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Abstract
Biodiesel is a renewable diesel fuel that can be burned in any unmodified diesel engine at any concentration. Biodiesel 
from Nodularia Spumigena microalgae produced by transesterification is used in the present study. Methyl esters of 
algae have been prepared after successful extraction of biomass in an open pond cultivation system. Biodiesel was 
blended with diesel fuel with the volumetric ratios of 10% (A10) and 20% (A20). The experiments were conducted on a 
constant speed (1500 rpm), 4-stroke diesel engine fitted with diesel particulate filter (DPF) at a fuel injection pressure 
of 180 bar. Methyl esters of Karanja oil, Rice Bran oil, and Castor oil were also tested in the same engine for comparison. 
BSFC values increased with increase in Biodiesel blend percentage in diesel. However, K20 and A20 showed fuel economy 
by 5.51% and 10.06% in comparison to diesel. The emissions of CO and HC with fuel A20 are decreased by 65.77% and 
53.33% respectively. The NOx emission showed an increasing trend with the blending of algae methyl esters in diesel. 
The presence of DPF is credited for significant reduction of PM emissions. The results predicted that the usage of algae 
blends could be supported, although there is a slight reduction in engine performance and an increase in NOx emissions.
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List of symbols
BSFC  Brake specific fuel consumption (kg/kw h)
DPF  Diesel particulate filter
CO  Carbon monoxide (%Volume)
BTE  Brake thermal efficiency (%)
HC  Hydrocarbons (PPM)
NOx  Emissions of nitrogen (PPM)
DI  Direct ignition
CA  Crank angle (°)
CV  Calorific value (kJ/kg)
ηv  Volumetric efficiency (%)
SOC  Start of combustion
Ea  Activation energy
CN  Cetane number
T
TC

  Charge temperature
T
i
  Initial temperature

rc  Compression ratio
PTC  Charge pressure
SOI  Start of ignition
EEA  European environment agency
KME  Karanja methyl ester
AME  Algae methyl ester
RME  Rice bran methyl ester
CME  Castor methyl ester

1 Introduction

Currently, global warming is one of the world’s biggest 
challenge. It has also contributed to unprecedented 
climate change, extirpated fuels and fossil energy sup-
plies [1–3]. The use of diesel engines has been expanded 
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globally as a consequence of rapid industrialisation [4]. 
The rise in amounts of nitrogen oxide (NOx) and PM emis-
sions have created serious climatic and health complica-
tions [5]. There is a need for safe and sustainable alterna-
tive resources for the production of energy [6–8]. Efforts of 
Researchers came out as the implementation of Biodiesels 
as a source to present engines to mitigate the ill effects of 
fossil fuels like diesel. Biodiesel is one such option which 
has properties close to diesel fuel [9–19]. This biodiesel, 
however, has the disadvantage of high viscosity and a 
lower heating value compared to neat Diesel [20]. The 
high viscosity of Biodiesel prevents its use directly in the 
DI engine as it triggers clogging of the injector and more 
considerable deposits in the cylinder [21, 22]. Many efforts 
were in place to produce a neat alternative to diesel fit-
ting the other renewable and environmental needs. The 
continuous efforts are needed to get the benefits of the 
fuel-based alternative for future generations of human-
kind. Present work is aligned with the ongoing research 
such as identification of new kinds of feedstocks to convert 
them into biofuels for use in the present engines.

1.1  Literature review

Biodiesel is a vegetable oil-based fuel containing long-
chain alkyl methyl esters. The method of making biodiesel 
from raw biological stock is known as transesterification 
[23–26]. The classification of biodiesel is generally made 
based on feedstock origin. The first generation Biodiesel 
produced from food crops, that is, edible biomass, such 
as wheat, barley, corn, coconut and sunflower [27]. Food 
sources are likely to be unsuitable owing to their base 
price and process of production [28–30]. The second-gen-
eration Biodiesel was synthesised from non-food crops, 
for example, Lignocellulosic material, Cassava, Jatropha, 
Miscanthus grass and several other organic species [29]. 
These crops require vast moist soil lands, and this made 
them difficult to cultivate. Third generation sources are 
aquatic biomasses such as algae [31, 32].

