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Abstract
SK-MEL-5 is a human melanoma cell line that has been used in several researches to explore new therapies against mela-
noma. Based on this study we report on the development of quantitative structure–activity relationship (QSAR) model 
and molecular docking simulation able to predict the cytotoxic effect of diverse chemical compounds on this cancer cell 
line. The dataset of seventy-two (72) cytotoxic compounds were downloaded from the National Cancer Institute database. 
It contains the data of compounds for which cytotoxicity results expressed by pGI50 was recorded. The QSAR model was 
built using fifty (50) compounds and the best-generated model based on multiple linear regression showed, respectively 
good quality of fits [ R2 (0.864), R2

adjusted
 (0.846), Q2

cv (0.841) and R2
pred

 (0.885)]. The model’s predictive ability was determined 
by a test set of twenty-two (22) compounds and the applicability domain was assessed through leveraged approach. 
Compounds 41 and 69 were selected as templates for in silico design because they had high pGI50 activity and are within 
the model’s applicability domain. The obtained information from the model was explored to design novel compounds 
by introducing various substituents. Moreover, the designed compounds were docked into the active site of the protein 
(PDB CODE: 3OG7) which is responsible for melanoma cancer to elucidate their binding mode. Ia (− 12.4 kcal mol−1) and 
IIb (− 12.3 kcal mol−1) showed a better binding affinity for the target when compared with (vemurafenib, − 11.3 kcal mol−1) 
the known inhibitor of the target (V600E-BRAF). These results may be of great help in early anticancer drug discovery.
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1  Introduction

SK-MEL-5 is a human melanoma cell line derived from a 
metastatic axillary node of a young female patient, and is 
characterized by a high level of expression of the V600E 
mutation of BRAF and the wild-type NRAS [1], as well 
as by relatively high levels of the ABCB1 transcript [2]. It 
has been used in various studies to explore new thera-
pies against melanoma in various in vitro experiments 
[3, 4]. Several potent drugs are now available in clinical 
trials against melanoma including kinase inhibitors with 
different degree of success. Sorafenib one of the multi-
kinase inhibitor, which inhibit EGFR tyrosine receptor 

kinase, BRAF serine and threonine kinase [5]. vemurafenib 
(Zelboraf 1), a more distinct BRAF inhibitor was approved 
in 2011 by the FDA for melanoma (metastatic) [6]. How-
ever, Treatment with the use of BRAF inhibitors can result 
in the development of inhibitor (drug) resistance which 
restrict their usage [7]. Melanoma is a dangerous form 
of cancer that has a very bad prognosis and is resistant 
to many standard anti-cancer therapies, this helps these 
cancer cells to evade the immune system [8]. For example, 
majority of patients that were administered vemurafenib 
(standard V600E-BRAF inhibitor) eventually develop resist-
ance towards it. Therefore, there is a need to develop 
new potent drugs that targets melanoma and several 
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techniques are being used from exploring better delivery 
system for an old compounds to assessing new targets 
[9, 10].

For new drugs to be available for commercialization, 
requires a long period of about twelve (12) years and the 
estimated cost for the marketed drug is also very high 
[11, 12]. This lengthy and expensive processes may cause 
delays and failure of the drugs development. Therefore, it 
is very vital to predict the failures before the clinical stage 
to reduce the costs of drug development [13]. To filter 
out the potential failures in the drug development stage, 
several methods are being used such as in silico, in vitro, 
etc. An example of an in silico approach is the modeling 
of a quantitative structure activity relationships (QSARs) 
that can be used to screen chemical libraries, understand 
drugs action and design novel compounds [14, 15]. Com-
binatorial approaches are an influential technique used in 
the selection to speed up drug discovery and with various 
mechanisms of action and it has being used to cure cancer 
[16, 17]. QSAR modeling has become very crucial in the 
molecular interpretation of biological and physicochemi-
cal properties [18, 19]. This method is the most essential 
tool adopted in ligand-based drug design and have been 
used broadly for the determination of assorted proper-
ties like stability, carcinogenicity, toxicity, ADME, retention 
time and other physicochemical properties apart from bio-
logical activity prediction [20–24].

It is, therefore, necessary to construct a QSAR model 
for the prediction of the activity of the designed leads 
before their synthesis. Because a successful QSAR model 
not only helps in understanding relationships between the 
structural features and biological activity of any class of 
compounds but also provides researchers a deep analysis 
of the lead compounds to be used in further studies [13]. 
Furthermore, understanding the mechanism of the ligand/
receptor interactions is very significant in drug develop-
ment, and the molecular docking simulation method is 
a proper tool for gaining such understanding. Molecular 
docking simulation is a computational technique used to 
predict the binding ability of the active site residues to 
specific groups on the receptor and to reveal the strength 
of interaction [25]. Molecular docking is a very useful and 
popular tool used in the drug discovery arena to evaluate 
the binding of small molecules (inhibitors) to the receptor 
(macromolecule) [26, 27]. This study was aimed to design 
new potent compounds on the SK-MEL-5 cell line through 
QSAR modeling and molecular docking simulations meth-
ods based on the compounds collected from the National 
Cancer Institute (NCI).

