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Abstract
The goal of reduced basis algorithms is to provide a relatively small set of functions which can serve as a basis for suf-
ficiently accurate and fast numerical solution of a parametrized problem for any choice of parameters. Such methods are 
often employed in parameter identification problems detecting, for instance, material qualities in diffusion problems, 
elasticity, or in Maxwell equations, or in time dependent problems where time plays the role of the parameter. We deal 
with greedy reduced basis algorithms. An important part of these algorithms is to estimate the difference between the 
exact solution of a discretized problem and its projection onto the space spanned by a reduced basis. We introduce a 
new kind of the estimate, which is based on a multilevel splitting of a discretized solution space, and we compare it 
with a standard estimate based on bounds to coercivity and continuity constants. Two sided guaranteed bounds to the 
error can be obtained for both methods. Numerical complexity as well as memory consumption of both methods are 
comparable, while the multilevel method provides a more accurate spatial distribution of the error.
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1 Introduction

During recent decades, reduced order modeling has 
become a well-established tool in large scale numerical 
computing. Reduced basis (RB) methods turned out to be 
useful for reducing the computational complexity of para-
metrized (stochastic) or time dependent differential equa-
tions. Identification of parameters (so called inverse prob-
lems) usually needs a large number of solutions for many 
values of parameters [39]. An appropriate reduced model 
can significantly shorten solution time. Numerical meth-
ods for time dependent problems can employ sufficiently 
rich but small bases obtained from some solution history 
where the next time steps are to be solved. Within the RB 

methods, reduced order models are obtained during the 
preparatory offline phase, which allows us to efficiently 
compute relatively accurate solutions of the original-sized 
problems during the online phase. A large variety of meth-
ods providing reduced bases has been developed. The lat-
est overview of the main issues concerning RB methods 
can be found in [31]. For example, in proper orthogonal 
decomposition methods [24] a singular value decompo-
sition is used to choose the best subset from the whole 
set of possible discretized solutions. See, for example [41] 
for its adaptive form. A novelty method for a low-rank 
approximation to the solution of the stochastic Galerkin 
method is presented in [34]. In our paper, we deal with 
the so called greedy reduced basis (GRB) algorithm where 
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the reduced basis is built up consecutively element by ele-
ment [6, 20]. The choice of the function which has to be 
added to the current reduced basis depends on its contri-
bution to the approximation quality of the new basis. Typi-
cally, such an element of the discretized solution manifold 
that achieves the largest distance from the span of the cur-
rent reduced basis can be chosen. In practice, a sufficiently 
dense but finite set of snapshots is scanned instead of the 
whole manifold. Still, in every step of the GRB method it 
is necessary to check every element of this set which is 
computationally demanding. In our paper we focus on this 
part of the GRB algorithm. Especially, we introduce a new 
strategy for estimating the distance of a high-dimensional 
(high-fidelity) solution of the discretized parametric prob-
lem from the span of a current reduced basis. These error 
estimates are called a posteriori error estimates, see e.g. [18, 
22], as they are only obtained after the inexact discretized 
solution is known. We should emphasize that here we con-
sider the estimates of the distance between an approxi-
mate solution and the exact solution of the discretized 
problem contrary to many cases in literature where the 
name a posteriori error estimate serves for estimating the 
distance between an approximate and the exact solution 
of the underlying infinite-dimensional problem, cf. [1, 33].

The a posteriori error estimates are in fact estimates 
of algebraic errors of inexact discretized solutions. To 
obtain guaranteed bounds to these errors is in general 
a nontrivial problem; see, for example [33]. However, for 
special types of data, namely if the coefficient function 
of the problem is in the affine form, several approaches 
have been developed which provide guaranteed and fea-
sible bounds to some norms of the error. The classical and 
mostly used estimates are based on estimating the dual 
norm of the residual scaled by (a bound to) the coercivity 
constant; see, for example [11, 18, 19, 38]. The complex-
ity of the estimates does not depend on the size of the 
high fidelity problem; see, e.g. [18, 19]. However, the for-
mula appears to be unstable in the case of large data or 
ill-conditioned problems. Rewriting the formula leads to 
better stability but increases memory consumption [11, 
14, 15, 19]. Using some interpolation schemes [13–15] 
yields efficient but only approximate (not guaranteed) 
estimates. In recent paper [23], a hierarchical estimator 
has been introduced based on constructing some larger 
space than the reduced space and on a saturation assump-
tion. Thus the obtained error bounds are not guaranteed 
as well. In all estimators mentioned so far, (a lower bound 
to) the coercivity constant must be employed. Obtaining 
it can be difficult in many applications; then the successive 
constrained method [26, 27] can appear as useful.

In this paper, the classical greedy RB algorithm is con-
sidered, but the a posteriori error estimate is new. We 
introduce a hierarchical estimate, the motivation for which 

comes from multilevel preconditioning methods, see, e.g. 
[3, 21]. There are several main differences between these 
the new and the classical estimators. While the classical 
upper bound estimator is defined as the H1 dual norm of 
the residual scaled by the squared root of (a lower bound 
to) the coercivity constant, the new estimator approxi-
mates directly the energy norm of the error taking into 
account the actual values of parameters. This can be 
viewed as more physical. Moreover, the conjugate gradient 
method minimizes the energy norm of the error (on Krylov 
subspaces) as well. Of course, the dual norm of the residual 
is equivalent to the energy norm of the error, but for small 
and large coercivity and continuity constants, respectively, 
these two norms can provide rather different values. In 
some problems, accumulating the error in some small part 
of the solution domain can destroy validity of the solution, 
cf. [32]. The new estimator performs locally, thus the distri-
bution of the error over the domain is well approximated. 
To gain all these benefits, we pay some extra effort during 
the offline phase; namely the complexity of the new esti-
mator depends on the size of the high-fidelity problem. 
However, including adaptive enriching the training set for 
the RB algorithm, cf. [25], reduces the number of problems 
that have to be solved and makes the multilevel estimator 
competitive.

The goal of this paper is twofold. We suggest a new 
kind of a posteriori error estimates for the GRB algorithm 
and derive two-sided guaranteed bounds for the energy 
norm of the true error. The second goal of this paper is 
to present the GRB algorithm with both the standard and 
the new a posteriori error estimates not only in the form 
of general analytical formulas but also using linear alge-
bra formulations to provide a clear connection between 
analytical and linear algebra objects. Our ideas are dem-
onstrated on simple benchmark examples of parameter 
dependent elliptic differential equations. The outline of 
the paper is as follows. In the next section we describe 
the parameter dependent elliptic differential equation in 
the form which we are dealing with. In Sect. 3, the GRB 
method is described. In Sect. 4, the classical a posteri-
ori error estimate (mean based, called MB) is described 
and the new one (multilevel, called ML) is introduced. In 
Sect. 5, the corresponding GBR algorithms are described 
and their computational and storage costs are discussed. 
The paper is concluded with numerical experiments and 
a short discussion.

2  Problem setting

In parameter dependent differential equations, the param-
eter space is usually a probability space equipped with a 
probability measure. Thus, let us start by introducing the 
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classical probability framework for uncertainty quantifica-
tion. The triple TΩ = (Ω,F, P) denotes a probability space 
where Ω is a sample space representing all possible out-
comes, F  is a �-algebra in Ω and P is a probability measure 
on F  . We assume that the random input to the equation 
can be represented by a random vector X = (X1,X2,…XK ) , 
where Xk ∶ Ω → ℝ, k = 1,… K  , are real-valued random 
variables defined in TΩ.

Let us denote by Γ ⊆ ℝ
K the image of X  , i.e. Γ ⊆ ΠK

k=1
Γk , 

where each Γk = {Xk(�),� ∈ Ω} is a measure space 
equipped with the measure �k(z)dz induced by Xk . Then, 
the system with a random input can be viewed as a para-
metric system which depends on the vector of parameters 
� = ((�)1,…(�)K ), � ∈ Γ . The values of � represent realiza-
tions of the random vector X .

We solve the problem to find u dependent on x ∈ D and 
� ∈ Γ , u(⋅, �) ∈ W1,2

0
(D) , such that

where D ⊂ ℝ
2 is a bounded polygonal domain, u(x , �) = 0 

on �D × Γ , f ∈ L2(D) and a(⋅, �) ∈ L∞(D) for � ∈ Γ . The gra-
dient ∇ is considered with respect to the physical variable 
x . In particular, we may search for some characteristics 
of the solution, like the mean E u(x , ⋅) and the variance 
Var u(x , ⋅) of u(x , �) for every x ∈ D , or another quantity of 
interest. The coefficient a(x , �) in (1) is considered in the 
affine form

where ak(x) ∈ L∞(D) , � = ((�)1,… , (�)K ) , (�)k ∈ Γk . The 
function a0(x) may represent the mean value of a(x , �) . 
We assume that there exist constants 0 < 𝛼1 ≤ 𝛼2 < ∞ , 
such that

For the discretization of problem (1) with respect to the 
physical variable x ∈ D , we employ the finite element (FE) 
method, see e.g. [9], with piece-wise bilinear basis func-
tions �n(x) , n = 1,… ,N , using a grid of N inner nodes on 
D. Let us denote the N-dimensional span of these func-
tions by VN . This type of discretization is chosen for sim-
plicity, the following ideas are also valid for other types 
of discretization. The discretized problem reads to find 
u(⋅, �) ∈ VN such that

(1)
∫D

a(x , �)∇u(x , �)∇v(x)dx

= ∫D

f (x)v(x)dx for all v ∈ W1,2

0
(D), � ∈ Γ,

(2)a(x , �) = a0(x) +

K∑
k=1

(�)kak(x),

(3)�1 ≤ a(x , �) ≤ �2 for all x ∈ D, � ∈ Γ.