Algal are forms of aquatic plants with smooth stems 
with size variations from small to the meter in length. 
Growth of algae takes place because of Photosynthesis, 
algae stores the lipids as Tri Acyl Glycerides (TAG’s). Bio-
mass can be extracted from the optimal process, which is 
further converted to biodiesel through transesterification 
[33–40]. The amount of biomass to biodiesel conversion 
is meagre, owing to fewer quantities of biomass extracted 
from extensive quantity collection of algae source. The 
production of large quantities algae is, however possible 
in lakes (environment) rich in nitrogen to phosphorous 
ratio (N/P) with less cost of investment [41–43]. Algal are 
generally microalgae with size is less than 0.4 mm in diam-
eter. Three distinct kinds of algae are present viz. diatoms, 
green algae and golden algae. The microalgae yield fatty 
acids and lipids from their biological processes. The lipids 
are useful in storing energy in their cells [44]. Microalgae 
gained the attention for the production of Biodiesel due 
to an inflated production rate and large lipid yield nearly 
equal to 50–70% [45]. Biodiesel still is not economically 
competitive with diesel, taking into account of on-going 
research the studies on various algal organisms is appro-
priate for the use of algae in the current engines [41, 
46–50]. The authors have been motivated by the collected 
literature and aimed at working on making algae-based 
biodiesel as a substitute for diesel fuel.

The present work deals with the conversion of Nodu-
laria Spumigena algae into biomass, followed by its use in 
a diesel engine. The methyl esters of selected algae have 
been obtained through transesterification. Cultivation 
and growth of algae took place in both photo-bioreactor, 
followed by an open pond system. For comparison, the 
methyl esters of Karanja oil, Rice Brawn oil, and castor oil 
has were prepared and used for testing. The properties 
of these fuels are shown in Table 1. It was observed that 
the initial growth of pure Nodularia algae was slow in 
photo-bioreactor. However, the higher and considerable 
yield rates of mass were observed through an open pond 
system. The general parametric optimization techniques 

Table 1  The properties of the 
test fuels

Properties Unit Diesel KME AME RME CME

Density@25 °C Kg/m3 (ASTMD 1298) 830 885 795 889.9 978
CV kJ/kg (ASTM D420) 43,200 40,758 37,506 37,081 36,160
Viscosity@40 °C cST (ASTM D445) 2.78 5.12 4.84 5.45 2.40
Flash Point °C (ASTM D93) 76 161 130 124 235
Pour Point °C (ASTM D97) 3.11 5.12 − 2 − 9 − 4
Cetane value –(ASTM D613) 47 56.65 45 46 41
Sulfur content % w/w(ASME-0.0015) 0.012 0.002 0.080 0.009 0.013
Water content %w/w(ASTM-0.05 (max)) 0.0040 0.005 0.017 0.028 0.03
Cloud point °C (ASTM D-2500) − 3 to 12 6 4 7 8
Ash content % w/w(ASTM < 0.02) < 0.01 0.005 0.017 0.012 0.023
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were followed during the cultivation and extraction of 
algal biomass. The biomass extraction methods used have 
been natural and safe in the view of the current climatic 
conditions. The algae stains of good quantities have been 
collected from the geographical location of Guntur district 
(16.24 N 80.56 E), Andhra Pradesh, India.

2  The experimental setup and procedure

A single-cylinder 4-stroke direct ignition (DI) Diesel engine 
was selected. The engine was operated at a fixed speed 
of 1500 rpm throughout the tests. The reason behind the 
selection of these engines is the interest of farmers to pro-
duce power with local bio-diesels in rural India. The sche-
matic picture of the engine is presented in Fig. 1. The infor-
mation on the engine is given in Table 2. The fuel injection 
pressure has been used of 180 bar, and the experiments 
carried out at different loads. From the previous observa-
tions, it is found that with an increase in the injection pres-
sure, the engine performance slightly improves, however, 
the present tests are conducted at an injection pressure 
of 180 bar (The manufacturer’s suggestion) to ensure the 
better comparison of biodiesel mixtures with diesel. Gen-
erally blends of 20%, 10% are widely used by research-
ers and in this work to it was considered only 10%, 20% 
because mixing of biodiesel quantities higher than 20% 
leads to clogging of the fuel injector. The engine has the 
facility to use Diesel Particulate Filter (DPF), and the tests 
are conducted with and without DPF. The DPF is added to 
reduce PM emissions from the engine exhaust. The fuel 
injection pressure has been selected as 180 bar since the 
engine uses blends of biodiesel and diesel. However, the 
higher injection pressures also can be used to improve 

the performance of spray, which is less effective with bio-
diesel blends. The experiments were performed as con-
stant speed variable load tests. The exhaust emissions of 
the engine were measured using an AVL gas analyzer. The 
technical details on the gas analyzer are shown in Table 3.