2 � Computational methods

2.1 � Data collection and structure preparation

Seventy two (72) set of compounds and their pGI50 activi-
ties on SK-MEL-5 melanoma cell line was retrieved from 
the drug discovery and development arm of the National 
Cancer Institute (NCI) database, which is openly available to 
the general public on the DTP Web site (https​://wiki.nci.nih.
gov/displ​ay/NCIDT​Pdata​/NCI-60+Growt​h+Inhib​ition​+Data). 
The anticancer activity, chemical name and NSC number of 
the studied compounds are presented in Table 1. The 2D 
structure of the studied compounds was transformed into 
the 3D structure using Spartan 14 on a Dell Intel(R)Core(TM)
i7-5500U CPU), 16.00 GB RAM @ 2.400 GHz 2.400 GHz pro-
cessor, 64-bit Operating system, a × 64-based processor on 
Windows 8.1 Pro). Geometry optimizations were conducted 
with Spartan 14 using Density Functional Theory (DFT) at 
the Becke88 three-parameter hybrid exchange potentials 
with Lee–Yang–Parr correlation potential (B3LYP) level of 
theory and 6-31G* basis set, the double zeta basis set with 
two polarized basis functions (d- and p- orbitals), where a 
d type orbital was added to all atoms except the hydrogen 
atoms, and a p type orbital was added to all hydrogen atoms.

2.2 � Descriptors calculation and scaling

The fully optimized 3D structure in SD file were imported 
to paDEL descriptor tool kit [28, 29], in order to compute 
various molecular descriptors (1D, 2D and 3D descriptors) 
such as atom-type electrotopological state descriptors, 
2D-Autocorrelations, WHIM, Petitjean shape index, count 
of chemical substructures and binary fingerprints of chemi-
cal substructures for each molecules and these descriptors 
were considered as possible input candidates to the model. 
The calculated descriptors and their corresponding activity 
values for each molecule were arranged in an n × m matrix 
format. This constituted the dataset, n is the number of mol-
ecule and m is the number of descriptors.

Descriptors are usually measured in different units and 
data modeling often favors data with higher absolute value. 
To minimize this bias and assign equal weight, importance 
and opportunity to each descriptor to be part of the final 
equation, descriptors values are usually scaled such that 
each descriptor column have equal variance [30]. Molecu-
lar descriptors in the study were scaled via auto-scaling 
approach:

(1)X � =

(

Xi − X
)

σ

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
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Table 1   NSC numbers, chemical names, experimental and predicted pGI50 of the dataset with residual

S/N NSC Chemical name pGI50 pGI50 (Pred.) Residuals

1t 267,469 Deoxydoxorubicin 7.602 7.175 0.427
2 269,148 Menogaril 6.048 6.442 − 0.394
3 268,242 N,N-Dibenzyldaunorubicin Hydrochloride 8.000 8.182 − 0.182
4 126,771 Dichloroallyl lawsone 5.083 4.966 0.117
5 136,044 Rhodomycin A 7.491 6.904 0.587
6 140,377 Arnebin 1 6.054 6.641 − 0.587
7 196,524 epsilon.-Rhodomycinone 5.736 6.122 − 0.386
8t 212,509 4beta-Hydroxywithanolide 6.383 6.479 − 0.096
9 215,139 Bikaverin 5.999 6.317 − 0.318
10t 236,613 Plumbagin 5.790 5.432 0.358
11 252,844 Shikalkin 6.522 5.858 0.664
12 257,450 Dermocybin 4.525 5.327 − 0.802
13 143,095 Pyrozofurin 4.192 4.327 − 0.135
14t 629,971 9-Aminocamptothecin (R,S) 7.594 7.487 0.107
15 606,173 11-Hydroxymethyl-20(RS)-camptothecin 5.511 6.623 − 1.112
16 364,830 Camptothecin, N-Diethyl) Glycinate 7.504 7.458 0.046
17 94,600 Camptothecin 7.561 6.569 0.992
18t 606,985 Campothecin analog 7.728 7.273 0.455
19 606,499 Camptothecin butylglycinate ester hydrochloride 6.558 7.505 − 0.947
20 606,497 Camptothecinethylglycinate esterhydrochloride 6.574 7.072 − 0.498
21 176,323 9-Methoxycamptothecin 7.641 6.673 0.968
22 3088 Chlorambucil 4.692 5.620 − 0.928
23 338,947 Clomesone 3.705 3.782 − 0.077
24 95,678 Picolinaldehyde 5.690 4.905 0.785
25 264,880 Dihydro-5-azacytidine 4.394 4.301 0.093
26 163,501 Acivicin 5.070 4.919 0.151
27t 71,851 alpha.-Thiodeoxyguanosine 3.685 4.372 − 0.687
28t 132,483 l-Aspartic acid 6.829 6.518 0.311
29t 308,847 Amonafide 5.531 5.811 − 0.280
30 355,644 Anthra[1,9-cd]pyrazol-6(2H)-one der 9.000 7.464 1.536
31 63,878 Cytosine, monohydrochloride 6.341 4.431 1.910
32t 182,986 Diaziquone 5.414 5.496 − 0.082
33t 139,105 Triazinate 7.170 7.450 − 0.280
34 409,962 Carmustine 4.068 3.671 0.397
35 337,766 Bisantrene hydrochloride 8.000 8.255 − 0.255
36 750 Busulfan 3.641 3.568 0.073
37t 95,382 Camptothecin, acetate 5.910 6.031 − 0.121
38t 107,124 10-Hydroxycamptothecin 7.670 7.197 0.473
39 79,037 Lomustine 4.639 4.484 0.155
40 132,313 Dianhydrodulcitol 4.335 4.957 − 0.622
41 376,128 AC1L2OAS 10.600 10.680 − 0.080
42 73,754 Fluorodopan 3.673 3.720 − 0.047
43 148,958 Uracil 3.047 3.670 − 0.623
44 1895 Guanazole 2.365 2.535 − 0.170
45 329,680 Hepsulfam 3.496 3.627 − 0.131
46t 142,982 Hycanthone mesylate 5.418 6.237 − 0.819
47 32,065 Hydroxyurea 3.244 3.266 − 0.022
48 153,353 Alanosine monosodium salt 5.882 5.748 0.134
49 249,992 Amsacrine 6.478 6.336 0.142
50t 740 Methotrexate 7.024 7.221 − 0.197
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where X′ is the standardized descriptor values, Xi is the 
value of each descriptor for a given molecule, X  and σ are 
the average and standard deviation value for each column 
of descriptors X respectively. For this purpose, all descrip-
tors variables with constant or near constant values were 
removed and features containing missing values were also 
removed, because it is likely that for virtual screening pur-
poses models built with such features will not be applica-
ble for a part of the new compounds. Features highly cor-
related were also removed, using a threshold value of the 
coefficient correlation of 0.80 to reduce the redundancy 
in the data.