Due to (2), the discretized problem (4) can be expressed in 
the matrix-vector form

w h e r e  (Ak)ns = ∫
D
ak(x)∇�n(x)∇�s(x)dx  , 

bn = ∫
D
f (x)�n(x)dx  , k = 0, 1,… , K  , n, s = 1,… ,N . The 

solution u(�) ∈ ℝ
N of (5) is the coefficient vector of the 

solution u(x , �) ∈ VN of (4), which means that they are con-
nected via u(x , �) =

∑N

n=1
un(�)�n(x).

Let us emphasize that instead of the usual solution 
space W1,2

0
(D) equipped with the inner product

and the related norm, we consider the same set of func-
tions with the inner product and the norm defined as

respectively, and denote this vector space V. We assume 
that � = (0,… , 0) ∈ Γ , thus from (2) and (3) it follows that 
(6) are well defined.

In this paper, multi-valued objects, such as the vector � 
or the matrix A , are denoted by bold letters. The order of 
any object in some sequence is marked by a subscript, e.g. 
�k ,Ak ,�k(x) . To refer to a certain element of a multi-valued 
object, we use round brackets and subscripts. For example, 
(� j)k is the k-th element of the vector � j . We hope that all 
ambiguous terms, if they occur, can be understood from 
the context. Thus, for example, A(�) is a matrix depending 
on � , but (�)kA is the matrix A multiplied by the scalar (�)k . 
Some description of objects can be found in the place of 
superscripts, e.g. uRB(�) is the solution of a reduced prob-
lem parametrized by � . To emphasize the dependency on 
� , the notation such as uRB(�) can be used. But sometimes 
“ (�) ” is omitted for the sake of simplicity.

3  Reduced basis method

In order to provide a high-fidelity approximation of the 
solution of (1) for � ∈ Γ , the discretized problem (4)—or (5) 
in the matrix form—is generally required to be of a very 
l a r g e  d i m e n s i o n .  T h e  s o l u t i o n  m a n i f o l d 
MN = {u(x , �) ∈ VN ∶ � ∈ Γ} of problem (4), however, can 

(4)
∫D

a(x , �)∇u(x , �)∇v(x)dx

= ∫D

f (x)v(x)dx for all v ∈ VN , � ∈ Γ.

(5)A(�)u(�) ∶=

(
A0 +

K∑
k=1

(�)kAk

)
u(�) = b,

∫D

∇u(x)∇v(x)dx ,

(6)(u, v)V = ∫D

a0(x)∇u(x)∇v(x)dx , ‖u‖2
V
= (u, u)V ,
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often be sufficiently approximated with a given error 
bound 𝜏 > 0 by some reduced space VM ⊂ VN with the 
dimension M much smaller than N .  Any basis 
UM = {u1(x),… uM(x)} of VM is called the reduced basis. 
When building such a basis during the offline phase we aim 
to find the smallest M and a set of M functions UM such that 
for any � ∈ Γ the distance of the solution u(x , �) of (4) from 
the span of UM is less than � . Let us emphasize that at least 
two meaningful metrics can be used. The first is generated 
by the metrics of V, i.e. ‖v‖2

V
= ∫

D
a0(x)∇v(x)

2 dx , and the 
second is the energy norm given by individual problems 
(4): ‖v‖2

�
= ∫

D
a(x , �)∇v(x)2 dx . See Sect. 3.1 for details.

In the matrix-vector form, the reduced basis can be 
represented by the matrix UM ∈ ℝ

N×M with columns 
{u1,…uM} formed by the coefficient vectors with respect 
to the FE basis functions �1(x),… ,�N(x) of the basis 
UM = {u1(x),… uM(x)} . The name reduced basis will be 
used for UM and for the coefficient vectors UM as well. In 
the online phase, for each � ∈ Γ , the high-fidelity solution 
u(�) of (5) can now be approximated by UMu

RB
M
(�) where 

uRB
M
(�) is the RB solution of the RB problem

w h e r e  A
RB
k

∈ ℝ
M×M  ,  uRB(�),bRB ∈ ℝ

M  , 
A
RB
k

= U
T
M
AkUM, k = 0, 1,… , K  , and bRB = U

T
M
b . System 

(7) represents problem (5) restricted to the range of UM . 
Note that the range of UN is equal to ℝN , the solution space 
of (5).

Evaluating the exact errors u(�) − UMu
RB
M
(�) within the 

RB algorithm would unacceptably slow down the compu-
tation, and so only some estimates of the errors (called 
a posteriori error estimates) are employed. In the next 
three subsections we provide a definition of the error of 
the RB solution and its measurement, a detailed descrip-
tion of the greedy algorithm and we briefly comment on 
the choice of the set of snapshots u(�) associated to the 
choice of the training set of parameters � ∈ Γ.

3.1  Error of RB solution

Let us use the following notation. For all u, v ∈ V  let

(7)A
RB(�)uRB(�) ∶=

(
A
RB
0

+

K∑
k=1

(�)kA
RB
k

)
u
RB(�) = b

RB,

Note that in our setting

Using the exact integration we have for the coefficient vec-
tors u, v ∈ ℝ

N of functions u, v ∈ VN

and corresponding dual norms can be expressed as

where M is the mass matrix, (M)jk = ∫
D
�j(x)�k(x)dx  , 

j, k = 1,… ,N , and A0 and A(�) are introduced in (5). Note 
that b = Mf  , where f  is the coefficient vector of a projec-
tion of the function f ∈ L2(D) to VN : (f )j = ∫

D
�j(x)f (x)dx , 

j = 1,… ,N.
Let uN(x , �) ∈ VN be the exact solution of (4) and let 

uM(x , �) be the RB solution in the reduced space VM ⊂ VN 
for a given � ∈ Γ . Let eM(x , �) = uN(x , �) − uM(x , �) ∈ VN 
denote the error function of this RB solution. We meas-
ure the error in the energy norm generated by the under-
lying particular problem (4) and denote

In the matrix-vector form, let uN(�) ∈ ℝ
N be the solu-

tion of (5) and let uM(�) = UMu
RB(�) be the prolonged RB 

solution uRB(�) ∈ ℝ
M of (7). The coefficient vector of the 

error function eM(x , �) is eM(�) = uN(�) − uM(�) . Denoting 
rM(�) ∈ ℝ

N the residual vector of (5),

we get

so the squared energy norm (8) of the error can be 
expressed as

(u, v) ∶= ∫D

u(x)v(x)dx

(u, v)V ∶= ∫D

a0(x)∇u(x)∇v(x)dx

‖v‖2
V
∶= ∫D

a0(x)∇v(x)∇v(x)dx

(u, v)� ∶= ∫D

a(x , �)∇u(x)∇v(x)dx

‖v‖2
�
∶= ∫D

a(x , �)∇v(x)∇v(x)dx .

(u, v)V = (u, v)0 = ∫D

a0(x)∇u(x)∇v(x)dx , u, v ∈ V .

(u, v) = v
T
Mu, (u, v)V = v

T
A0u, (u, v)� = v

T
A(�)u

(u, v)V � = v
T
A
−1
0
u, (u, v)�� = v

T (A(�))−1u,

(8)EM(�) = ‖eM(x , �)‖2� = ‖uN(x , �) − uM(x , �)‖2� .

(9)rM(�) = b − A(�)uM(�),

A(�) eM(�) = A(�) (uN(�) − uM(�)) = b − A(�)uM(�) = rM(�),
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3.2  Greedy algorithm

In the offline phase of building up the reduced basis, we 
employ the greedy algorithm [17, 18], which is based on 
two presumptions. First, that a good choice of the RB space 
is a space generated by some carefully chosen elements 
of the manifold MN that are represented by M independ-
ent solutions {u1,…uM} of (5) corresponding to a set of 
samples TM = {�1,… �M} ⊂ Γ . Second, that we are able 
to characterize the whole manifold MN sufficiently by a 
finite trainig set TJ ⊂ Γ , J ≫ M , which has to be chosen in 
advance.

The solutions u(�m) of (5) for all �m ∈ TM , m = 1,… ,M , 
form the columns of the matrix UM ∈ ℝ

N×M . The set TM ⊂ TJ 
is constructed by picking � from TJ one-by-one according 
to some criterion, and the matrix UM is built column-by-
column, correspondingly. The first element �1 ∈ TJ is usu-
ally chosen close to the “center” of Γ . Thus, U1 = u(�1) and 
T1 = {�1} . Having Tm = {�1,… �m} already selected and 
the corresponding matrix Um constructed, the item �m+1 
is considered to be such � ∈ TJ that the corresponding 
solution uRB(�) of (7) maximizes the squared energy norm 
Em(�) of the error given by (10) for M = m . The process 
stops whenever Em(�) ≤ � for all � ∈ TJ . In practice, the 
columns of Um are orthonormalized (in our numerical tests, 
orthonormalization with respect to the scalar product of 
ℝ

N was used).
In other words, for m = 1, 2,… ,M , the reduced prob-

lems (7) are solved for all currently remaining � ∈ TJ ⧵ Tm , 
the obtained solutions uRB(�) are prolonged to the range 
of Um , uRB(�) → Umu

RB(�) , and the energy norms of the 
errors of the approximate solutions Umu

RB(�) of (5) are 
compared. This means that Em(�) defined by (10) with M 
substituted by m has to be computed many times dur-
ing the offline phase. Consequently, instead of comput-
ing the exact values of Em(�) , some estimates of the errors 
are used, in which the inverse A(�)−1 is approximated. We 
focus on this in Sect. 4.

