find 
new method for the elimination of pesticides and other 
pollutants from water and soil. Among the researches, the 
photocatalytic degradation with solar irradiation or artifi-
cial light irradiation has been considered as an effective 
techniques [18–20]. Photocatalytic degradation technol-
ogy not only manifests a high degradation efficiency and 
low energy consumption with low cost, but also converts 
hazardous pollutant into the inorganic compound such 
as CO2, water and mineral acids [21]. Conventionally, the 
photocatalytic method involves the migration of valence 
electrons to conduction band, when photocatalyst are 
irradiated under light having photons with more energy 
than bandgap of the photocatalyst [22]. So far, some sig-
nificant photocatalysts, namely TiO2, ZnO, CuO, WO3, CdS, 

Fe2O3, ZnFe2O4, etc., were widely studied due to favorable 
band gap energy to be excited under UV irradiation, low 
cost and suitable chemical properties [23–27]. TiO2 and 
ZnO photocatalysts are highly applicable owing to their 
nontoxicity, wide bandgap (Eg = ~3.20 eV) and high pho-
tosensitivity [28]. However, some limitations, such as the 
poor stability of photocatalysts except for TiO2 in strong 
acidic medium, are found alongside all advantages [20, 
29]. Furthermore, photocatalysts can be recycled and 
reused repeatedly after completing photocatalytic deg-
radation process [30, 31]. A very few works have been 
reported on the photocatalytic degradation of metalaxyl 
under UV or solar irradiation using semiconductor based 
metal oxide [32, 33]. Recently, visible–light–driven photo-
catalytic degradation of metalaxyl with grapheme oxide/
Fe3O4/ZnO ternary nanohybrid was reported [10]. The solar 
photocatalytic treatment of wastewater is cheap, simple 
and environmental-friendly, compared with that using 
artificial lamp devices such as Hg–Xe lamp. Therefore, the 
solar photocatalytic degradation of metalaxyl with irradi-
ated semiconductor photocatalyst can be considered as 
an effective method for degradation and mineralization 
of metalaxyl.

The present study demonstrates that the photocatalytic 
degradation of metalaxyl aqueous solution with TiO2 pho-
tocatalyst under solar irradiation. Gas chromatography-
mass spectroscopy (GC/MS) has been used to identify the 
intermediate products of metalaxyl. A probable reaction 
pathway has been drawn, depended on the generation of 
intermediate products. The different parameters such as 
catalyst dosage, pH, temperature, irradiation intensity and 
time have been optimized for the photocatalytic degrada-
tion of metalaxyl.

2 � Experimental section

2.1 � Chemicals and materials

Metalaxyl (C15H21NO4) and hexane were purchased from 
FUJIFILM Wako Pure Chemical Industries Ltd., Japan. TiO2 
(P–25) was obtained from Nippon Aerosil Co. Ltd., Japan. 
Potassium hydrogen phthalate (C6H4(COOH)(COOK)), 
methanol (CH3OH), dichloromethane (CH2Cl2), sodium 
carbonate (Na2CO3), sodium bicarbonate (NaHCO3) and 
ammonium chloride (NH4Cl) were purchashed from 
Nacalai Tesque Co. Ltd., Japan. NaOH and H2SO4 were used 
to adjust solution pH.

2.2 � Photodegradation of metalaxyl

The required amount of metalaxyl powder was dissolved 
with ultrapure water, obtained from an ultrapure water 