2.3 � Data division and variable selection

The data set was splits into two subsets, the training set 
and test set using Kennard-Stone Algorithm [31, 32]. The 
training set is used in building the QSAR model which con-
tains 70% of the data and the remaining 30% is for the test 
set that was used to describe the predictive ability of the 
model [33]. All the studied compounds was screened using 
the generated QSAR model for pGI50 activity prediction.

Material Studio Software 8.0 from BIOVIA-Accelrys, USA 
was adopted in performing GA and model building. The 

genetic algorithm (GA) was utilized in the selection of 
proper descriptors as this improves the model accuracy 
[34]. The Genetic algorithm method (GA) begins with the 
formation of a populace of randomly produced param-
eter sets. The probability of a given parameter from the 
active set is 0.5 in any of the initial population sets. The 
parameter set used for the GA incorporates the bounda-
ries for mutation (0.1), hybrid (0.9), population (10,000), 
number of model generation (1000), R2 floor limit (50%), 
and target capacity (R2/N_par). The making of a successive 
generation includes crossovers between set substances 
and additionally changes. The calculation keeps running 
until the wanted number of generations is achieved. Equa-
tions were generated between the experimental biological 
activity and the descriptors. The best mathematical state-
ment was taken in light of statistical parameters such as 
squared regression coefficient (R2) and leave-one-out 
cross validated regression coefficient (Q2cv).

2.4 � QSAR model development and validation

Multiple Linear Regression (MLR) was used on the training 
set to determine the correlation between the dependent 
variable Y (pGI50) and independent variable, X (molecular 

‘t’ represents test sets

‘*’Identified compounds found outside the applicability domain of the QSAR model

Table 1   (continued)

S/N NSC Chemical name pGI50 pGI50 (Pred.) Residuals

51t 95,441 Semustine 4.526 4.766 − 0.240
52t 26,980 Mitomycin C 6.396 6.376 0.020
53 353,451 Mitozolomide 4.000 4.700 − 0.700
54t 268,242 N,N-Dibenzyldaunorubicin hydrochloride 5.756 6.235 − 0.479
55t 95,466 Urea 3.789 3.897 − 0.108
56 25,154 Pipobroman 4.173 5.150 − 0.977
57 56,410 Profiromycin 5.699 5.964 − 0.265
58t 366,140 Pyrazoloacridine mesylate 6.261 6.466 − 0.205
59 51,143 Pyrazoloimidazole 3.034 2.998 0.036
60t 172,112 Spiromustine 3.692 2.711 0.981
61 125,973 Paclitaxel 7.879 7.174 0.705
62 296,934 Teroxirone 4.561 4.582 − 0.021
63t 363,812 5-((4-chlorobenzyl)thio)-3-(trifluoromethyl)-1H-1,2,4-triazole 6.370 5.959 0.411
64 361,792 3-Demethylthiocolchicine; 7.810 7.200 0.610
65 752 6-Thioguanine 5.571 5.715 − 0.144
66 6396 Thiotepa 4.702 4.758 − 0.056
67 9,706 Triethylenemelamine 5.195 5.120 0.075
68t 83,265 Tritylcysteine 6.220 5.667 0.553
69 49,842 Vinblastine sulfate 9.392 9.322 0.070
70 67,574 Vincristine sulfate 6.953 8.541 − 1.588
71 757 Colchicine 8.742 7.093 1.649
72 33,410 N-Benzoyl-deacetylcolchicine 7.969 8.097 − 0.128
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descriptors). In this regression analysis, the contin-
gent mean of the dependent variable (pGI50) Y relies on 
(descriptors) X. The best QSAR model was chosen based 
on the validation parameters such as the correlation coef-
ficient (R2), Adjusted R2 (R2

adj), Cross-validation coefficient 
(Q2

CV) and correlation coefficient for an external prediction 
set (R2

pred) all are represented in Eqs. (2–5):

where P is the number of descriptors in the model and, 
N is the sample size. Yexp; Ypred; Ymtraining is the activity 
(experimental), the activity (predicted) and the mean 
activity (experimental) of the compounds in the training 
set, respectively [33].