3.3  Choice of the training set

The training set TJ ⊂ Γ of J elements should sufficiently 
represent the whole parameter space Γ and might allow 
efficient computation of the desired characteristics. To 
this end, various techniques are used to generate TJ such 
as the Monte Carlo method, or regular tensor grids over 
Γ , or sparse grids, see e.g. [30]. The coordinates of the 

(10)

EM(�) = eM(�)
T
A(�) eM(�)

= (A(�) eM(�))
T (A(�))−1A(�) eM(�)

= rM(�)
T (A(�))−1rM(�) = ‖rM(�)‖2�� .

points in TJ can be obtained, for example, as abscissas 
of some Gauss or Clenshaw–Curtis quadrature formulas. 
In this paper, the Monte Carlo method and the uniform 
probability distribution on Γ are considered. In general, 
the training set may be chosen according to the density 
distribution of the underlying probability space. A large 
training set TJ induces a lot of evaluations of (estimates 
of ) Em(�) . Starting with a relatively small training set and 
its adaptive enriching is proposed in [25]. This modifi-
cation increases the efficiency of the methods of error 
estimates that we suggest, thus we employ this idea in 
our algorithms.

4  A posteriori error estimates

The key part of RB methods is estimating the quality of 
a current reduced basis or estimating which snapshot 
should be next included into the reduced basis. During 
the offline phase, formula (10) has to be evaluated or esti-
mated for every m = 1, 2,… ,M and for all � remaining in 
the actual training set. Let us emphasize that the name a 
posteriori error estimate here and also, for example, in [17, 
18, 22, 40], means the estimate of a difference (measured 
in some norm) between the solutions uM(x , �) ∈ VM ⊂ VN 
and uN(x , �) ∈ VN . These solutions are the (⋅, ⋅)�-orthogonal 
projections of the exact solution u(x , �) ∈ V  of problem (1) 
onto VM and VN , respectively. However, a widely used mean-
ing of the name a posteriori error estimate is connected to 
the estimate of the distance of some approximate solu-
tion uM(x , �) ∈ VM from the exact solution u(x , �) ∈ V  of 
(1); see, for example, [1, 10]. Such an estimate cannot be 
obtained using only the discretized form of the problem. 
Some sophisticated construction is needed unless some 
other properties of the solutions are employed, such as 
in [10]. Before recalling the standard error estimate and 
introducing the new one in the next two subsections, we 
present the following lemma.

Lemma 4.1 Let the matrices A,M ∈ ℝ
N×N be real, sym-

metric and positive definite. Suppose that there exist 
0 < c1 ≤ c2 < ∞ such that

Then

Moreover, the possible largest c1 and the smallest c2 in (11) 
are equal to the minimal and maximal eigenvalue of M−1

A , 
respectively.

(11)c1v
T
Mv ≤ v

T
Av ≤ c2v

T
Mv for all v ∈ ℝ

N .

(12)
1

c2
v
T
M

−1
v ≤ v

T
A
−1
v ≤ 1

c1
v
T
M

−1
v for all v ∈ ℝ

N .
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Proof For any v ∈ ℝ
N , inserting v = M

−
1

2 u into (11), we 
have

so the eigenvalues of M−
1

2AM
−

1

2 lie in ⟨c1, c2⟩ . Then the 
spectra of the matrices M−1

A and of AM−1 , both similar to 
M

−
1

2AM
−

1

2 , lie in ⟨c1, c2⟩ as well. Then the spectra of the 
matrices MA

−1 , A−1
M , and M

1

2A
−1
M

1

2 lie in ⟨ 1

c2
,
1

c1
⟩ , which 

yields (12). The last statement follows from the equiva-
lence of (11) and (13) and from the similarity of M−1

A and 
M

−
1

2AM
−

1

2 .   ◻

4.1  Mean based a posteriori error estimate

A widely used estimate of the energy norm of error (10) is 
based on the dual norm of the residual

see, e.g. [18], and it is called the mean-based estimate (MB) 
in this paper due to its relationship with the matrix A0 
given by a0(x) which is often defined as the mean value of 
a(x, �) . Using (14) we can get guaranteed upper and lower 
bounds of (10). From coercivity and continuity conditions 
(3) for every � ∈ Γ there exist 0 < 𝛼cont

1
(�) ≤ 𝛼cont

2
(�) < ∞ 

such that

where

Possibly, there may also exist uniform bounds �̄�cont
1

 and 
�̄�cont
2

 such that 0 < �̄�cont
1

≤ 𝛼cont
1

(�) ≤ 𝛼cont
2

(�) ≤ �̄�cont
2

< ∞ 
for all � ∈ Γ . If we consider the discretized problem only, 
v ∈ VN ⊂ V  , the inequalities (15) remain valid with possibly 
different constants,

where �cont
1

(�) ≤ �disc
1

(�) , �disc
2

(�) ≤ �cont
2

(�) . Obviously, cf. 
Lemma 4.1,

(13)c1u
T
u ≤ u

T
M

−
1

2AM
−

1

2 u ≤ c2u
T
u for all u ∈ ℝ

N ,

(14)EMB
M

(�) = r
T
M
(�) (A0)

−1
rM(�) = ‖rM(�)‖2V � ,

(15)
�cont
1

(�) ‖v‖2
V
≤ (v, v)� ≤ �cont

2
(�) ‖v‖2

V
for all v ∈ V , � ∈ Γ,

ess infx∈D
a(x , �)

a0(x)
≤�cont

1
(�),

�cont
2

(�) ≤ess supx∈D

a(x , �)

a0(x)
.

(16)
�disc
1

(�) vT
A0v ≤ v

T
A(�)v

≤ �disc
2

(�) vT
A0v , for all v ∈ ℝ

N , � ∈ Γ,

�disc
1

(�) = �min(A
−1
0
A(�)), �disc

2
(�) = �max(A

−1
0
A(�)) for all � ∈ Γ.

In our numerical experiments, there will exist uni-
form bounds �̄�disc

1
 and �̄�disc

2
 such that �̄�disc

1
≤ 𝛼disc

1
(�) , 

𝛼disc
2

(�) ≤ �̄�disc
2

 for all � ∈ Γ , where

Finally, we get

Combining (16) and Lemma 4.1 we get two-sided guaran-
teed bounds to the squared energy norm (10) of the error

This can also be expressed using norms and dual norms as

cf. [8, (4-I.14)] or [18, (3.29)] for the upper bound.
In the GRB algorithm, instead of computing the con-

stants �disc
1

(�) and �disc
2

(�) for every � ∈ TJ separately, 
uniform lower and upper bounds of (17) can be used. 
However, if the variation of a(x , �) with respect to � grows, 
these uniform bounds may become useless.

4.2  Multilevel a posteriori error estimate

The estimate of EM(�) suggested in this section is based on 
a hierarchy designed in the FE solution space. A full hier-
archy is not necessary, only two or three levels can be suf-
ficient. The theory of multilevel methods can be found in 
e.g. [3, 21]. An example of a specific FE setting (bilinear FE 
basis fubctions with rectangular supports) and the way of 
obtaining certain constants ( � , �1 , and �2 ) and using them 
in a two-level error estimate can be found in Appendix. 
This scheme can be easily adapted to any other hierarchi-
cal FE setting. A multilevel method is then derived from 
the two-level scheme by recursive splitting of the coarse 
spaces which is described, e.g., in [28, 37]. Therefore, let us 
only consider a general hierarchical two-level splitting of 
the solution space VN into two subspaces, the coarse and 
the fine one; see the definition in “Appendix”. Let us denote 
the coefficient vectors of the function u ∈ VN with respect 

�̄�disc
1

= min
�∈Γ

𝜆min(A
−1
0
A(�)), �̄�disc

2
= max

�∈Γ
𝜆max(A

−1
0
A(�)).

(17)
�̄�cont
1

≤�̄�disc
1

≤ 𝛼disc
1

(�),

𝛼disc
2

(�) ≤�̄�disc
2

≤ �̄�cont
2

for all � ∈ Γ.

1

�disc

2
(�)

r
M
(�)TA−1

0
r
M
(�) ≤ e

M
(�)TA(�)e

M
(�)T

≤ 1

�disc

1
(�)

r
M
(�)TA−1

0
r
M
(�).

(18)

‖rM(�)‖2V �

�cont
2

(�)
≤‖rM(�)‖2V �

�disc
2

(�)
≤ ‖eM(�)‖2�

≤‖rM(�)‖2V �

�disc
1

(�)
≤ ‖rM(�)‖2V �

�cont
1

(�)
,
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to the original FE space by u ∈ ℝ
N and with respect to the 

hierarchical two-level basis by

where we use the transformation matrix P ∈ ℝ
N×N which 

is specified in “Appendix”. Any system of linear equations 
Au = b with respect to the original FE basis can be trans-
formed into the system

where we have

The squared energy norm (10) of the error can be 
expressed in this hierarchical splitting as

where PeML
M
(�) = eM(�) and PrML

M
(�) = rM(�) , see Lemma 

7.1 in “Appendix”. Due to Lemma 4.1 applied to (39) in 
“Appendix”, AML(�)−1 in (21) can be approximated using

for all v ∈ ℝ
N , where � ∈ ⟨0, 1) can be easily obtained for 

all hierarchical FE spaces and does not depend on the 
discretization parameter and on � ∈ Γ provided all func-
tions ak(x) are piecewise constant or mildly varying on D; 
see the details in “Appendix”. Thus we have to solve only 
two smaller systems of equations. Moreover, the coarse 
subspace can be further decomposed into coarse and fine 
subspaces and thus the system with the matrix AML,C(�) 
can be further approximated by a two-by-two block diago-
nal matrix.

The matrix AML,F(�) can be equivalently substituted by 
its diagonal. An example of such an equivalence is given 
in “Appendix”. More precisely, let DML,F(�) be the diagonal 
of AML,F(�) , then there exist constants 0 < 𝛽1 ≤ 1 ≤ 𝛽2 < ∞ 
such that

(19)u
ML =

(
uML,C

uML,F

)
∈ ℝ

N , Pu
ML = u,

(20)

A
ML
u
ML =

(
A
ML,C

A
ML,CF

A
ML,CFT

A
ML,F

)(
uML,C

uML,F

)

=

(
b
ML,C

b
ML,F

)
= b

ML

A
ML
u
ML = P

T
APu

ML = P
T
b = b

ML.