Fig. 1   Molecular structure of metalaxyl
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device (GSH-2000, Advantech Tokyo Co., Ltd.), to prepare 
1000 ppm stock solution of metalaxyl. For a typical pho-
tocatalytic run, 30 mL of 50 ppm metalaxyl solution was 
taken into a 50 mL Pyrex reaction vessel, and 30 mg TiO2 
powder was added into metalaxyl solution. The pH of the 
solution was adjusted with 1 M NaOH and 1 M H2SO4. 
The temperature was kept constant with a water bath. 
The metalaxyl solution containing TiO2 photocatalyst 
was allowed to equilibrate for 30 min in dark. Then, it was 
irradiated under sunlight. The suspension was continu-
ously stirred by magnetic stirrer for the dispersion of TiO2 
during the treatment. The vessel wall filtered the short 
ultraviolet radiation (λ < 300 nm). The irradiance was meas-
ured by a UV intensity meter with sensor of 230–400 nm 
wavelengths (UVR-400, Iuchi Co., Osaka, Japan). The exper-
imental set up is presented in supplementary material 
(Fig. S1). The 0.45 μm Advantec membrane filter was used 
to separate TiO2 after irradiation. The high-performance 
liquid chromatograph equipped with a UV optical detec-
tor and ODS-3 (5 μm) column was used to evaluate the 
amount of metalaxyl in the aqueous solution. The elution 
was observed at 220 nm. The mixture of acetonitrile and 
water (50/50, v/v) was considered as the eluent with flow 
rate of 1 mL/min. The injected sample volume was 20 μL. 
Then, the amounts of converted NH4

+ and NO3
− ions were 

measured by an anion ion chromatography after separat-
ing TiO2 from reaction solution. The detailed analytical 
conditions are presented in Table S1 and S2. The degrada-
tion efficiency of metalaxyl was calculated by the follow-
ing equation

where, C and C0 are the concentration of metalaxyl before 
and after degradation.

For total organic carbon (TOC) measurement, the mixed 
gas (O2 + N2) was passed for 30 min to remove inorganic 
carbon from the sample solution, and finally, the aqueous 
solution was subjected to determine TOC (Shimadzu TOC 
analyzer, TOC-VE). The calibration curve TOC was prepared 
by preparing a solution of known concentration using 
potassium hydrogen phthalate.

Molecular orbital (MO) calculations were carried out at 
the single determinant (Hartree–Fock) level for optimiza-
tion of the minimum energy obtained at the AM1 level. 
All semi-empirical calculations were performed in MOPAC 
Version 6.01 with a CAChe package (Fujitsu Co. Ltd.). The 
partial charge and the frontier electron density at each 
atom on the molecule were determined. The intermedi-
ate products were evaluated by the solid-phase extrac-
tion gas chromatography and mass spectroscopy (GC–MS). 
A Shimadzu gas chromatography mass spectroscopy 

Degradation efficiency =

(

C − C0

C0
× 100%

) (GCMS-QP5000, Shimadzu) equipped with a CP-Sil 8 CB 
capillary column was used as the chromatographic condi-
tions of Table 1.

3 � Result and discussion

3.1 � UV–Vis spectral changes

The change of the UV absorption spectrum during the 
photocatalytic decomposition of metalaxyl by TiO2 
under UV irradiation has been investigated in the range 
of 220–320 nm by using a UV–Vis spectrophotometer. 
The detailed experimental conditions are presented in 
supplementary material (Table S3). As shown in Fig. 2, a 
little change in the absorption spectrum was observed 
after the 30 min solar irradiation without TiO2 (curve b), 
compared to that before irradiation (curve a). Therefore, 
the decomposition of metalaxyl did not occur only under 
solar irradiation. However, the absorption spectra has 
been changed when TiO2 was added under solar irradia-
tion (curve c, d, e) relative to that before irradiation (curve 
a). Although the change in spectrum range of more than 

Table 1   Experimental conditions for GC–MS

Capillary column CP-Sil 8 CB (Φ: 0.25 mm × 30 m)
Column temperature program 50 °C (3 min) ⇒ up 15 °C/

min ⇒ 280 °C
Injector temperature 280 °C
Interface temperature 280 °C
Carrier gas He (99.9%), 1.5 mL/min
Ionization Electron-impact (EI) mode
Injected volume 1 μL