Further, in order to assess the robustness of the built 
model, the Y-randomization test was applied to the 
training data set as suggested by Tropsha et al. [33]. The 
dependent variable vector (activity data) was randomly 
shuffled and a new QSAR model was developed using the 
original independent variable matrix. For the built QSAR 
model to robust and reliable, the model is expected to 
have a low R2 and Q2 values for several trials. The coeffi-
cient of determination cR2

p for Y-randomization is another 
parameter calculated which should be greater than 0.5 for 
passing this test as in Eq. (6):

cR2
p is Coefficient of determination for Y-randomization, 

R is the coefficient of determination for Y-randomization 
and Rr is average ‘R’ of random models.

(2)R2 = 1 −

∑
�

Yexp − Ypred
�2

∑
�

Yexp − Ymtraining

�2

(3)R2
adj

= 1 −
(

1 − R2
) N − 1

N − P − 1
=

(N − 1)R2 − P

N − P + 1

(4)Q2
CV

= 1 −

∑
�

Ypred − Yexp
�

∑
�

Yexp − Ymtraining

�

(5)R2
pred

= 1 −

∑
�

Ypred − Yexp
�

∑
�

Yexp − Ymntrng

�

(6)cR2
p
= R ×

[

R2 − R2
r

]2

2.5 � Ligand–protein preparation and docking 
studies

The selected ligands (compounds) were optimized and 
formatted to PDB files for docking utilizing Spartan 14. 
The X-ray structure of the V600E-BRAF kinase (receptor) in 
complex with PLX4032 (PDB CODE: 3OG7) [25, 35, 36] was 
retrieved from (www.rcsb.org). V600E-BRAF was imported 
into the Discovery studio and the PDB file was prepared 
by updating the hydrogen atoms and removing the excess 
water molecules present in the X-ray structure. This com-
plex structure comprises of two homo-dimeric chains (A 
and B). Our goal was to target the mutated chain (chain A) 
of V600E-BRAF. Thus, chain B was removed from the struc-
ture of 3OG7 and the bound ligand also removed from 
chain A. All the compounds (ligands) were docked into the 
active kinase domain of V600E-BRAF using Autodock vina 
of Pyrx docking program software.

3 � Results and discussion

3.1 � QSAR model and validation

By using pGI50 values (activity) as dependent variables and 
calculated descriptors as independent variables, Kennard 
stone algorithm was applied in dividing the data set into 
two subsets, i.e., fifty compounds (50) as training set while 
twenty-two (22) compounds as the test set as presented 
in Table 1 and regression were executed for QSAR analysis. 
Robustness of generated QSAR model was depicted by 
the activity interactive graph which shows the predicted 
against experimental activity plot as in Fig. 1. The QSAR 
model is represented by Eq. (7):

(7)
pGI50(��−���−5) = −2.730089841

(

��1���
)

− 3.031083345
(

�����4���
)

− 1.617439631
(

�����5���
)

− 3.341615552
(

�����2���
)

+ 0.105873113(����3) + 7.388431638(
��
��	) − 14.4613

Fig. 1   The predicted pGI50 against the experimental values for the 
training and test sets

http://www.rcsb.org


Vol:.(1234567890)

Research Article	 SN Applied Sciences (2020) 2:815 | https://doi.org/10.1007/s42452-020-2620-8

Further, the generated QSAR model has achieved 
high activity-descriptors relationship accuracy of 86.4% 
as shown by regression-coefficient (R2 = 0.864) and a 
high activity prediction accuracy of 84.1% as shown by 
the cross-validation regression-coefficient (Q2 = 0.841). 
Knowing the high predictive and descriptive ability, the 
generated model was considered to be highly robust for 
the prediction of anti-melanoma activity of these com-
pounds against the SK-MEL-5 melanoma cancer cell line.

The developed model, which was built based on the 
training set compounds, was used to predict the activ-
ity of the test set of compounds. The predicted activi-
ties of the studied compounds for SK-MEL-5 cell line 
by the built QSAR model are shown in Table 1. Lower 
residual values found from both the training and test set 
as shown in Table 1 indicate that the model has a high 
potential to establish the correlation between the activ-
ity and structure. The correlation between the experi-
mental and predicted activity based on the model was 
highly significant as indicated by statistical analysis. The 
closeness of regression-coefficient (R2) to 1.0 indicates 
that the developed model elaborated very high por-
tion of the descriptor variation high enough for a good 
model. The 0.864 value demonstrates that 86.4% of the 
variation is found within the residual meaning that the 
model is very good.

Ntraining = 50, R2 = 0.864, R2
adjusted.

= 0.846,Q2

cv.
= 0.841,Ntest = 22, R2

pred
= 0.885

The large adjusted regression-coefficient R2 (R2
adj) 

value as presented in the generated model and its close-
ness to the value of regression-coefficient (R2) indicates 
that the model has perfect descriptive power to the 
descriptors in it and it also illustrates the real influence 
of used descriptors on the pGI50. Additionally, the high 
value and closeness of cross-validated regression-coeffi-
cient (Q2

cv) to the regression-coefficient (R2) showed that 
the model was not over-fitted. The high R2

pred as shown 
in the model explains that the generated model can pro-
vide good and valid predictions for the new compounds. 
A good and acceptable QSAR model must obey the fol-
lowing criteria: regression-coefficient (R2) and adjusted 
regression-coefficient (R2adj) values close to one. The 
Cross validated regression-coefficient (Q2

cv) > 0.5, 
R2 − Q2

cv ≤ 0.3, R2
pred ≥ 0.6, and Ntest ≥ 5 [33, 37, 38]. The 

generated QSAR model satisfied the criteria and there-
fore acceptable statistically. Thus, we can conclude with 
confidence that the model will correctly predict the anti-
melanoma pGI50 activity of a given compound.