(21)
EM(�) = e

ML
M
(�)TAML(�)eML

M
(�)

= r
ML
M
(�)TAML(�)−1rML

M
(�),

(22)

1

1 + �
v
T

(
A
ML,C(�)

−1
0

0 A
ML,F(�)

−1

)
v

≤ v
T
A
ML(�)−1v

≤ 1

1 − �
v
T

(
A
ML,C(�)

−1
0

0 A
ML,F(�)

−1

)
v

for all v ∈ ℝ
N . Thus using Lemma 7.1 in Appendix, we 

finally get the multilevel (ML) guaranteed error bounds

where

and

and the multilevel central error estimate

where

The constants � , �1 and �2 can be quantified or estimated 
under many practical and theoretical (not only) FE set-
tings. In our numerical experiments in Sect. 6, we will use 
bilinear FE basis functions with rectangular supports, and 
thus either �2 ≤ 3

8
≈ 0.61242 if a(x , �) is constant on the 

coarse elements, or �2 ≤ 0.4109 ≈ 0.64102 if a(x , �) is 
mildly varying inside the coarse elements (up to 20%), and 
�1 =

1

4
 and �2 =

7

4
 ; see the details in Appendix. For triangu-

lar or tetrahedral elements and piecewice linear basis func-
tions [4, 7, 16], �2 ∈ ⟨ 3

8
,
3

4
⟩ depending on the shape of ele-

ments and iso/anisotropy of the operator. A hierarchy can 
be also built from different polynomial degrees [16, 36]. 
Note that a uniform guaranteed upper bound to � and the 
bounds to �1 and �2 can be obtained from a simple algebra 
after rectricting the problem on a reference element [5, 16, 
36]. The presented two-level method of substituting A−1 
by the inverse of a block 2 × 2 matrix is a corner stone of a 
multilevel algorithm. The idea of recursive splitting of the 
coarse spaces and the way how to substitute A−1 are given 
in [3, 21, 28, 37]. As a result, the bounds analogous to 1

1+�
 

and 1

1−�
 in (22) are 1 and � , respectively, where

�1 v
T
D
ML,F(�)v ≤ v

T
A
ML,F(�)v ≤ �2 v

T
D
ML,F(�)v

(23)EML,1

M
(�) ≤ e

ML
M
(�)TAML(�)eML

M
(�) ≤ EML,2

M
(�),

EML,1

M
(�) =

1

(1 + �)
r
ML,C

M
(�)TAML,C(�)

−1
r
ML,C

M
(�)

+
1

(1 + �)�2
r
ML,F

M
(�)TDML,F(�)−1rML,F

M
(�)

EML,2

M
(�) =

1

(1 − �)
r
ML,C

M
(�)TAML,C(�)

−1
r
ML,C

M
(�)

+
1

(1 − �)�1
r
ML,F

M
(�)TDML,F(�)−1rML,F

M
(�),

(24)
EML
M

(�) =rML,C

M
(�)TAML,C(�)

−1
r
ML,C

M
(�)

+ r
ML,F

M
(�)TDML,F(�)−1rML,F

M
(�),

EML,1

M
(�) ≤ EML

M
(�) ≤ EML,2

M
(�) for all � ∈ Γ.

� =
1

2
√
1 − �2 − 1
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provided 𝛾2 < 3

4
 . For the case �2 ≥ 3

4
 , the multilevel 

method can still be used but the bounds are not uniform 
with respect to the number of levels any more. Note that 
the computation is faster but the bounds to the true error 
become less tight with growing number of levels.

5  Algorithms

The purpose of this part is to present the transcription of 
the methods suggested in the previous sections into a 
pseudo-code which may help to understand the details 
of the algorithms. First, we introduce the general GRB 
algorithm. Then we present the algorithms for two differ-
ent methods of the a posteriori error estimation: mean-
based (MB) estimates and multilevel (ML) estimates, 
which are described in Sects. 4.1 and 4.2 , respectively. 
These two methods are described in the form of modifi-
cations of the GRB algorithm.

5.1  GRB algorithm

The following algorithm represents a typical greedy 
algorithm for the construction of a reduced basis, 
described in Sect. 3. The algorithm is general in the sense 
that the error estimator is not specified yet.

GRB algorithm:

Input: The training set TJ and the constant 𝜏 > 0 which 
serves as a threshold for the acceptable (squared) 
norm of the error. The training set TJ is considered to 
be divided into L ≥ 1 nonoverlapping sets (levels): 
TJ ∶= T lev 1 ∪ T lev 2

⋯ ∪ T lev L.

Output: The N ×M matrix UM , the columns of which form 
the reduced basis ( UM is constructed column-by-column). 

1. Set T ∶= T lev 1 , the first level of TJ ; set l ∶= 1.
  Take �1 ∈ T  which is close to the center of Γ.
  Solve (5) with � = �1 ; denote the solution u1.
  Set U1 ∶= u1 and T1 ∶= {�1}.
  Set T ∶= T ⧵ {�1}.
  Set m ∶= 1.
2. For j = 1, 2,… , |T |:
  Find the solution of (7) with � = � j ∈ T  ; denote the 

solution by um,j.

  Compute Em,j – an estimate (of the square) of some 
suitable norm of em,j,

  the error  vec tor,  which is  def ined as 
em,j = A(�)−1b − Umum,j,

  where Umum,j is a prolongation of um,j.
3. If maxj=1,…,|T | Em,j < 𝜏 and l = L then M ∶= m and stop.
  If maxj=1,…,|T | Em,j < 𝜏 and l < L then go to step 4.
  Set �m+1 ∶= � jmax

 , where jmax ∶= argmaxj=1,…,|T |Em,j.
  Solve (5) with � = �m+1 , and denote the solution by 

um+1.
  Set Um+1 ∶= [Um,um+1] and Tm+1 ∶= Tm ∪ {�m+1}.
  Orthonormalize Um+1.
4. Set Tremove ∶= {� j ∈ T ; Em,j < 𝜏}.
  Set T ∶= T ⧵ Tremove.
  Enlarge T by adding the next level of values of � , if 

applicable (for example, if |T | became less than some 
chosen threshold and l < L ), i.e. set T ∶= T ∪ T lev l , 
l ∶= l + 1.

  Set m ∶= m + 1 and go to step 2.

We compare two special cases of the GRB algorithm, namely 
the GRB-MB algorithm and the GRB-ML algorithm below, 
which in step 2 of the GRB algorithm use the mean-based 
squared error estimate EMB

m
 and the multilevel estimate EML

m
 , 

respectively, as described in the previous sections.

5.2  GRB‑MB algorithm

The estimate EMB
m,j

∶= EMB
m

(� j) of (14) of the squared energy 
norm (10) is used. In order to effectively compute EMB

m,j
 , aux-

iliary vectors wk,m ∈ ℝ
N are successively computed, where 

wk,m = (A0)
−1Akum , k = 0,… , K , m = 1,… ,M . These vectors 

are used for the computation of EMB
m,j

 in the following manner. 
The residual of (5) used in (14) can be expressed as

and its inverse image with respect to A0 as

From relationship (25), the formula for the error estimate 
(14) can be obtained as

r =b − A(� j)Umum,j = b −

(
K∑

k=0

(� j)kAk

)
Umum,j

=b −

K∑
k=0

(� j)k
(
AkUm

)
um,j ,

(25)(A0)
−1
r = (A0)

−1
b −

K∑
k=0

(� j)k

m∑
i=1

(um,j)iwk,i .
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cf. [17]. The inner products bT
wk,i  and wT

r,s
A0wk,i  , 

r, k = 0,… , K  , s, i = 1,… ,m , are independent of � , they 
are successively computed, stored and reused.

GRB-MB algorithm  (refinement of the GRB algorithm)
Input, Output: As in the GRB algorithm. 

1. As in the GRB algorithm, plus:
  Set W0,1 = u1 and (� j)0 = 1, j = 1,… , J (in order to 

simplify the notation later).
  Set W k,1 = (A0)

−1Aku1 , k = 1,… , K  , and compute 
and store the inner products

  b
T
wk,1 and wT

k,1
A0wr,1 , r, k = 0,… , K .

2. As in the GRB algorithm. The estimate Em,j ≡ EMB
m,j

 is 
computed using (26).

3. As in the GRB algorithm, plus whenever a new col-
umn um+1 is added to Um in the GRB algorithm, com-
pute vectors wk,m+1 = (A0)

−1Akum+1 , k = 0,… , K  , and 
use them for the computation of the inner products 
b
T
wk,m+1 and wT

k,m+1
A0wr,s = wT

k,m+1
Arus , r, k = 0,… , K , 

s = 1,… ,m + 1 . Store these inner products.
4. As in the GRB algorithm.

5.3  GRB‑ML algorithm

The estimate EML
m,j

∶= EML
m

(� j) of (24) of the squared energy 
norm (10) is used.

The residual rML,C

M
(�) in (24) represents the residual rM(�) 

from (10), expressed in the hierarchical basis. It is obtained 
using P from (19) as rML,C

M
(�) = P

T
rM(�).