Table 4 describes the uncertainty values of the instru-
ments used in the present experimental work. The over-
all percentage of the uncertainties of this experiment 
has been determined using the calculation to the square 
root of the uncertainty of TFC, BP, BSFC, BTE,  CO2, HC, 

Fig. 1  Schematic view of 
experimental engine

Table 2  The Test Engine Specifications

Engine Kirloskar, Single-Cylinder, Four-stroke,
Constant Speed − 1500 RPM,
Stroke 110.00(mm), Bore 87.50(mm),
Swept volume 661.45 (cc), Water Cooled,
Compression Ratio 17.50

Propeller Shaft With universal joints
Fuel Tank 15 lit Capacity with glass fuel calibration 

column
Air Box Orifice meter and Manometer (MS 

fabricated)
Temperature indicators Digital, multichannel with selector switch
Temperature Sensors Thermocouple, Type K
Dynamometer Type Eddy Current

Table 3  The standards of exhaust gas analyser

Parameter Manufacture Value Method of measurement

NOx AVL PPM Chemiluminescent
HC AVL PPM FID
CO AVL %Volume NDIR
Smoke AVL Percentage Opacity
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NOx, Smoke Number, EGT, the total percentage of pres-
sure [51].

The total percentage of uncertainties = √ {(0.1)2 + (0
.2)2 + (0.1)2 + (1)2 + (0.2)2 + (0.1)2 + (0.2)2 + (0.2)2 + (1.0)2 
+ (0.15)2 + (1.0)2} = ± 2%. The total share of uncertainty 
equals to ± 2% with the different instrumentation, test-
ing methods and the methodology adopted in this 
empirical work.

3  Results

The tests were carried out for testing diesel and bio-die-
sel performance and emission characteristics. The blend 
of 10% Karanja vegetable oil methyl ester with diesel is 
denoted as K10, and 20% is denoted as K20. Similarly, the 
other fuels are indicated, for example, algae methyl ester 
10%, 20% with diesel as A10, A20, Rice brawn oil methyl 
ester 10%, 20% with diesel as R10, R20 and Castor oil 10%, 
20% with diesel as C10, C20 respectively.

3.1  Brake thermal efficiency (BTE)

BTE defines the heat energy proportion of the fuel con-
verted into useful work, i.e. break power (BP). The results 
are shown in Fig. 2. BTE increases with load percentage, 
and all the fuels have shown a similar trend. The Blends of 
biodiesel and diesel showed lower values vowing to the 
fact of reduced calorific value. However, it can be demon-
strated that biodiesel blends can successfully manage the 
loss of energy due to blending if used on long intervals of 
time. BTE of diesel is 26.67% and the blends values 6.7%, 
0.95%, 7.82%, 2.01%, 8.6%, 3.02%, 9.61%, and 4.82%. It can 
be noted that K20 and A20 shown the best results.

3.2  Brake specific fuel consumption

The contrast of BSFC with the load is shown in Fig. 3. The 
trends of BTE can be correlated for understanding the 
fuel consumption patterns with different fuels. The BSFC 
decreases with the load till 12 kg and then maintained 
the same values with the further increase of the load. The 
downsizing of the engines is only possible with fuels of 
higher calorific values, yet biodiesel suffers in this point 
due to its high fuel consumption when its percentage 
increases in a blend. The obtained BSFC values in Kg/KW h 
are 0.308, 0.376, 0325, 0.398, 0.339, 0.418, 0.411 and 0.359 
respectively. Here K20 and A20 are comparable with neat 
Diesel.