Additionally, in order to assess the robustness of the 
model, the Y-randomization test was applied. The depend-
ent variable vector (inhibitory activity) was randomly 
shuffled and a new QSAR model was developed using the 
original independent variable matrix. As was expected the 
new QSAR models (after several repetitions) have low R2 
and Q2 values and also, the cR2

p value was greater than 0.5 
as presented in Table 2. This test affirms that the proposed 
model is powerful and not inferred by chance.

3.2 � Contribution and interpretation of descriptors

Molecular descriptors are the physicochemical and 
structural information in the form of numerical values, 
each descriptor represents specific information that can 
be implored to improve the overall biological effect of 
a compound. By interpreting descriptors that appear in 
the model, it is possible to understand the factors which 
are related to the anti-melanoma activity. Therefore, brief 
descriptions of the selected descriptors are presented in 
Table 3 and an acceptable interpretation is provided. The 
contribution and significance of each descriptor in the 
built model were evaluated by the calculation of the mean 
effect (ME) value [39] of each descriptor by using Eq. (8) 
and the values for the ME are shown in Table 3:

(8)MEj =
�j
∑i=n

i=1
dij

∑m

j
�j
∑n

i
dij

Table 2   R2 and Q2 values after several Y-randomization test

Model R R2 Q2

Original 0.86700252 0.7638725 0.5716280
Random 1 0.47831891 0.2431266 0.0513103
Random 2 0.2681163 0.0680352 − 0.308093
Random 3 0.57862867 0.3247749 0.1274085
Random 4 0.40853890 0.1676204 − 0.0735130
Random 5 0.36142706 0.1324009 − 0.1243778
Random 6 0.44682634 0.1908043 − 0.009876
Random 7 0.34500892 0.112896 − 0.2815191
Random 8 0.46496064 0.2156865 − 0.0246068
Random 9 0.3491455 0.1320206 − 0.0620676
Random 10 0.2649312 0.0685085 − 0.2037867
Random Models 

Parameters
Average r: 0.39439365
Average r2: 0.16441731
Average Q2: − 0.09058471
cR2

p: 0.6838153
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where MEj is the mean effect (ME) of the descriptor j, βj 
represents the coefficient of the descriptor j, dij represents 
the value of the selected descriptors of each compound 
and m is the total number of the descriptors in the gener-
ated model.

The ME value indicates the significance of each descrip-
tor when compare to the other descriptors. Descriptors 
found to have high ME values influences anti-melanoma 
activity (pGI50). The pGI50 changes with the ME values of 
a descriptor, as presented in Table 3. According to ME 
values, the selected descriptors were arranged in order 
about their contribution towards overall pGI50 of the 
compounds, in the following increasing order of pGI50 of 
compounds. Based on ME values, the associated descrip-
tors are arranged in a sequence about their contributions 
towards the overall pGI50 of the studied compounds an 
increasing sequence of pGI50 of the compounds.

SM1_Dze is defined as Spectral moment of order 1 
from Barysz matrix/weighted by Sanderson electronega-
tivities. The negative ME value of the descriptor (Table 3) 
shows that the decrease in the value of this descriptor 
will increase the pGI50 of the compounds. SpMax4_Bhv 
is defined as the largest absolute eigenvalue of Burden 
modified matrix—n 4/weighted by relative van der Waals 
volumes. The SpMax4_Bhv ME has a negative sign. Nega-
tive contribution of SpMax4_Bhv indicates that inhibi-
tory activity of the studied compound will increase with 
decrease of molecular descriptor.

SpMin5_Bhi a Burden modified eigenvalue descriptor 
is defined as the Smallest absolute eigenvalue of Burden 
modified matrix—n 5/weighted by relative first ionization 
potential. It is related to ionization potential of the com-
pound. The ME of this descriptor was found to be -0.07565. 
Its negative sign suggest that decrease in the overall ioni-
zation potential of the compound increases the pGI50 val-
ues of the compounds. SpMin2_Bhs is the smallest abso-
lute eigenvalue of Burden modified matrix—n 2/weighted 
by relative I-state. SpMin2_Bhs also has a negative mean 

������� > ����� > ������_��� >

��
_��� > �����
_��	 > ������_���

effect value which suggests that the decrease of value for 
this descriptor will increase the anti-melanoma activity of 
a molecule. The SpMin5_Bhi has a negative mean effect 
(Table 3) and its decrease may improve the pGI50 activity.

Kier3 is defined as the Third kappa (κ) shape index and 
it has a positive ME value as shown in Table 3. This positive 
sign indicates the influence towards increasing the overall 
activity of the compounds when the value of this descrip-
tor increases. vAdjMat (Vertex adjacency information 
(magnitude)) descriptor is the most significant descriptor 
in the model, with its ME 1.969472 as reported in Table 3. 
The mean effect of vAdjMat was found to positively influ-
ence the pGI50 activity of the compounds when increased. 
The descriptors selected for building the model in this 
research encoded electronic, topological and other geo-
metrical aspects of the compounds. The presence of these 
descriptors in the QSAR model indicates the role of steric 
and electronic interactions in inducing anti-melanoma 
pGI50 activity on SK-MEL-5 cell line.