The matrices AML,C(�) and DML,F(�) in (24) come from the 
hierarchical splitting (20) applied to equation (5), which 
leads to the transformed matrix

(26)

EMB
m,j

= r
T (A0)

−1
r = r

T (A0)
−1
A0 (A0)

−1
r

=
(
(A0)

−1
r
)T
A0

(
(A0)

−1
r
)

=

(
b
T (A0)

−1 −

K∑
k=0

(� j)k

m∑
i=1

(um,j)iw
T
k,i

)

A0

(
(A0)

−1
b −

K∑
k=0

(� j)k

m∑
i=1

(um,j)iwk,i

)

=b
T (A0)

−1
b − 2

K∑
k=0

m∑
i=1

(� j)k(um,j)ib
T
wk,i

+

K∑
k=0

K∑
r=0

m∑
i=1

m∑
s=1

(� j)r(� j)k(um,j)s(um,j)iw
T
r,s
A0wk,i ,

A
ML(�) = P

T
A(�)P =

(
A
ML,C(�) A

ML,CF(�)

A
ML,CFT (�) A

ML,F(�)

)
,

with DML,F(�) being the diagonal of AML,F(�) . From the aff-
ine property of � we have

Alternatively, all vectors and matrices can be considered 
with respect to the hierarchical basis during the whole 
algorithm. Then, no transformation with P is needed.

GRB-ML algorithm (refinement of the GRB algorithm)
Input, Output: As in the GRB algorithm. 

1. As in the GRB algorithm, plus:
  Choose the hierarchy and prepare the transforma-

tion P from (19).
  Assemble and store the matrices AML,C

k
 , k = 0,… K  , 

from (27).
2. As in the GRB algorithm. The estimate Em,j ≡ EML

m,j
 of (24) 

is computed in three steps: 

2.1 C o m p u t e  t h e  r e s i d u a l  o f  ( 5 )  a s 
r = b −

∑K

k=0
(� j)k

�
AkUm

�
um,j.

  Transform and split it to coarse and fine residuals 
as 

2.2 Assemble the matrices AML,C(� j) and DML,F(� j) using 
(27).

  Solve the coarse problem AML,C(� j) e
C = rML,C.

  Compute eF = (DML,F(� j))
−1rML,F.

2.3 C o m p u t e  t h e  e s t i m a t e  a s 

EML
m,j

= rTP

(
eC

eF

)
= (rML)T

(
eC

eF

)
.

3., 4. As in the GRB algorithm.

5.4  Computational and storage cost

Both the GRB-MB and GRB-ML algorithms have the same 
basic structure of the GRB algorithm, so that we discuss 
just the differences between the algorithms: additional 
memory and computational cost. In evaluating the com-
putational cost, we concentrate on the solution of linear 
systems only, which represents the main part of the cost.

GRB-MB algorithm 

Additional memory needed: about 3
2
KM +

1

2
(KM)2 float-

ing point numbers for bT
wk,i and wT

r,s
A0wk,i , r, k = 0,… , K  , 

s, i = 1,… ,M.

(27)

A
ML,C(�) =AML,C

0
+

K∑
k=1

(�)kA
ML,C

k
,

D
ML,F(�) =DML,F

0
+

K∑
k=1

(�)kD
ML,F

k
.

r
ML = P

T
r =

(
rML,C

rML,F

)
.
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For each vector um , m = 1,… ,M , of the reduced basis, 
the computation of vectors wk,m represents the solution of 
K systems of the size N with the (sparse) matrix A0.

GRB-ML algorithm 
Additional memory needed: about (K + 1) ⋅ NC floating 

point numbers for AML,C

k
 , k = 0, 1,… , K  , where NC is the size 

of the coarse basis (matrices AML,C

k
 are sparse).

For each vector um , m = 1,… ,M , of the reduced basis: 
for each � j in the (actual) training set, the computation of 
the coarse part of the error eC represents the solution of 
the system of the size NC with the (sparse) matrix AML,C(� j).

6  Numerical experiments

In our experiments, we consider D = (0, 1) × (0, 1) with a 
uniform discretization grid and piece-wise bilinear FE func-
tions. We consider two benchmark problems denoted by 
(P1) and (P2) motivated by [18]. In problem (P1), the coef-
ficient function (2) is defined as

where (mk,1,mk,2) ⊂ ℕ
2 is the k-th pair in the ordered 

sequence of pairs of integers. The elements in the 
sequence are ordered according to their Euclidean norm. 
Thus, the first seven pairs are (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), 
(1, 3), (2, 3). The data of problem (P2) mimic random poros-
ity of the media. The domain D is uniformly divided into 
m ×m rectangles, m = 2, 3, 4,… . For a given m, K = m2 , the 
coefficient function (2) is defined as

where �k is the characteristic function associated with the 
k-th rectangle. We choose c = 0.5 in Example 6.4 and 
c = 0.95 in Examples 6.1 and 6.6 . In all examples, we use 
Γ = ⟨−1, 1⟩K and a training set generated randomly using 
the pseudo-random generator function. In all experi-
ments, we present the results for one particular choice of 
the random training set, but almost identical results are 
obtained for other choices. The probability density �(�) is 
constant in our experiments and equals 1|Γ| . By an error we 

mean the deviation of some approximate discretized solu-
tion from the exact discretized solution. In our experi-
ments, we compare the true energy norm of the error and 
its two estimates: the mean based (MB) estimate and the 
multilevel (ML) estimate. In addition, we compare the 
memory consumption and, instead of the solution time, 
which strongly depends on implementation, we compare 
the numbers of steps of the conjugate gradient (CG) 

(28)
a0(x) =1, ak(x) =

1

2(m2
k,1

+m2
k,2
)
sin(mk,1�(x)1)

sin(mk,2�(x)2), k = 1,… , K ,

(29)a0(x) = 1, ak(x) = c �k , k = 1,… , K ,

method performed during the GRB-MB or GRB-ML com-
putation. The CG method is used for solving any problem 
of the size N or the coarse problem. All of them have sparse 
matrices. We compute the numbers of the CG steps in 
three different stages: in the MB estimate where the aux-
iliary vectors wk,i , k = 0,… , K  , i = 1,… ,M , are computed, 
(cf. Sect. 5.2), in the ML estimates where the coarse prob-
lems with matrices AML,C(�) are solved (cf. Sect. 5.3), and in 
the common part of the GRB algorithm where the new 
vectors um of the reduced basis are computed (cf. Sect. 5.1). 
Since the coarse systems solved for the ML estimates are 
smaller than the original problems (5), we use a scaling 
factor to get a realistic comparison of the total work of the 
MB and ML methods. The scaling factor corresponds to the 
coarsening scale which is NC

N
≈

1

4
 in our examples. All 

experiments were performed in MATLAB [29] on a personal 
computer. The threshold for the squared energy norm of 
the error in all experiments is � = 10−6 . The CG method is 
finished whenever the relative residual decrease reaches 
10−8 . The quality of the resulting reduced basis after finish-
ing the GRB algorithm is measured by the averaged 
squared norm of the exact error

which we compute for the GRB-MB and GRB-ML methods 
separately. For these respective methods we also evaluate 
and compare the central estimates of Eav

M
,

using (18) and (24), respectively. The maximal squared 
energy norm of the exact error over TJ is denoted by Emax

M
 , 

and the maximal MB and ML estimates are denoted by 
Emax,MB

M
 and Emax,ML

M
 , respectively. In addition to this, we 

compare the guaranteed averaged lower and upper 
bounds to the squared exact errors. For the MB estimates, 
the bounds are obtained from (18) where either the uni-
form constants �̄�disc

1
≤ �̄�disc

2
 are used yielding

(30)Eav
M

=
1

|TJ|
∑
� j∈TJ

EM(� j) ≈ ∫Γ

EM(�)�(�)d�,

(31)

Eav,MB

M
=

1

|TJ|
∑
� j∈TJ

EMB
M

(� j)

=
1

|TJ|
∑
� j∈TJ

rM(� j)
T
A
−1
0
rM(� j)

(32)

Eav, ML

M
=

1

|TJ|
∑
� j∈TJ

EML
M

(� j)

=
1

|TJ|
∑
� j∈TJ

(
r
ML,C

M
(� j)

T
A
ML,C(� j)

−1
r
ML,C

M
(� j)

+rML,F

M
(� j)

TD(� j)
−1
r
ML,F

M
(� j)

)
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or the non-uniform constants �disc
1

(�) ≤ �disc
2

(�) are used 
yielding more accurate bounds

Lav,MB

M
=

1

�̄�disc
2

|TJ|
∑
� j∈TJ

rM(� j)
T
A
−1
0
rM(� j)

Uav,MB

M
=

1

�̄�disc
1

|TJ|
∑
� j∈TJ

rM(� j)
T
A
−1
0
rM(� j),

however, evaluating �disc
1

(�) and �disc
2

(�) for every training 
sample may rather slow down the computation, unless 
they are precomputed for all � ∈ TJ . For the ML estimates, 
the bounds

lav,MB

M
=

1

|TJ|
∑
� j∈TJ

1

�disc
2

(� j)
rM(� j)

T
A
−1
0
rM(� j)

uav,MB

M
=

1

|TJ|
∑
� j∈TJ

1

�disc
1

(� j)
rM(� j)

T
A
−1
0
rM(� j),

Fig. 1  Averaged exact errors 
(solid lines with crosses), their 
estimates (plain solid lines) and 
guaranteed lower and upper 
bounds (solid lines with dots 
for MB and ML; dashed lines 
for MB) of Example 6.1, (P1) 
problem for MB (left) and ML 
(right)
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Fig. 2  Averaged exact errors 
(solid lines with crosses), their 
estimates (plain solid lines) and 
guaranteed lower and upper 
bounds (solid lines with dots 
for MB and ML; dashed lines 
for MB) of Example 6.1, (P2) 
problem for MB (left) and ML 
(right)
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are obtained from (23) using �1 =
1

4
 , �2 =

7

4
 , and � = 0.641 

in problem (P1) and � =
√

3

8
 in problem (P2).