0

0.1

0.2

0.3

0.4

0.5

0.6

220 240 260 280 300 320

Before irradiation

After 10 min irradiation with TiO2

After 20 min irradiation with TiO2

After 30 min irradition with TiO2

After 10 min irradiation without TiO2

After 30 min irradiation without TiO2

A
b
so

rb
an

ce
 

Wavelength (nm)

(b)

(d)

(a)

(c)

(e)

Fig. 2   UV absorption spectra of metalaxyl before and after solar 
irradiation. Metalaxyl: 50 ppm; TiO2: 20 mg; light intensity: 2.2 mW/
cm2; temperature: 20 °C and pH 6
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280 nm indicated the intermediate formation of metal-
axyl, the typical absorption peak (267 nm and 274 nm) for 
the metalaxyl decreased on using TiO2 under solar light. 
Hence, this result confirms the decomposition of metalaxyl 
by TiO2 under solar irradiation.

3.2 � Effect of photocatalyst dosage

The effect of TiO2 amount on the photocatalytic degra-
dation of metalaxyl has been examined, in the range of 
0–50 mg TiO2. The results are shown in Fig. 3. The deg-
radation efficiency was increased sharply with increasing 
up to 20 mg of TiO2 and, then an almost steady result was 
observed in the further addition of TiO2. Beyond a cer-
tain limit of photocatalyst amount, i.e. 20 mg of TiO2, the 
reaction solution could become turbid and thusly hinder 
the light penetration to proceed the reaction and there-
fore, percentage of degradation did not increase [34, 35]. 
Another possible reason could be due to the constant in 
the portion of the irradiated surface of the photocatalyst, 
the obstruction of light in the dense slurry and a loss in 
surface area by agglomeration (particle–particle interac-
tions) at high solid concentration [36, 37]. Therefore, 20 mg 
of TiO2 was selected as the optimal amount for the subse-
quent experiments.

3.3 � Effect of pH

The effect of pH is addressed as an important parameter 
during photocatalytic degradation process. The surface 
charge of the photocatalyst may vary with the pH value 
of the solution. Therefore, the effect of pH on the pho-
todegradation of metalaxyl by TiO2 under 10 min solar 

irradiation was examined in pH range from 2 to 10. It is 
noteworthy to mention that the initial pH of the reaction 
solution was 6 without adjustment. As shown in Fig. 4, the 
highest 76% degradation efficiency was recorded at pH 8. 
The degradation efficiency was almost the same for pH 
4–7. By considering the treatment cost and environmen-
tal safety, it was desirable to decompose metalaxyl near 
neutral pH.

The adsorption of metalaxyl onto TiO2 surface has 
been measured from the stimulation of molecular par-
tial charges (Table 2). The most negative partial charged 
atoms in metalaxyl are the two oxygen atoms (13O and 
18O) along 9 N nitrogen atom, while the most positive 
partial charged atom is carbon atom (11C). The point 
zero charge of TiO2 is approximately 6.5. Therefore, TiO2 
surface is predominantly positively charged below this 
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Fig. 3   Effect of TiO2 dosage on the photocatalytic degradation of 
metalaxyl under solar irradiation. Metalaxyl: 50  ppm; irradiation 
time: 10; pH 6; light intensity: 2.2 mW/cm2 and temperature: 20 °C
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Fig. 4   Effect of pH on the photocatalytic degradation of metalaxyl 
under solar irradiation. Metalaxyl: 50 ppm; TiO2: 20 mg; irradiation 
time: 10 min; light intensity: 2.2 mW/cm2 and temperature: 20 °C

Table 2   Calculation of frontier electron density and point charge of 
metalaxyl