3.3 � Applicability domain (AD) and in‑silico 
screening

The applicability domain, AD of the QSAR model is the 
theoretical space in the chemical region comprising of 
both the descriptors of the model and modeled response. 
This domain permits prediction of uncertainty in the iden-
tification of a particular compound based on the data set 
of compounds used in the development of the model. 
The AD is also used to define the X-outliers in case of the 
training set and identify the molecules residing outside 
the defined AD in case of the test set utilizing the basic 
theory of standardization approach [38]. Several tech-
niques had been used to define AD of QSAR models [40]. 
The commonly used one was demonstrated by Gramatica 
[41], which employed the leverages for each of the com-
pound of the data set. The leveraged approach enables the 
evaluation of the position of a new compound in a QSAR 
model [41]. Therefore, Leverage method is utilized and is 
shown as hi in Eq. (9):

Table 3   Specification of entered descriptors and their mean effect (ME)

Descriptors Description ME

SM1_Dze Spectral moment of order 1 from Barysz matrix / weighted by Sanderson electronegativities − 0.21559
SpMax4_Bhv Largest absolute eigenvalue of Burden modified matrix—n 4 / weighted by relative van der Waals volumes − 0.4454
SpMin5_Bhi Smallest absolute eigenvalue of Burden modified matrix—n 5 / weighted by relative first ionization potential − 0.07565
SpMin2_Bhs Smallest absolute eigenvalue of Burden modified matrix—n 2 / weighted by relative I-state − 0.25691
Kier3 Third kappa (κ) shape index 0.024072
vAdjMat Vertex adjacency information (magnitude) 1.969472
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where x: represents the descriptor’s vector of the selected 
compound, X: refers to the descriptor matrix obtained 
from the training data set descriptor values and the h* 
(warning leverage) was calculated as in Eq. (10):

where N represents the number of the training set com-
pounds and prefers to the number of the descriptors in 
the built model.

The defined AD was then visualized with a Williams 
plot. The plot of standardized residuals versus the lever-
age values (h). A molecule with hi > h* seriously influences 

(9)hi = xi(X
TX )−1xT

i

(10)h∗ =
3(p + 1)

N

the QSAR model performance and can be eliminated from 
the AD. Further, ± 3 value range of standardized residuals 
is always used as a threshold value for accepting predic-
tions of a molecule, because points that lie within ± 3 of 
standardized residuals from the mean cover 99% of the 
normally distributed data [42]. In this regard, the lever-
age and the standardized residuals were combined for the 
determination and characterization of the AD. The Williams 
plot for the constructed QSAR model is presented in Fig. 2. 
The h* (warning leverage), was found to be 0.420 for the 
built QSAR model. According to the leverages (hi > 0.420), 
only two (2) training set compounds (45 and 47) and four 
(4) test set compounds (32, 54, 60 and 68) were found to 
be out of the defined AD (Fig. 2) of the constructed QSAR 
model, so, they were recognized as structurally influential 
compounds based on their large leverage values (hi > h*).

3.4 � Molecular design and docking simulation 
studies

Compound 41 and 69 were selected as the templates due 
to their high activities (pGI50), low residual values as pre-
sented in Table 1 and were found to be within the model’s 
defined Applicability domain, this propose the possibility 
of improving the activity of the molecules by introduc-
ing some new substituents. The selected templates were 
docked and the best docking results were − 7.0 kcal mol−1 
and − 7.3kcalmol−1 respectively. A library of substituent 
was imputed into the main structure of the selected com-
pounds at appropriate positions and were docked within 
the binding site of the receptor so as to assess the chemi-
cal behavior the new structures.Fig. 2   The Williams plot, the plot of the standardized residuals ver-

sus the leverage value

Fig. 3   Design of new scaffolds 
from the template (Compound 
41) and Predicted activity 
(pGI50) with Leverage limit (h)
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Four novel compounds with similar structural profiles to 
the templates (Compound 41 and 69) were designed. The 
main strategies of the molecular modification in design of 
these new scaffolds were introduction of new substituent 
groups and adjustment the possibility of steric and elec-
trostatic functionality and this changes can easily be done 
around the benzene ring moiety of the main structures. 
The structure of the templates used for modifications were 
presented in Figs. 3 and 4 respectively. The structures were 
altered in a careful way that can make the synthesis possi-
ble experimentally. A group of substituents were selected 
and added to the main structure of the templates (com-
pound 41 and 69) at the benzene ring moiety as shown in 
Figs. 3 and 4 respectively. This group have some important 
features as hydrophobicity were increased.

In compound Ia we replaced the two “H” atoms of the 
benzene ring with “NH2” and “NHSO2CH3” groups as it sup-
ports the steric and hydrophobic prediction. In compound 
IIa we introduced “NH2” and “Cl” to replace “H” atoms from 
the benzene ring and “NH2” group at thiazole moiety to 
replace “H” atom which give better result. In compound Ib 
we replaced the two “H” atoms of the benzene ring with 
“Cl” and “NH2” groups. In compound IIb we introduced 
“Cl” and “NO2” to replace “H” from the benzene ring. All 
the designed compounds showed excellent predicted 
activity (Figs. 3 and 4) with respect to the templates used. 
Before the prediction of the pGI50 activity values of newly 
designed compounds by the developed model, their 

geometry has been optimized, descriptors computed 
and their leverages determined as explained for the 
training set. The warning leverage (limit) for the model 
(h*  = 0.420) was used as the threshold value to screen 
the designed compounds. The positive leverage value of 
a molecule indicates that the compound was within the 
model AD and that the predicted pGI50 activity values by 
the developed model were reliable [43]. The pGI50 values 
of all the designed compounds were better than the lead 
compounds used for the design and out of which com-
pound IIa has the best pGI50 activity (12.32). Therefore, it 
is observed that using a QSAR model, there is a chance to 
simultaneously identify and predict compounds with bet-
ter activity and to evaluate which of the structural changes 
do not fall within the defined AD.

