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Abstract
The effects of Joule heating and viscous dissipation on the two-dimensional Carreau fluid flowing through a stretching 
sheet with variable thickness are inspected with the supposition of slip parameters. The leading equations are altered 
as a set of (nonlinear) ordinary differential equations by means of proper similarity alterations. With the assistance of 
shooting procedure, subsequent equations are unravelled numerically. The impacts of appropriate parameters such as 
Weissenberg number and slip parameters (related to velocity and temperature) on the common profiles (velocity, con-
centration and temperature) are analysed via graphs. And also, we have analysed the effects of the identical parameters 
on skin friction coefficient and rate of transfers (heat and mass) by means of tables. From the outcomes, we observed 
that (a) the velocity slip parameter lowers the velocity but boosts the friction factor, (b) Weissenberg number boosts the 
velocity but shows conflicting behaviour on temperature, and (c) all boundary layers are observed to be thinner against 
wall thickness parameter. So, it benefits to improve both transfer rates (heat and mass), (d) the concentration bound-
ary layer is observed to be thinner during chemical reaction, (e) magnetic field parameter and Eckert number are both 
reduce the local Nusselt number, and (f ) wall thickness parameter and chemical reaction parameter are both improve 
the rate of mass transfer.

Keywords  Joule heating · Viscous dissipation · Weissenberg number · Slip parameter · Shooting technique · Skin friction 
coefficient

1  Introduction

The no-slip boundary situation is acknowledged as the 
crucial rudiments of the Navier–Stokes theory. But there 
are circumstances wherein such condition is not proper. 
Mostly, no-slip condition is deficient for maximum non-
Newtonian fluids. For illustration, polymer melts frequently 
show noticeable wall slip and that is denoted by a nonlin-
ear and monotone fitting together amongst the slip velocity 
and traction. Moreover, partial velocity slips across a mov-
ing surface occur for fluids with particulate, for illustration, 
polymer solutions, emulsions, foams and suspensions. Firstly, 
Cohen and Metzner [1] demonstrated that the apparent slip 

phenomenon is an imperative feature of the flow behaviour 
of polymer solutions in inhomogeneous stress field. Lawal 
and Kalyon [2, 3] deliberated the wall slip in their study on 
the viscoelastic fluid flow amongst two parallel surfaces. 
They recognized the fact that the slip coefficient weakens 
the velocity gradient and substantially controls the temper-
ature intensification. By considering stretching sheet, Ariel 
[4, 5] scrutinized the Newtonian and non-Newtonian fluid 
flows in the company of partial slip. He perceived that the 
flow gets hastened for distances close to the sheet upon the 
raise in viscoelastic fluid parameter. Fang et al. [6, 7] analyti-
cally resolved the equations which were raised in the work 
on the MHD fluid flow over a shrinking/stretching sheet. 
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They revealed that the wall slip velocity upsurges with the 
rise of magnetic field parameter. Zheng et al. [8] inspected 
the features of heat transfer on the stagnation point flow of 
nanofluids across a stretching sheet. One of their verdicts is 
that the thermophoresis and Brownian motion parameters 
both display the same impact on temperature. Rosca and 
Pop [9] did the stability analysis to display the twin solu-
tions in their work on the two-dimensional viscous fluid 
flow across a vertical shrinking/stretching sheet. Malvandi 
et al. [10] and Ul Haq et al. [11] elucidated the impacts of 
(temperature and velocity) slip parameters on the stagnation 
point flow of nanofluid. Devi and Prakash [12] and Jayachan-
dra Babu and Sandeep [13] analysed different MHD flows in 
the occurrence of slip parameters. Some of their detections 
are as follows: (a) temperature jump parameter lowers the 
temperature, and (b) wall thickness parameter lessens all the 
profiles (velocity, concentration and temperature). Mustafa 
[14] numerically deliberates the influence of slip parameters 
on nanofluid flow over a rotating disc. Usman et al. [15] and 
Ullah et al. [16] elucidated the slip effects on Casson fluid 
flow with viscous dissipation. They found the consequences: 
(a) thermal slip lowers the Nusselt number, and (b) viscous 
dissipation boosts the temperature. Abbas et al. [17] used 
Runge–Kutta–Fehlberg system to resolve the equations 
which were formulated in the work on the micropolar nano-
fluid flow near stagnation point. Recently, some researchers 
[18–22] deliberated various MHD flows in the slip regime.

When the plate is cooling or heating, the approximations 
of Joule heating and viscous dissipation are progressively 
noteworthy. The noticeable reality of heat transport natu-
rally arises in the procedures of power generation systems, 
cooling of nuclear reactors, cooling of electronic chips or 
metallic sheets and liquid metal fluids. Firstly, Javeri [23] 
examined the effects of Joule heating and viscous dissipa-
tion on the MHD fluid flow along with Hall effect and ion 
slip. Later, Borisevich and Potanin [24] studied the heat 
transfer characteristics of incompressible fluid flow near a 
rotating disc. They observed that the temperature upsurges 
with the rise in the viscous dissipation. Mansour and Rama 
Subba Reddy [25] and Hakiem et al. [26] analysed the con-
vective micropolar fluid flow with the same effects across 
different channels. They detected that the magnetic field 
parameter lowers the friction factor. Yih [27] employed 
implicit finite difference method to resolve the equations 
which were raised in the problem on the convective flow of 
non-Darcy fluid through a permeable sphere immersed in a 
porous medium. By considering the vertical surface, Chen 
[28] and Abo-Eldahad and Aziz [29] deliberated the heat 
transfer characteristics of two-dimensional fluid flow. One 
of their detections is that the Schmidt number improves the 
local Scherwood number. Osalusi et al. [30, 31] explained 
diverse MHD fluid flows through dissimilar channels. Some 
of their outcomes are as follows: (a) Hall parameter boosts 