Example 6.1 In this example, we illustrate the accuracy 
of the MB and ML a posteriori error estimates in the GRB 
method. We consider N = (25 − 1)2 and the problem (P1) 
with K = 6 , and the problem (P2) with K = 4 and c = 0.95 
in (29). We generate 200 random samples and use three 
levels containing 30, 60 and 110 random samples. In Figs. 1 
(P1 problem) and 2 (P2 problem), we can see the graphical 
plots of the decay of the averaged squared energy norms 
of the errors and of their estimates. On the horizontal axis, 
there are sizes M of individual reduced bases designed by 
the GBR algorithms using the MB or ML a posteriori error 
estimates. On the vertical axis, there are averaged over 
� ∈ TJ exact squared energy norms of the errors Eav

M
 (30) 

(solid line with crosses) and their estimates and guaranteed 
lower and upper bounds. In both plots, the solid lines with-
out markers denote the central error estimates Eav,MB

M
 and 

Eav,ML

M
 defined by (31) and (32), respectively. In the left plot, 

the solid lines with dots denote the averaged guaranteed 
lower and upper bounds Lav,MB

M
 and Uav,MB

M
 . The dashed lines 

denote the guaranteed lower and upper bounds lav,MB

M
 and 

uav,MB

M
 . In the right plot, the solid lines with dots denote the 

Lav,ML

M
=

1

|TJ|
∑
� j∈TJ

EML,1

M
(� j),

Uav,ML

M
=

1

|TJ|
∑
� j∈TJ

EML,2

M
(� j)

guaranteed lower and upper bounds Lav,ML

M
 and Uav,ML

M
 . In 

Figs. 1 and 2 in the bottom pairs of plots, we can see the 
ratios of the computed quantities with respect to the exact 
error Eav

M
 . We can see that in these examples, the MB or ML 

estimates yield the same final dimensions of the reduced 
bases and almost the same decay rates of errors. In both 
problems, lav,MB

M
 and uav,MB

M
 provide the best guaranteed two-

sided estimates. However, the constants �disc
1

(�) and �disc
2

(�) 
are costly to obtain. In (P1) problem, the guaranteed MB 
bounds obtained for the uniform constants �̄�disc

1
= 0.4875 

and �̄�disc
2

1.5125 are more accurate than the guaranteed ML 
bounds. In (P2) problem, the guaranteed ML bounds are 
more accurate than the guaranteed MB bounds obtained 
for the uniform constants �̄�disc

1
= 0.05 and �̄�disc

2
1.95 . The cen-

tral ML estimates Eav,ML

M
 are slightly more accurate than the 

central MB estimates Eav,MB

M
 in (P2) problem.

E x a m p l e  6 . 2  W e  c o n s i d e r  p r o b l e m  ( P 1 ) , 
N = 1272 = (27 − 1)2 , K = 1, 3, 6, 12 . We generate 200 
random samples divided into three levels containing 30, 
60 and 110 random samples. The numerical results are 
found in Table 1 for the GRB-MB and GRB-ML methods. 
We present dimensions M of the resulting reduced bases 
and the averaged exact errors Eav

M
 and the estimates Eav,MB

M
 

and Eav,ML

M
 . For the GRB-MB method we present two lower 

and two upper averaged guaranteed error bounds Lav,MB

M
 , 

lav,MB

M
 , Uav,MB

M
 , and uav,MB

M
 . For the GRB-ML method, we present 

Table 1  Errors and their estimates in Example 6.2 for problem (P1) for N = (27 − 1)2 = 16129 and 200 random samples with 3 levels

MB: K M Eav
M L

av,MB

M
l
av,MB

M
E
av,MB

M
u
av,MB

M
U
av,MB

M
Emax

M E
max,MB

M

1 6 2.9e−11 2.3e−11 2.7e−11 2.9e−11 3.0e−11 3.9e−11 8.2e−11 8.5e−11
3 45 6.4e−8 4.3e−8 5.6e−8 6.2e−8 7.2e−8 1.1e−7 8.1e−7 9.1e−7
6 107 1.3e−7 7.9e−8 1.1e−7 1.3e−7 1.5e−7 3.3e−7 9.6e−7 8.6e−7
12 170 8.4e−8 4.7e−8 7.5e−8 8.5e−8 9.5e−8 4.3e−7 9.5e−7 9.3e−7

ML: K M Eav
M L

av,ML

M
E
av,ML

M
U
av,ML

M
Emax

M E
max,ML

M

1 6 2.9e−11 1.7e−11 2.8e−11 9.6e−11 8.2e−11 8.1e−11
3 45 6.4e−8 3.9e−8 6.4e−8 1.9e−7 8.1e−7 8.1e−7
6 109 9.2e−8 5.5e−8 9.2e−8 2.9e−7 7.7e−7 7.8e−7
12 170 8.4e−8 5.0e−8 8.4e−8 2.9e−7 9.6e−7 9.6e−7

Table 2  Memory and CG steps 
in Example 6.2 for problem 
(P1) for N = (27 − 1)2 = 16129 
and 200 random samples with 
3 levels

K MB mem CG Comm. mem. CG ML mem. CG Comm. mem. CG

1 1.4e2 1.1e3 2.6e5 1.1e3 4.0e4 6.9e3 2.6e5 1.1e3
3 3.2e4 3.7e4 1.0e6 1.4e4 7.9e4 4.5e4 1.0e6 1.4e4
6 5.6e5 1.7e5 2.3e6 3.4e4 1.4e5 1.6e5 2.3e6 3.5e4
12 4.9e6 5.3e5 3.8e6 5.6e4 2.6e5 3.5e5 3.8e6 5.6e4
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Lav,ML

M
 and Uav,ML

M
 . The last two columns contain the maxi-

mal achieved error over � ∈ TJ denoted by Emax
M

 , and the 
maximal estimates obtained either from the MB or ML esti-
mates denoted by Emax,MB

M
 and Emax,ML

M
 , respectively. The MB 

bounds lav,MB

M
 and uav,MB

M
 are very accurate. The uniform aver-

aged guaranteed bounds for ML and MB seem comparable. 
In Table 2, we present how many 8-byte numbers need to 
be allocated (mem.) and how many (rescaled) CG steps are 
performed (CG) for the MB and ML methods and in the 
common part of the GRB algorithm (comm.) We can see 
that the memory allocated for the auxiliary arrays in the MB 
method is smaller than that allocated for the set of matrices 
Ak , k = 0, 1,… , K  , if K is relatively small, otherwise the ML 
method may need less memory than the MB method.

Example 6.3  We consider problem (P1),  K = 6 , 
N = (2exp − 1)2 , exp = 5, 6, 7, 8 . We generate 200 random 
samples and use three levels containing 30, 60 and 110 
random samples. In Tables 3 and 4 , we present analogous 
results as in Example 6.2 and Tables 1 and 2 . The reduced 
bases obtained for the MB and ML error estimates are of 
almost the same sizes and qualities.

Example 6.4 In this example, we compare enriching the 
training set during the offline phase with considering the 
whole training set from the beginning of the GRB method. 
We solve problem (P2) with N = 14161 , K = 9 , and c = 0.5 

Table 3  Errors and their estimates in Example 6.3 for problem (P1) for K = 6 and 200 random samples with 3 levels for N = (2exp − 1)2

MB:  exp M Eav
M L

av,MB

M
l
av,MB

M
E
av,MB

M
u
av,MB

M
U
av,MB

M
Emax

M E
max,MB

M

5 68 1.4e−7 8.7e−8 1.3e−7 1.4e−7 1.6e−7 3.6e−7 8.4e−7 8.6e−7
6 87 1.4e−7 8.5e−8 1.2e−7 1.4e−7 1.6e−7 3.5e−7 8.4e−7 8.6e−7
7 107 1.3e−7 7.9e−8 1.1e−7 1.3e−7 1.5e−7 3.3e−7 9.6e−7 8.6e−7
8 125 1.2e−7 7.7e−8 1.1e−7 1.2e−7 1.4e−7 3.2e−7 8.9e−7 9.0e−7

ML:  exp M Eav
M L

av,ML

M
E
av,ML

M
U
av,ML

M
Emax

M E
max,ML

M

5 68 1.4e−7 8.1e−8 1.5e−7 7.7e−7 8.4e−7 8.9e−7
6 87 1.5e−7 8.9e−8 1.5e−7 5.8e−7 8.4e−7 8.5e−7
7 109 9.2e−8 5.5e−8 9.2e−8 2.9e−7 7.7e−7 7.8e−7
8 125 1.1e−7 6.5e−8 1.1e−7 3.2e−7 7.4e−7 7.4e−7

Table 4  Memory and CG steps 
in Example 6.3 for problem 
(P1) for K = 6 and 200 random 
samples with 3 levels for 
N = (2exp − 1)2

Exp MB mem CG Comm. mem. CG ML mem. CG Comm. mem. CG

5 2.2e5 2.8e4 9.9e4 5.3e3 7.9e3 2.2e4 9.9e4 5.3e3
6 3.7e5 7.0e4 4.8e5 1.4e4 3.4e4 6.0e4 4.8e5 1.4e4
7 5.6e5 1.7e5 2.3e6 3.4e4 1.4e5 1.6e5 2.3e6 3.5e4
8 7.7e5 4.0e5 1.0e7 8.2e4 5.6e5 4.6e5 1.0e7 8.2e4

Table 5  Errors and their estimates in Example 6.4 for problem (P2), K = 9 , N = 14161 , GRB method with Monte Carlo set of 400 samples with 
1, 2, or 5 levels of adaptivity

MB: levels M Eav
M L

av,MB

M
l
av,MB

M
E
av,MB

M
u
av,MB

M
U
av,MB

M
Emax

M E
max,MB

M

1 94 1.5e−7 1.5e−8 1.1e−7 1.5e−7 2.6e−7 1.5e−6 1.1e−6 9.4e−7
2 98 7.0e−8 6.8e−9 4.9e−8 6.8e−8 1.2e−7 6.8e−7 8.9e−7 8.0e−7
5 99 5.5e−8 5.4e−9 3.9e−8 5.4e−8 9.8e−8 5.4e−7 7.3e−7 7.5e−7

ML: levels M Eav
M L

av,ML

M
E
av,ML

M
U
av,ML

M
Emax

M E
max,ML

M

1 93 1.8e−7 9.6e−8 1.7e−7 8.3e−7 9.1e−7 9.1e−7
2 99 5.8e−8 3.2e−8 5.7e−8 2.5e−7 7.0e−7 6.5e−7
5 99 4.9e−8 2.7e−8 4.8e−8 2.2e−7 5.1e−7 4.9e−7
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in (29). The training set TJ contains J = 400 samples. The 
samples are either all considered and searched from the 
beginning of the GRB algorithm, or there are two or five 
subsets (levels) of samples which are gradually involved: 
the first subset is considered from the beginning and the 
next ones are added whenever the rest of the current 
training set contains less than seven elements. If we use 
two levels, they contain 100 and 300 samples, respectively; 
if we use five levels, they contain 30, 60, 60, 100 and 150 
samples, respectively. In Tables 5 and 6 , we can see that 
the gradually enriched training sets significantly reduce 
the number of CG steps of the GRB-ML algorithm. How-
ever, the dimension of the resulting reduced basis slightly 
grows. The other outputs and the parameters of GRB-MB 
and GRB-ML remain comparable.