Atom Frontier 
electron 
density

Point 
charge

Atom Fronteir 
electron 
density

Point charge

1C 0.233 − 0.128 11C 0.043 0.319
2C 0.253 − 0.15 12C 0.003 − 0.231
3C 0.269 − 0.06 13O 0.033 − 0.384
4C 0.291 − 0.037 14C 0.073 0.309
5C 0.272 − 0.062 15C 0.007 − 0.059
6C 0.251 − 0.149 16O 0.007 − 0.28
7C 0.012 − 0.189 17C 0.001 − 0.095
8C 0.013 − 0.185 18O 0.034 − 0.374
9N 0.08 − 0.312 19O 0.012 − 0.266
10C 0.032 0.052 20C 0.003 − 0.091
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pH and negatively charged above pH 6.5 [38]. Hence, 
because of the electrostatic attraction, the positively 
charged Carbon 11C atom is readily adsorbed on the 
TiO2 surface in alkaline media (pH > 6). Contrarily, the 
negatively charged 13O, 18O and 9  N atoms can be 
adsorbed on TiO2 in acidic condition (pH < 6). Moreover, 
high initial pH states that more hydroxyl ions are present 
in solution. As a result, hydroxyl ions would be oxidized 
to hydroxyl radicals (·OH) by the holes forming on TiO2 
surface [39]. The photocatalytic degradation of metal-
axyl can be enhanced in alkaline medium, since ·OH is 
the dominant oxidizing species in this photocatalytic 
degradation process. Therefore, pH 6 was selected for 
the optimal conditions to avoid the unwanted chemical 
treatment.

3.4 � Effect of temperature

The effect of reaction temperature on the photocatalytic 
decomposition of metalaxyl was observed in the range 
of 10–60  °C. Because metalaxyl was not completely 
decomposed, the irradiation time was set to 10 min in 
order to check the influence of the reaction temperature. 
As shown in Fig. 5, the decomposition efficiency of meta-
laxyl tended to increase gradually as the reaction tem-
perature increased, and the phenomena is comparable 
to other research [40]. This result concluded that a higher 
temperature is better for the decomposition of metal-
axyl. However, the energy cost requires for raising the 
temperature during practical application. Therefore, the 
reaction temperature was set to 20 °C, because the effect 
of temperature was not significant in this experiment.

3.5 � Effect of light intensity

The intensity of solar irradiation is greatly dependent on 
the latitude, season and time of treatment place and is 
related with the weather. Considering these factors, the 
effect of light intensity on the photo-degradation of meta-
laxyl with TiO2 is essential. The photocatalytic degradation 
of metalaxyl was conducted under sunlight with different 
intensities of light in different time of sunny and cloudy 
days. As shown in Fig. 6, the decomposition efficiency 
of metalaxyl gradually increased as the light intensity 
increased. Generally, semiconductor based photocata-
lyst absorbs the light with an equal or more than band 
gap energy. The excitation of photocatalyst can be moti-
vated by raising the incident light intensity [41]. Therefore, 
the degradation of metalaxyl is slow at low intensity of 
light, because of recombination of the hole-electron. On 
the other hand, the recombination can be prohibited by 
using higher light intensity [42]. Therefore, an accelerated 
photodegradation could be achieved with increasing the 
intensity of incident radiation.

3.6 � Effect of light irradiation time

The effect of the light irradiation time on the photocata-
lytic degradation of metalaxyl with optimum experimental 
conditions was examined. From Fig. 7a, the degradation 
efficiency of metalaxyl sharply increased with increas-
ing irradiation time in the presence of TiO2. The degrada-
tion efficiency reached 100% with 20 mg of TiO2 within 
30 min at 20 °C. It was found from these results that the 
initial structure of metalaxyl was completely broken after 
30 min of light irradiation. If the irradiation time increases, 
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Fig. 5   Effect of temperature on the photocatalytic degradation of 
metalaxyl under solar irradiation. Metalaxyl: 50  ppm; TiO2: 20  mg; 
irradiation time: 10 min; light intensity: 2.2 mW/cm2 and pH 6
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Fig. 6   Effect of light intensity on the photocatalytic degradation of 
metalaxyl under solar irradiation. Metalaxyl: 50  ppm; TiO2: 20  mg; 
irradiation time: 10 min; pH 6 and temperature: 20 °C
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the interaction of metalaxyl molecule with the surface of 
TiO2 will also be increased. Therefore, the photodegrada-
tion efficiency was increased eventually as shown in other 
research [43].