The designed anti-melanoma agents were evaluated 
for ADME properties and drug-likeness using SwissADME 
a free web tool used in evaluating ADME properties and 
drug-likeness of small molecules [44]. The Lipinski’s rule of 

Fig. 4   Design of new scaffolds 
from the template (Compound 
69) and Predicted activity 
(pGI50) with Leverage limit (h)

Table 4   Drug-likeness properties

S/N MW nHBD nHBA WLOGP TPSA (Å2)

Ia 893.21 4 10 4.34 242.22
IIa 849.57 4 8 4.32 213.69
Ib 860.43 4 11 3.09 180.12
IIb 890.42 3 13 3.41 199.92
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five is useful at pre-clinical stage of drug discovery which 
state that if any chemical violate more than 2 of these cri-
teria (Molecular weight ˂ 500, Number of hydrogen bond 
donors (nHBD) ≤ 5, Number of hydrogen bond acceptors 
(nHBA) ≤ 10, Calculated Log p ≤ 5 and Polar surface area 
(PSA) ˂ 140 Å2), the chemical is said to be impermeable or 
badly absorbed [45].

From the results presented in Table 4 it can be seen that 
none of the molecules violate more than 2 of the criteria 
stated by Lipinski’s rule of five, it means there is a high 
tendency all of these molecules might be pharmacologi-
cally active. It can also be observed from Table 5 that none 
of the molecules possess the BBB permeant. Thus, these 
molecules are said have good absorption, low toxicity 
level, orally bioavailable and permeable. The Bioavailability 
Radar gives an overview of the drug-likeness of a molecule 

(Fig. 5). The region painted pink indicates the range for 
each properties.

Following the design of novel antimelanoma agents 
and filtering through the Lipinski’s rule of five for oral 
bioavailability and ADME compliance the designed 
compounds (Ia, IIa, Ib and IIb) were further evaluated 
for target binding affinity through molecular docking 
simulation studies. The best docking results for the stud-
ied compounds were presented in Table 6. The obtained 
docking poses from the Discovery Studio visualizer were 
shown in Figs. 6, 7, 8, 9 and 10 respectively. The designed 
compounds had negative free energy of binding higher 
in magnitude when compared with vemurafenib and this 
indicates a better binding affinity with the receptor. This 
shows that the designed compounds could be used as an 
anti-melanoma drug. The docking poses of the designed 
compounds showed that they interacted with the binding 
pocket of a protein target in a way similar to vemurafenib 
with additional number interactions.     

The free binding energy of Ia with a receptor is 
-12.4kcalmol−1, this interaction was achieved by nine (9) 
H-bonds with the ligand and Pi/sigma interaction that 
introduces stabilizing charges responsible for intercalating 
the drug within the protein (V600E-BRAF) as presented in 
Fig. 6. There were nine (9) conventional H-bonds present in 
the complex and seven (7) hydrophobic interactions with 
seven (7) amino acids (Table 6). The Pi/Cation interactions 

Table 5   ADME properties

S/N GI absorption BBB permeant Pgp substrate Bio-
availability 
score

Ia Low No Yes 0.17
IIa Low No Yes 0.17
Ib Low No Yes 0.17
IIb Low No Yes 0.17

Fig. 5   The Bioavailability Radar 
of (Ia), (IIa), (Ib) and (IIb)
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with PHE583, VAL471, and ALA481 which formed a Pi/
donor H-bond with the amino acids in the binding seg-
ment of the receptor. Other identified interactions are the 
alkyl interaction with (ILE617 and ARG662), pi/alkyl inter-
action with PHE468 and Pi/Pi interaction with TRP531 simi-
lar to vemurafenib (Fig. 10).

The docked structure of IIa depicted in Fig. 7 shows 
negative free binding energy of (-11.8kcalmol−1) which 
indicates the possibility of stable interactions between 
the ligand and the protein target. There were seven (7) 
conventional H-bonds identified between this ligand 
and receptor; SER536, LYS578, ASN580, GLN530, CYS532, 
GLN530 and CYS532 and three (3) C-H with SER536, 
SER465 and ILE463. The complex stability may be attrib-
uted with an extra alkyl interaction with VAL471, Pi-sigma 
interaction with TYR538, Pi-alkyl interactions (PHE583, 

VAL471, ALA481, CYS532 and ILE463) and Pi-Pi interactions 
with TRP531 and PHE583 as reported in Table 6.

Ib docks with the V600E-BRAF domain with the free 
energy for binding of − 11.7 kcal mol−1 as presented in 
Table  6. Five (5) conventional H-bonds were present 
between the receptor and molecule (ligand) with GLN494, 
PHE595, ILE573 and HIS574. One (1) C-H bonds was found 
with PHE468. Besides, LEU485 form an alkyl interaction 
and ARG575 formed pi alkyl bonds with the ligand as 
depicted in Fig. 8.