Example 6.5 An example of the error function and its 
MB and ML estimates can be found in Fig. 3 for prob-
lem (P1) with K = 3 and N = 292 and with the omitted 
factor 1/2 at a1, a2, a3 . For a reduced basis with M = 15 
elements obtained by the GRB-MB method for the ran-
dom sample � = (−0.9, 0.5, 0.7) , we obtain the residual 
r = b − A(�)U15u

RB
15
(�) . We can compare the exact error 

vector e = A(�)−1r , the MB approximate error vector 
eMB = A

−1
0
r and the ML approximate error vector

reshaped into two-dimensional arrays: e (left), the differ-
ences e − eMB (middle) and e − Pe

ML (right). In general, 
for growing norms of � the differences between the two 
estimates are amplified and the ML estimates are more 
accurate.

Example 6.6 In this example, we study the localization of 
the estimates of the error functions obtained by the MB 
and ML methods. We consider problem (P2) with N = 592 , 
K = 9 and c = 0.95 in (29). We examine M = 10, 20, 30 , 
and 40, and consider the set T test of 300 random test 
samples, T test ⊂ Γ , T test ≠ TJ . For all � ∈ T test we compute 

Pe
ML = P

(
A
ML,C(�) 0

0 D
ML,F(�)

)−1

P
T
r

Table 6  Memory and CG steps in Example 6.4 for problem (P2), K = 9 , N = 14161 , GRB method with Monte Carlo set of 400 samples with 1, 
2, or 5 levels of adaptivity

Levels MB mem CG Comm. mem. CG ML mem. Comm. mem. CG

1 7.2e5 2.0e5 1.3e6 3.7e4 1.7e5 1.4e6 1.3e6 3.6e4
2 7.8e5 2.1e5 1.4e6 3.7e4 1.7e5 2.9e5 1.4e6 3.8e4
5 7.9e5 2.1e5 1.4e6 3.8e4 1.7e5 1.5e5 1.4e6 3.8e4

Fig. 3  Exact error (left) of a solution of Example 6.5 for M = 15 and � = (−0.9, 0.5, 0.7) . The difference between the exact error function and 
the MB estimate (middle), and between the exact error function and the ML estimate (right)

Table 7  Differences between the estimated and true errors in 
Example 6.6: the means (aver) and the standard deviations (SD) of 
the differences in the central node of D 

RB dim MB aver SD ML aver SD

10 −2.8e1 6.3e1 −1.1e−1 5.7e−1
20 −2.8e0 8.9e0 −1.1e-1 4.5e-1
30 −1.8e−1 1.1e0 −4.4e−2 2.8e−1
40 −2.2e−2 8.8e−2 −9.1e−3 6.5e−2
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the solutions uRB
M
(�) of (7), and test the exact errors of 

(5) eM(�) = A(�)−1b − UMu
RB
M
(�) and the approximate 

errors obtained either by the MB or by the ML estimates, 
eMB
M
(�) = A

−1
0
(b − A(�)UMu

RB
M
(�)) and

respectively. The averages over � ∈ T test and the stand-
ard deviations of the differences of certain nodal values 
(eM(�))p − (eMB

M
(�))p are displayed in Table  7. The same 

quantities are computed for (eM(�))p − (PeML
M
(�))p . We 

chose p = 1741 = (592 + 1)∕2 , which is the number of 
the node in the center of D, �p = (0.5, 0.5) . We can see 
that for the reduced bases of smaller dimensions M, the 
approximate error functions obtained by the ML method 
are better localized (the standard deviation is smaller) than 
the estimates obtained from the MB method. For richer 
reduced bases (larger M), the methods provide compara-
ble results.

Several observations can be made from our 
experiments: 

1. Both the MB and ML error estimates provide guaran-
teed bounds to the exact energy norm of the error 
of approximate solutions. When using the uniform 
bounds �̄�disc

1
 and �̄�disc

2
 in the MB method (cf. Sect. 4.1), 

the MB and ML methods yield comparable bounds. 
When using the individually computed �disc

1
(�) and 

�disc
2

(�) for each � ∈ Γ , the MB bounds are more accu-
rate but the computation may be time consuming. 
Moreover, when the function a0(x) does not corre-
spond to the mean of a(x , �) in (2), or if the variation 
of a(x , �) is large, the MB guaranteed lower and upper 
error bounds may become useless. The ML estimate 
provides an error function which better locally corre-
sponds to the exact error function on D, see Examples 
6.2 and 6.5 .

2. We encountered the numerical instability of evaluat-
ing formula (26), reported in [11, 14, 15, 23], even after 
reordering the terms trying to avoid the summation 
of large and small numbers. Therefore, for large K and 
M we stored and worked with the matrices A−1

0
AkUm , 

k = 1,… , K  , m = 1,… ,M , instead of the scheme 
described in Sect. 5.2; cf. [17, Section 3.5.2].

3. In all numerical experiments we observed the expo-
nential decay of the error with respect to the size of 
the reduced basis, cf. [10, 18].

(33)

Pe
ML
M
(�) = P

(
A
ML,C(�) 0

0 D
ML,F(�)

)−1

P
T (b − A(�)UMu

RB
M
(�)),

7  Discussion

In this paper, we deal with the GRB algorithm and sug-
gest a new a posteriori error estimate (called ML), which is 
based on a multilevel splitting of the FE solution space and 
can serve as an alternative to the estimate (called here MB) 
widely used in the GRB methods. While the MB estimates 
are based on the dual norm of the residual scaled by the 
coercivity constant, the ML estimate is obtained from a 
slightly modified energy norm of the error. We discuss and 
compare these two methods and introduce some numeri-
cal experiments. For both estimates, we can have guaran-
teed lower and upper bounds. In addition, the MB esti-
mate allows for tight guaranteed bounds which, however, 
depend on constants that may be difficult to evaluate. On 
the other hand, the ML method yields error functions 
which are better localized than those obtained from the 
MB method, especially if the variance of the data is big. The 
number of operations and the achieved accuracy depend 
on the problem. For a large number of unknowns and a 
small number of random variables, the MB methods seems 
more efficient. If the number of random variables grows, 
the methods become comparable in terms of the memory 
and CG steps. There are some modifications which can be 
applied in the ML method. For example, if the size of the 
coarse problem is still large, further coarsening of the 
coarse space can be applied. Gradually enriching the train-
ing set instead of considering all test samples from the 
start of the GRB algorithm also improves the relative effi-
ciency of the ML method. The efficiency of the MB method 
depends on the affine form of the coefficient function. For 
the ML method, the coefficient function is not required to 
be in the affine form; thus in the case of the log-normal 
distribution of the data the ML estimates can be obtained 
with almost the same effort as for the affine data provided 
the coefficient function a(x , �) is piece-wise constant or 
mildly varying on subdomains of D. The ML estimates are 
directly applicable to any kind of elliptic problems since 
the associated weak forms generate (semi)norms. Errors of 
solutions of advection-diffusion-reaction problems can be 
measured using norms associated to the symmetric part 
of related non-symmetric bilinear forms [2, 12]. Then the 
ML error estimates can be used here. In nonlinear elasticity 
problems, for example, solved by Newton’s method, the 
ML estimates can be used in every step. Moreover, due 
to mild varying of the system matrices during the steps 
of Newton’s method, bounds to � can be obtained easily. 
We believe that in some special problems, e.g. with vary-
ing but piecewise constant material data, an appropriate 
implementation can further improve the efficiency. Our 
future research will focus on implementing matrix free 
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computation and matrix free forms of the obtained for-
mulas at least for problems with regular grids.
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Appendix

We derive some pieces of theory supplementing 
Sect.  4.2. It is based on the multi-level (or hierarchi-
cal) splitting of the solution FE space. Some of the first 
theoretical results were presented in [43]. For the sake 
of simplicity, the general ideas will be illustrated on the 
case of bilinear FE elements on the uniform rectangular 
discretization grid. Let us consider a rectangular domain 
D = (0, 1) × (0, 1) and a model problem: to find u ∈ H1

0
(D) 

such that

u(x) = 0 on the boundary of D. Let us consider a uniform 
rectangular discretization grid in D with N1 × N2 = N inner 
nodes �1,… , �N ∈ D , where N1 = 2NC,1 + 1 , N2 = 2NC,2 + 1 . 
The grid defines (N1 + 1)(N2 + 1) (fine) rectangles in D. Let 
�k(x) , k = 1,… ,N , be bilinear FE basis functions which are 
continuous on D; �j(�k) = �jk , where �jk is the Kronecker 
delta symbol. Let h1 =