3.7 � Kinetics

The kinetics of photocatalytic degradation process have 
been studied according to the Langmuir–Hinshelwood 
(L–H) model [44], and this model was motivated by Turchi 
and Ollis [45]. The photocatalytic degradation of metal-
axyl with TiO2 is postulated to be consistent with the Lang-
muir–Hinshelwood (L–H) model and expressed as Eq. 1

where, r is the degradation rate of the reactant, k is the 
rate constant, K is the adsorption co-efficient and C is the 
substrate concentration. When the initial concentration 
C0 is very small (Eq. 1), it can be simplified to (Eq. 2), and 
becomes a linear expression of time t with respect to Ln(C/
C0), here, kapp is reaction rate constant.

So as to confirm the speculation, − Ln(C/C0) was plotted 
as a function of the treatment time (irradiation time) for 
the photocatalytic decomposition and photolysis of metal-
axyl. Because the liner relations were obtained in Fig. 7b as 
expected, the reduction kinetics of photodegradation of 
metalaxyl could follow pseudo-first-order kinetics, the fact 

(1)r = −
dC

dt
=

kKC

1 + KC

(2)−Ln

(

C

C0

)

= kKt = kaapt

was consistent with the Langmuir–Hinshelwood model, 
resulting from the low coverage in the experimental con-
centration range (50 ppm). The pseudo-first-order reac-
tion rate constants for photocatalytic decomposition of 
metalaxyl was 0.105 min−1, and the half-life was 6.60 min. 
The kinetic studies confirmed that photocatalytic decom-
position of metalaxyl by TiO2 was effective because it pro-
ceeded by the photolysis reaction of metalaxyl.

3.8 � Mineralization

As shown in Fig. 7, metalaxyl completely decomposes in 
presence of TiO2 after 30 min of solar irradiation. Many 
intermediates of metalaxyl were detected in this degrada-
tion process. Therefore, it is necessary to examine the min-
eralization of metalaxyl. The photocatalytic mineralization 
of nitrogen containing organic compounds predominantly 
depends on the chemical nature of the organic pollutant, 
that is, the oxidation state and the position of nitrogen 
atoms in molecular chain [46, 47]. It has been reported that 
a complete oxidation of nitrate ions does not occur during 
the mineralization of organic compounds containing N. In 
the mineralization, ammonium ion can also be generated 
[48, 49]. Probably, ammonium ion, nitrate ion and CO2 can 
be considered as the mineralization product of metalaxyl. 
A hypothesized equation is shown here for total minerali-
zation reaction of metalaxyl solution with TiO2 nanoparti-
cles, assuming that the ammonium and nitrate ions were 
generated from nitrogen atom of metalaxyl. 

(3)2C15H21NO4 + 37O2 → NO−
3
+ NH+

4
+ 30CO2 + 19H2O
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Fig. 7   a Effect of irradiation time on the photocatalytic degradation of metalaxyl under solar irradiation; b Plot of − Ln(C/C0) versus irradia-
tion time. Metalaxyl: 50 ppm; TiO2: 20 mg; light intensity: 2.2 mW/cm2; pH 6 and temperature: 20 °C
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The amount of produced ammonium ion and nitrate ion 
from mineralization of nitrogen atom of metalaxyl, was 
investigated. The productions of nitrate and nitrite ions 
could not be confirmed by ion chromatography. The 
amount of produced ammonium ion was increased with 
the light irradiation time, and the total nitrogen yield 
became constant at about 86% after 6 h (Fig. 8a). It is con-
sidered that the remaining of nitrogen atoms (about 14%) 
may be converted into the nitrogen gas, thusly, the yield 
of total nitrogen was not 100%. The same type of result 
has been already reported in the photocatalytic degrada-
tion of other organic nitrogen compounds. Therefore, it 
was confirmed that the nitrogen atoms were almost min-
eralized under the solar irradiation. It is assumed that the 
ammonium ion could be generated when the intermediate 
products containing amino group (–NH2) are mineralized.