3.3  Volumetric efficiency (ηv)

The trends of variation of ηv with load are displayed 
in Fig. 4. The volumetric efficiency decreases with the 
increase of load, as shown in the figure, due to the 

Table 4  The list of instruments 
with given values of 
uncertainties

Instruments Accuracy Range %uncertainties

Gas analyser ± 0.03% CO 0–10% ± 0.2
± 0.03% CO2 0–20% ± 0.13
± 15 ppm HC 0–20,000 ppm ± 0.2
± 20 ppm NOx 0–5000 ppm ± 0.2

Smoke meter ± 0.2 HSU 0–100 ± 1.0
Temperature indicator ± 1 °C 0–1200 °C ± 0.12
Stopwatch (digital) ± 0.2 s – ± 0.2
Pressure sensor ± 1 bar 0–110 bar ± 0.1
Crank angle encoder ± 1° – ± 0.2
Speed sensor (proximity type) ± 10 rpm 0–9999 rpm ± 1.0
Torque indicator ± 0.1 N m 0–100 Nm ± 0.2
Fuel flow rate indicator(digital) ± 0.02 kg/h 0–999 kg/h ± 0.13
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mixing of fresh air with unburnt gases. The ηv relay on 
the density of the gas in the cylinder, with the increase 
of temperature. Blends often show lower density due 
to the problem of mixture strength variation. There is 
no significant observation about drastic changes in 
density when the engine run with selected fuels. The 
volumetric efficiency for diesel and its blends K10, K20, 
A10, A20, R10, R20, C10, C20 are 84%, 82%, 79%, 81%, 
77%, 80%, 76%, 79% and 75% respectively at maximum 
load condition.

3.4  Emissions of carbon monoxide

Figure 5 illustrates the distinction of emissions of carbon 
monoxide with the load for cases (a) without DPF and (b) 
with DPF. Despite rising loads of biodiesel mixtures, the 
level of CO decreases. The emissions of CO followed the 
diminishing trend with the increase of the engine load. The 
emissions of CO are considerably reduced with the rise of 
biodiesel percentage in diesel. This is true for all blends, 
including A10, A20. At the maximum load, CO emissions 
are 0.26%, 0.13%, 0.035%, 0.15%, 0.068%, 0.18%, 0.19%, 
0.22% and 0.109% respectively. While using DPF the val-
ues are 0.101%, 0.026%, 0.105%, 0.042%, 0.119%, 0.061%, 
0.139% and 0.079% respectively. The reason assigned is 
effective oxidation.

3.5  Emissions of hydrocarbon

The emissions of HC with the load variation presented 
in the Fig. 6 for cases (a) without DPF and (b) with DPF. 
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With the increasing load, a substantial reduction in the 
HC emission found with an increasing blend ratio from 0 
to 20% of KME, AME, RME and CME blends. At maximum 
load condition, the emissions of HC for diesel and 20% 
biodiesel blends are 142 ppm, 100 ppm, 53 ppm, 111 ppm, 
66 ppm, 119 ppm, 79 ppm, 130 ppm and 88 ppm, respec-
tively. The reductions of HC emissions for biodiesel blends 
are indicating better combustion. With DPF, the values 
reduced with the increase in load for all blends. The val-
ues for above-said blends with DPF at full load are 82 ppm, 
35 ppm, 93 ppm, 47 ppm, 99 ppm, 55 ppm, 111 ppm and 
69 ppm respectively.

3.6  Emissions of NOx

The trends of NOx emissions for all the fuels shown in 
Fig. 7. At the maximum load, NOx emissions are higher. The 
NOx emissions are of serious concern in combustion sys-
tems since the emissions are due to high temperature. The 
mitigation of NOx is not possible by the usage of biofuels 

since there is no possibility of equivalent absorption of 
the same by the increased cultivation of vegetation or 
other sources. However, the use of algal biodiesel blends 
results in a slight increase in NOx emissions. At the maxi-
mum load, the values are 295 ppm, 671 ppm, 848 ppm, 
611 ppm, 802 ppm, 529 ppm, 764 ppm, and 727 ppm with-
out DPF and with DPF these values are 319 ppm, 702 ppm, 
891 ppm, 675 ppm, 834 ppm, 582 ppm, 796 ppm, 521 ppm, 
729 ppm. Because of the complete combustion of oxygen 
content in the plant oil, increases cylinder temperature.

3.7  Cylinder pressure

Figure 8 represents the disparity of the cylinder pressure 
with the crank angle at the full load. A peak value of pres-
sure obtained for diesel at the full load is 58.97 bar which 
occurred at a 378° crank angle. The peak values obtained 
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for K20, A20, R20 and C20 are 52.53, 51.99, 51.32 and 
50.86 bar at 376, 376.1, 375.4, and 375° respectively.