1

N1+1
 and h2 =

1

N2+1
 . Let a(x) ∈ L∞(D) 

be constant on every element and suppose that there exist 
0 < 𝛼1 ≤ 𝛼2 < ∞ , such that �1 ≤ a(x) ≤ �2 for all x ∈ D . 
Using the notation

let the matrix A be the stiffness matrix of problem (34), 
(A)rs = (�s,�r)a . Denote by VN the span of �1,… ,�N . Let us 
consider a uniform coarser discretization of NC,1 × NC,2 = NC 
coarse inner nodes; hC

1
= 2h1 and hC

2
= 2h2 and denote by 

(34)
∫D

a(x)∇u(x)∇v(x)dx

= ∫D

f (x)v(x)dx , for all v ∈ H1
0
(D),

(35)(u, v)a = ∫D

a(x)∇u(x)∇v(x)dx ,

VNC
 the space of the bilinear FE functions associated with 

t h i s  c o a r s e  d i s c r e t i z a t i o n  o f  NC  n o d e s 
{�C

1
,… , �C

NC
} ⊂ {�1,… , �N} . Let WNC

 be such a space that

The space WNC
 is the span of such N − NC FE basis func-

tions of VN which are not associated with any coarse node 
(i.e. have zero values at all coarse nodes). For any function 
u ∈ VN let u be the coefficient vector with respect to the FE 
basis of VN , u(x) =

∑N

k=1
uk�k(x) ; and let uML,

be the coefficient vector with respect to the bases of VNC
 

(first NC entries) and WNC
 (last N − NC entries). Note that 

for linear or bilinear FE functions, the coarse coefficients 
uML,C are equal to the nodal values of u in the coarse nodes, 
u
ML,C

k
= u(�C

k
) , but uML,F are not equal to any nodal values of 

u in general any more. The individual columns of the trans-
formation matrix P of (36) are thus formed by the values 
of individual basis functions of VNC

 (first NC columns) and 
of WNC

 (last N − NC columns) in individual nodes �1,… , �N 
(each row of the matrix P corresponds to one node). Hav-
ing obtained u and v , as the coefficient vectors of u and v, 
respectively, we get

where

Note that all three matrices AML , AML,C , and AML,F are posi-
tive definite. In fact AML,C and AML,F can be obtained by the 
restriction of (35) to VNC

 and WNC
 , respectively. Since VNC

 and 
WNC

 are finite-dimensional and the only common function 
of VNC

 and WNC
 is the zero function, there exists � ∈ ⟨0, 1) 

such that

for all v ∈ ℝ
N  . The inequality (38) is called the 

Cauchy–Schwarz–Bunyakowski (CBS) strengthened ine-
quality [3, 21]. Usually, we aim to get as small � fulfilling 
(38) as possible. For example, for bilinear FE functions and 
a uniform mesh grid and for the coefficient function a(x , �) 
which is constant on every coarse element (the element 
corresponding to the coarse space that is composed of 
2 × 2 fine elements) we get �2 ≤ 3

8
≈ 0.61242 , see e.g. [16]. 

For a triangular grid and for piece-wise linear FEs or for a 

VN = VNC
⊕WNC

.

(36)u
ML =

(
uML,C

uML,F

)
, Pu

ML = u,

(u, v)a = v
T
Au = v

MLT
A
ML
u
ML,

(37)P
T
AP = A

ML =

(
A
ML,C

A
ML,CF

A
ML,CFT

A
ML,F

)
.

(38)

(
v
ML,CT

A
ML,CF

v
ML,F

)2

≤ �2 vML,CT
A
ML,C

v
ML,C

v
ML,FT

A
ML,F

v
ML,F
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nonuniform grid and bilinear FEs, we can get �2 ≤ 3

4
 , cf. 

[4, 35]. It is important that a sharp uniform upper bound 
to the CBS constant � can be obtained by restricting (38) 
to a single coarse element independently of the discre-
tization density, see e.g. [3]. Of course, we aim to find its 
smallest upper bound. Thus, for example, for bilinear FE 
functions, the upper bound to � is the square root of the 
largest singular value of a certain 4 × 5 matrix [36]. Accord-
ingly, we may derive an upper bound to � for such a case 
when a(x) varies on coarse elements (but is still constant 
on fine elements). The theory and the technique of obtain-
ing � can be found e.g. in [3, 16, 21, 36]. If, for example, 
the function a(x , �) varies up to 20% on the coarse ele-
ments but is piece-wise constant on each fine element, 
then �2 ≤ 0.4109 ≈ 0.64102 . If the possible jumps of a(x , �) 
within the coarse elements grow, the constant � tends to 
one. However, in our experiments and also in some real 
life problems we may assume that either a(x , �) is constant 
on every coarse element or the variation of a(x , �) with 
respect to x ∈ D is mild and does not exceed a certain 
threshold. In our numerical experiments, we assume that 
the coefficient function is constant on every fine element 
and that either it is constant on the coarse elements or it 
varies in such a manner that there are not larger jumps 
within any coarse element than 20%.

From (38), we get

for all v ∈ ℝ
N . Indeed, denoting v1 = vML,C and v2 = vML,F , 

using the symmetry and positive semi-definiteness of the 
matrices AML,C and AML,F , and using 2xy ≤ x2 + y2 , we get

which yields the second inequality of (39). The first ine-
quality can be obtained analogously.

Let us consider a single node �k surrounded by four small 
rectangles where the values of a(x) are a1,… , a4 . The matrix 
stencil of A for such a node (or for the corresponding func-
tion �k(x) ) is then an appropriate multiple of

(39)

(1 − �) vT

(
A
ML,C 0

0 A
ML,F

)
v

≤ v
T
A
ML
v ≤ (1 + �) vT

(
A
ML,C 0

0 A
ML,F

)
v

v
T
A
ML
v =vT

1
A
ML,C

v1 + v
T
2
A
ML,F

v2 + 2vT
1
A
ML,CF

v2

≤vT
1
A
ML,C

v1 + v
T
2
A
ML,F

v2 + 2�

√
vT
1
A
ML,C

v1 v
T
2
A
ML,F

v2

≤vT
1
A
ML,C

v1 + v
T
2
A
ML,F

v2 + �(vT
1
A
ML,C

v1 + v
T
2
A
ML,F

v2)

=(1 + �)(vT
1
A
ML,C

v1 + v
T
2
A
ML,F

v2),

(40)
⎛⎜⎜⎝

−
a3

2
−

a3

4
−

a4

4
−

a4

2

−
a1

4
−

a3

4
a1 + a2 + a3 + a4 −

a2

4
−

a4

4

−
a1

2
−

a1

4
−

a2

4
−

a2

2

⎞⎟⎟⎠
.

In other words, the appropriately ordered entries of (40) 
are found in the k-th row of A . By construction, the matrix 
A
ML,F arises from A just by omitting the columns and rows 

with the same numbers as the coarse nodes have. Since 
every node � j , j = 1,… ,N , has eight neighboring nodes, 
after omitting from A the columns and rows correspond-
ing to the coarse nodes �C

k
 , k = 1,… ,NC , we get AML,F the 

stencil of which can be three-fold:

or

Note that the sum of the off-diagonal elements is either 
−

3

4
(a1 + a2 + a3 + a4) or − 1

2
(a1 + a2 + a3 + a4) . Denote by 

D
ML,F the diagonal part of AML,F . Then, from the Gersch-

gorin theorem [42], the spectrum of (DML,F)−1AML,F lies in 
the interval ⟨ 1

4
,
7

4
⟩ . In other words,

For non-uniform grids or for different types of FE functions, 
(the uniform estimates of ) the constants in (41) can be 
obtained in a similar manner. Let us summarize the above 
considerations in the following lemma.

Lemma 7.1 Let the matrix A be the stiffness matrix obtained 
for the operator (35) and for the bilinear FE functions. Let us 
consider a two-level splitting with properties (36) and (37). 
Let the strengthened CBS inequality (38) with the constant 
� ∈ ⟨0, 1) hold. Denote some error vector by e and the resid-
ual vector by r = Ae ; and let AML

eML = rML , where rML = P
T
r 

and e = Pe
ML . Then

and for all vML ∈ ℝ
N there hold the inequalities

⎛⎜⎜⎝

−
a3

2
−

a3

4
−

a4

4
−

a4

2

0 a1 + a2 + a3 + a4 0

−
a1

2
−

a1

4
−

a2

4
−

a2

2

⎞⎟⎟⎠
,

⎛
⎜⎜⎝

−
a3

2
0 −

a4

2

−
a1

4
−

a3

4
a1 + a2 + a3 + a4 −

a2

4
−

a4

4

−
a1

2
0 −

a2

2

⎞
⎟⎟⎠

⎛⎜⎜⎝

0 −
a3

4
−

a4

4
0

−
a1

4
−

a3

4
a1 + a2 + a3 + a4 −

a2

4
−

a4

4

0 −
a1

4
−

a2

4
0

⎞⎟⎟⎠
.

(41)

1

4
v
T
D
ML,F

v ≤vT
A
ML,F

v

≤7

4
v
T
D
ML,F

v for all v ∈ ℝ
N−NC .

(42)r
T
A
−1
r = e

T
Ae = e

MLT
A
ML
e
ML = r

MLT
A
ML−1

r
ML,

(43)
v
MLT

A
ML−1

v
ML ≤ 1

1 − �

(
v
ML,CT

A
ML,C−1

v
ML,C

+4 vML,FT
D
ML,F−1

v
ML,F

)
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and

Proof Equalities (42) follow directly from the definitions of 
the objects involved. Inequalities (43) and (44) follow from 
Lemma 4.1 applied to (39) and then to (41).   ◻

Analogously to the introduced technique, more than 
two levels of hierarchy can be considered. Moreover, the 
coarse elements can be composed of 3 × 3 fine elements 
(instead of the 2 × 2 fine elements) yielding the coarsening 
ratio N

NC

≈ 9 (instead of N
NC

≈ 4).
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