Generally, total organic carbon (TOC) indicates the 
amount of organic carbon dissolved in the aqueous solu-
tion. The decrease in TOC corresponds to the mineraliza-
tion of organic carbon compounds in the aqueous solu-
tion. Therefore, the change of TOC in aqueous solution 
was examined during the photocatalytic degradation of 
metalaxyl. The results are shown in Fig. 8b. The theoretical 
TOC value of a 50 ppm metalaxyl solution is 32.25 ppm. 
From Fig. 8b, TOC decreased with the light irradiation time, 
and reached about 10 ppm after 1.5 h. About 70% of TOC 
could be removed within 1.5 h of light irradiation time in 
the presence of TiO2. The results indicate that the dissolved 
organic carbon was mineralized into CO2 by photocatalytic 
decomposition. Because after 5 h of solar irradiation, about 
28% of TOC remained, the relatively stable intermediates 
may be formed during the photocatalytic treatment.

3.9 � Identification of the intermediate products 
of metalaxyl photocatalytic degradation 
under solar degradation

It was found that metalaxyl can be degraded and miner-
alized by the photocatalytic action of TiO2. On the other 
hand, the various intermediates may be generated before 
the mineralization. Therefore, the intermediates from of 
metalaxyl was identified using a gas chromatography-
mass spectrometer (GC–MS). The experimental conditions 
are given in supplementary information (Fig. S2). In the 
photocatalytic degradation, the reaction intermediates 
were extracted by solid phase extraction and analyzed 
by GC–MS. Five intermediate products has been identi-
fied by molecular ion and mass fragment peak and by 
comparing with GC/MS NIST library data. Based on the 
result obtained from GC–MS, the intermediate products 
are listed in Table 3. The intermediate products had more 
than 85% similarities for the NIST library data.

3.10 � A study on the probable mechanism 
of photocatalytic degradation of metalaxyl 
with TiO2

The photocatalytic degradation mechanism of metalaxyl is 
quite complex process. According to the present study and 
literature reports, the photocatalytic degradation mechanism 
of metalaxyl with TiO2 would be represented in Scheme 1. 
Most of the organic pollutants can degrade under sun light 
irradiation in presence of suitable metal oxide-based semi-
conductors. The nanosized TiO2 with the bandgap of 3.2 eV 
can efficiently absorb the photons with energy-greater than 
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Table 3   Intermediates 
obtained during the 
photodegradation of metalaxyl

Peak No.

Retention 

time

(min)

Molecular 

weight

(m/z)

Characteristic 

ions

(Abundance, %)
Intermediate

1

(Metalaxyl)
16.7 279

206(100)

160(93)

146(68)

2 12.8 163

121(100)

106(52)

163(31)

3 13.1 207

148(100

207(14)

4 14.1 193

148(100)

120(54)

193(50)
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6 18.5 295

250(100)

176(79)

222(61)

OH

N
R1

R2
H3C

CH3

N
H3C

CH3

R2
C

CH3O



Vol.:(0123456789)

SN Applied Sciences (2020) 2:925 | https://doi.org/10.1007/s42452-020-2722-3	 Research Article

the band-gap one, and can be excited to form electrons in 
the conduction band (CB) and holes in the valance band (VB) 
under the solar irradiation [50] (Eq. 4). The oxidizing species 
(such as H2O and OH−) can be reacted with the valence band 
holes, h+

VB, to form hydroxyl radical (·OH) (Eq. 5), and on the 
other hand, the conduction band electron can be trapped 
by reducing species (O2 and H2O2) from the reaction solution 
to generate mainly superoxide radicals (·O2

−) or hydroper-
oxyl radicals (·OOH) on TiO2 surface [51, 52] (Eqs. 5–8). These 
generated radicals can degrade metalaxyl into CO2 and other 
products in aqueous solution (Eq. 10).