The docked structure of IIb shown in Fig. 9 indicates 
a negative free binding energy of (−  12.3  kcal  mol−1), 
suggesting that binding of is practicable, because most 
of the interactions (energies) are of H-bond type with 
these amino acids (CYS532, LYS578, LYS578, ASN580 and 
SER465), thus ensuing in the total negative value. Two 
(2) C-H bonds were also found with SER465 and CYS532 

Table 6   Types of molecular interactions and Amino Acids involved in the Inhibition of V600E-BRAF (PDB ID: 3OG7) with some designed Anti-
melanoma agents and vemurafenib

Molecular System Free Binding 
Energy (Kcal/
mol)

Hydrogen 
Bond (HB)

Bond 
Length (Å) 
for HB

C–H Alkyl Pi-sigma π–π Pi-Alkyl Pi-sulphur/cation

BRAF/Ia − 12.4 THR529
LYS578
LYS578
ASN580
ARG662
THR529
GLN530
THR529
GLN530

2.35841
2.26453
2.47978
2.51789
2.61203
2.6315
2.52962
2.68757
2.40948

LYS483
SER616
ASN581
ASP594
SER465

ILE617
ARG662

TRP531 PHE468 PHE583
VAL471
ALA481

BRAF/IIa − 11.8 SER536
LYS578
ASN580
GLN530
CYS532
GLN530
CYS532
CYS532

2.79406
1.92462
2.62685
2.72306
3.09683
2.35008
2.08229
2.28004

SER536
SER465
ILE463

VAL471 TYR538 TRP531
PHE583

PHE583
VAL471
ALA481
CYS532
ILE463

BRAF/Ib − 11.7 GLN494
PHE595
ILE573
HIS574
ASP576

2.55927
2.38866
3.01661
2.30453
2.35234

PHE468 LEU485 ARG575

BRAF/IIb − 12.3 CYS532
LYS578
LYS578
ASN580
SER465

2.07704
2.52659
2.77131
2.48546
2.95411

SER465
CYS532

ILE463
VAL471

ILE463 PHE583 PHE583
VAL471

BRAF/Vemurafenib − 11.3 PHE595
GLY596
CYS532
GLN530

2.66721
2.06321
3.0153
2.35105

CYS532 TRP531
PHE583

TRP531
PHE583
ALA481
LEU514
CYS532
LYS483
ILE463

LYS483
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respectively. The complex stability result can be connected 
with an extra Pi/sigma interaction associated with ILE463, 
Pi/alkyl interactions associated with (PHE583 and VAL471) 
and Pi-Pi interactions (PHE583) as presented in Fig. 9.

It has been reported that H-bonding is the major force 
controlling the interaction between the docked ligands 

and the receptors and also the binding affinity of the 
ligand increases with the number of hydrogen bond-
ing/distance [46, 47]. It can be seen that the number of 
amino acids involved in the conventional hydrogen bond-
ing with the designed molecules was better than that of 
vemurafenib as presented in Table 6 and Figs. 6, 7, 8, 9 

Fig. 6   a 3D and b 2D V600E-BRAF/Ia interactions
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and 10 respectively. This might inform the better free bind-
ing affinity of the designed compounds for V600E-BRAF. 
Additionally, some of the designed compounds interacted 
more with the target amino acids through strong electro-
static forces especially compounds Ia and IIb.

4 � Conclusion

In this research, we proposed the strategy to designed 
potent cytotoxic compounds on SK-MEL-5 human mel-
anoma cell line by computational methods. A hybrid 
approach of QSAR with molecular docking simulation is 
applied for NCI data sets to investigate their proper bind-
ing mode.

The developed QSAR enable the design and prediction 
of activity (pGI50) of potent compounds on SK-MEL-5 cell 

Fig. 7   a 3D and b 2D V600E-BRAF/IIa interactions
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line. The regression coefficients of the developed QSAR 
model showed an equally good model with sufficient sta-
tistical validation keys [ R2 (0.864), R2

adjusted
 (0.846), Q2

cv (0.841) 
and R2

pred
 (0.885)] for the internal and external data sets. This 

satisfies the criteria of acceptable QSAR models proposed 
by different groups. Compound 41 and 69 were selected 
because they had relatively high pGI50 activity; they are 
within the AD of the QSAR model and modification can be 

done easily around their benzene ring moiety. Based on 
results, we predicated the pGI50 activity of proposed com-
pounds by the built QSAR model. Compound IIa was found 
to be the most active (pGI50 12.32) within all the designed 
compounds. Moreover, Molecular docking simulation was 
also applied to investigate the proper binding mode of the 
designed compounds on V600E-BRAF protein kinase. All the 

Fig. 8   a 3D and b 2D V600E-BRAF/Ib interactions
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studied ligands were able to inhibit the receptor by totally 
occupying the active site in the target (receptor). The 
designed Ia, IIa, Ib and IIb with free binding energy (FBE) 
of − 12.4 kcal mol−1, − 11.8 kcal mol−1, − 11.7 kcal mol−1 and 
− 12.3 kcal mol−1 respectively were found to be more potent 
than the standard V600E-BRAF inhibitor (vemurafenib, 
FBE = −11.3 kcal mol−1) due to the introduction of the new 

substituents which has the ability of increasing the overall 
free binding energy by increasing the number of hydrogen 
bonds and hydrophobic interactions shown in their com-
plexes. Therefore, in future studies, there is hope to include 
the synthesis, in vivo and in vitro evaluation of these ligands 
(inhibitors) which can establish them as potent V600E-BRAF 
inhibitors for the treatment melanoma cancer.

Fig. 9   a 3D and b 2D V600E-BRAF/IIb interactions
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