3.8  Net heat release rate

The heat release rate versus load (the full load) is pre-
sented in Fig. 9. Start of the ignition indicated by a steep 
rise which is in the first part of the graph. After the delay, 
the premixed phase with rapid combustion showed that 
air–fuel burns fast and to reach controlled combustion. 
The maximum heat of 59.56 J is released at a 367° crank 
angle for Diesel at the full load.

3.9  Ignition delay

Figure 10 presents the comparison of ignition delay values 
of different fuels. The ignition delay period is the time gap 
between the SOI and the SOC. Physical factors affecting 
delay are spraying formation, pressure and the tempera-
ture of charge. SOC has been noticed from the plot of cyl-
inder pressure data. The appropriate relations have been 
used to estimate the ignition delay, which is shown below. 
The activation energy  (Ea) derived for each blend based on 
the Cetane number.

For the fuels Diesel, A20, K20, C20, R20 and C10, the 
ignition delay has been estimated in milliseconds as 0.375, 
0.415, 0.36, 0.375, 0.355 and 0.37 respectively.

4  Discussion

The motivation of work is taken from the concept of ‘crea-
tion of sustainable and renewable sources of energy’. The 
present work links with the usage of available feedstocks 
to produce the biodiesel as per standards of ASTM. Many 
of the previous works have shown the methods for effec-
tive utilisation of biodiesel in diesel engines. The results 
of this work can be beneficial towards the exploration of 
local algal stocks for making of biodiesel. Similar works 
are being carried out by prospective authors focussing on 
the method of transesterification, growth characteristics 

E
a
=

618, 840

CN + 25
T
TC

= T
i
r
n−1

c
P
TC

= P
i
r
n

c

300 330 360 390 420 450
0

10

20

30

40

50

60

70
IC

P(
ba

r)

Crank Angle(deg)

 DIESEL
 K10
 K20
 A10
 A20
 R10
 R20
 C10
 C20

Fig. 8  The variation of in-cylinder pressures

350 360 370 380 390 400 410
0

10

20

30

40

50

60

70

N
H

R
R

(j/
de

g)

Crank Angle(deg)

 Diesel
 K10
 K20
 A10
 A20
 R10
 R20
 C10
 C20

Fig. 9  The net heat release rate variation with the crank revolution 
for the tested the crank angle for the different fuels tested blends 
of Diesel and pure Diesel

Diesel A20 K20 C20 R20 C10
0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

Ig
na

tio
n 

D
el

ay
 (m

s)

Fuel

 Ignation Delay (ms)

Fig. 10  Ignition delay in terms of crank angle for the diesel and 
blends



Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:858 | https://doi.org/10.1007/s42452-020-2697-0

of algal biomass, and evaluation of engine combustion 
parameters. The scope of the selected work and the 
methodologies adopted are in line with the quality works 
of previous researchers. There is a need for continuous 
exploration of available algal feedstocks which can be the 
best options for the next generations. Commercialization 
aspects can be considered once the fuel production with 
economised price and quality are ensured.

5  Conclusions

The performance, emission characteristics of a single-
cylinder 4-stroke DI diesel engine operated with diesel, 
biodiesel blends were investigated, and the findings of the 
experiments as follow.

1. The fuel blends K20 and A20 showed better combus-
tion efficiency as they are comparable with diesel.

2. BSFC values of K20 and A20 low by 5.51% and 10.06% 
in comparison to Diesel, whereas other blends have 
shown increased values of BSFC.

3. The Volumetric efficiency (ηv) decreases with the 
increase in load. The maximum value is obtained for 
Diesel, and the minimum value is with C20, which are 
84% and 75% respectively.

4. The CO emissions are found to be reduced with the 
increase of load. At the full load, K20 and A20 are 
found to have fewer values.

5. The HC emissions are reduced with blends of biodiesel, 
and the value is 47 ppm for blend A20.

6. NOx emissions are high with algae and other plant-
based biodiesel.

In conclusion, the emissions of CO and HC for biodiesel 
blends have been high, with a slight increase in NOx emis-
sion levels. The maximum NOx emission levels identified 
to be 891 ppm and 834 ppm for K20 and A20 with DPF for 
the value of 319 ppm of diesel fuel. K20 and A20 Biodiesel 
blends showed optimal performance in the complete 
testing for performance and emission characteristics. The 
selected locally available algae to stain Nodularia Spumi-
gena biodiesel blends A10 and A20 can be used in diesel 
engines.
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