(4)TiO2 + h� → e−
CB

+ h+
VB

According to the MOPAC simulation (Table 2), 1C, 2C, 3C, 
4C, 5C and 6C have comparatively higher frontier elec-
tron density. These sites would be attacked by neutral 

(5)h+
VB

+ OH−
(

orH2O
)

→ ⋅OH
(

+H+
)

(6)e−
CB

+ O2 → ⋅O−
2

(7)⋅O−
2
+ H+

→ ⋅OOH

(8)2 ⋅ OOH → H2O2 + O2

(9)H2O2 + e−
CB

→ ⋅OH + OH−

(10)⋅OH(or ⋅ OOH) +Metalaxyl →→ Intermediate Products → NH+
4
+ CO2 + H2O

Scheme 1   Probable pathways 
for the photocatalytic degrada-
tion of metalaxyl in presence 
of TiO2 under solar irradiation
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·OH radicals. Especially, because of the steric hindrance, 
1C, 2C and 6C could easily be attacked by ·OH radicals. 
Three probable degradation routes have been speculated 
roughly from the results of frontier electron calculations 
and the intermediate analysis. As a first route, hydroxyl 
radicals could attack the 1C, 2C or 6C of benzene ring, 
successively. Eventually, metalaxyl could be hydroxylated 
and can be converted into the intermediate 5 or its isomer. 
Thereafter, the benzene ring will be broken because of 
continuous attack of radical species. As the second route, 
C in alkyl group (R1) undergoes a radical attack and R1 
would be hydroxylated. Then, two intermediates, namely 
intermediate 4 and 6, are formed. The intermediate 4 
will be transformed into intermediate 3 by the attack of 
·OH. Then, alkyl group (R2) of intermediate 3 is subjected 
to a radical attack, and intermediate 3 is converted into 
intermediate 1. Finally, the intermediate is mineralized 
into CO2 and ammonium ion. As the third route, alkyl R2 
group would be attacked by ·OH, and the intermediate 2 
is generated during the photodegradation. Consequently, 
in every route the aromatic ring will be broken, and there-
fore, ammonium ion and CO2 will be observed as final min-
eralization product.

The photodegradation of metalaxyl involves mainly 
N-dealkylation and demethoxylation in addition to pro-
cess such as rearrangement of the N-acyl group to another 
position of the benzene and the elimination of the meth-
oxycarbonyl group and alanine methyl ester [53]. It is dif-
ficult to identify the aliphatic compounds formed from the 
benzene ring opening reaction by GC–MS analysis.

4 � Conclusion

The present study revealed that metalaxyl was photo-
catalytically degraded under sunlight. The photocatalytic 
action of TiO2 can be considered as an effective and simple 
method for the remediation of metalaxyl contamination 
in water. The optimum conditions such as photocatalyst 
dosage, initial pH, light intensity, reaction temperature 
and light irradiation time was evaluated from the solar 
photodegradation of metalaxyl. Typically, the most opti-
mal degradation conditions were photocatalyst dos-
age: 20 mg, temperature: 20 °C and pH: 6. The pseudo-
first-order reaction kinetics were determined according 
to Langmuir–Hinshelwood model, with a degradation 
rate constant of 0.105 min−1. The degradation of metal-
axyl using TiO2 is mainly an oxidative reaction by radical 
species such as hydroxyl radicals. Although metalaxyl is 
photo-degradable under sunlight, the addition of TiO2 
could immensely accelerate the degradation efficiency 
of metalaxyl. At the end of reaction, metalaxyl is almost 
mineralized, and ammonium ion and CO2 were found as 

final product. Hence, in the future, this research can be 
expected as a practical degradation and detoxification 
technology of metalaxyl.
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