the temperature, and (b) ion-slip current parameter rises the 
temperature. Later, several researchers [32–34] inspected 
various MHD flows including non-Newtonian fluid flow 
across various channels including a plane vertical chan-
nel. Jafar et al. [35] reported that the fluid temperature and 
velocity decreased with the increase in the shrinking of the 
sheet in their problem on the stagnation point flow through 
a shrinking/stretching surface. By keeping heat flux as con-
stant, Haque et al. [36] and Chakraborty et al. [37] investi-
gated the behaviour of various MHD fluid flows including 
micropolar fluid flow across narrow flow conduits. They saw 
that the temperature of the micropolar fluid is less for water 
contrast to air. Hayat et al. [38] employed HAM to solve the 
equations which were raised in the work on the unsteady 
MHD fluid flow across an exponentially stretching surface. 
Raju et al. [39] and Das et al. [40] deliberated convective 
MHD flows through porous medium. They revealed that the 
Prandtl number lowers the mean mixed temperature. Sheik-
holeslami and Ganji [41] utilized DTM to resolve the equa-
tions in the work on the scrutiny of nanofluids flow amongst 
two vertical permeable plates. They found that the shear 
stress decreases with the intensification of Lorentz forces. 
Recently, several researchers [42–44] contributed to the 
work on different flows accompanied with Ohmic (Joule) 
heating and viscous dissipation.

In this paper, the effects of Joule (Ohmic) heating, slip 
parameters and viscous dissipation on the two-dimen-
sional Carreau fluid flowing through a stretching sheet 
with variable thickness are examined. Shooting technique 
is employed in this work to resolve the transmuted equa-
tions. To capture the changes and examine the common 
profiles (velocity, concentration and temperature) against 
several parameters together with viscous dissipation, plots 
were presented. And also, we have presented the physical 
values of friction factor, the rate of transfer (of both mass 
and heat) in the table for the same parameters. From the 
outcomes, it is found that velocity slip parameter lowers 
the velocity but boosts the friction factor, and Weissenberg 
number improves the velocity though displays reverse 
behaviour on temperature.

2 � Mathematical formulation

A steady, laminar, incompressible, two-dimensional flow of 
non-Newtonian fluid (Carreau fluid) across a variable thick-
ened stretching sheet is considered. The positive x-coordi-
nate is measured along the direction of the moving sheet 
motion, and the positive y-coordinate is measured perpen-
dicular to the sheet in the outward direction towards the 
fluid. We have applied a magnetic field of strength B0 normal 
to the flow as shown in Fig. 1, which produces a magnetic 
effect in the x-direction. We assume that the stretching 
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velocity is Uw(x) = J0(x + b)m ( J0 is a constant and m is the 
velocity power index parameter). The sheet is not flat and is 

designated as y = A(x + b)
(1 −m)∕2 , and the coefficient A 

is chosen as small for the sheet to be sufficiently thin, to 

avoid pressure gradient along the sheet 
(

�P

�x
= 0

)
 . As we are 

considering stretching sheet with non-uniform thickness, 
this problem is valid for m ≠ 1. The temperature and the 
concentration at the surface have constant values Tw and 
Cw , respectively. Hydrodynamic, thermal slip conditions are 
taken into the account at wall and Joule heating, and vis-
cous dissipation effects are incorporated in the energy 
equation. Here magnetic field parameter is defined as 
B(x) = B0(x + b)

m−1

2  . Magnetic Reynolds number is pre-
sumed to be as fewer as possible in order to disregard the 
induced magnetic field. As the induced magnetic field is 
assumed to be negligible and since B(x) is independent of 
time, curl(E⃗) = 0 . In the absence of surface charge density, 
div(E⃗) = 0 . Hence, the external electric field is assumed as 
negligible.

With these conditions, the leading equations [45] are 
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Fig. 1   Physical model of the problem

and the matching boundary conditions are 

where u, v are the velocity components in parallel to x- 
and y-directions, respectively, � is the kinematic viscosity, 
�  is the relaxation time of the Carreau fluid, n is the power 
law index parameter, g is the gravity field, �T  is the volu-
metric coefficient of thermal expansion, Tw is the surface 
temperature, �C is the volumetric coefficient of diffusion 
expansion, � is the electrical conductivity, � is the density 
of the fluid, B(x) is the dimensional magnetic field param-
eter, k is the thermal conductivity, Cp is the specific heat 
capacitance, � is the dynamic viscosity, C is the dimen-
sional concentration parameter, Dm is the molecular dif-
fusivity, k0 is the dimensional chemical reaction parameter, 
h∗
1
 is the dimensional velocity slip parameter, and h∗

2
 is the 

dimensional temperature jump parameter.
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Pr

 , where f1 is the Maxwell’s reflec-

tion coefficient, �1, �2 are mean free path constants, e is the 
thermal accommodation coefficient, and � is the ratio of 
specific heats.

The vital transmutations to alter the leading equations 
as (nonlinear coupled) ordinary differential equations are 
specified below:

By using (6), Eqs. (2)–(4) transmuted as the subsequent 
equations:
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and the boundary conditions (5) altered as

where � = A

√
J0(m+1)

2�
 is the wall thickness parameter.

Equations (7)–(9) can be transmuted into the system of 
dimensionless expressions with the help of the following:

Then, the consequential equations are

and the subsequent boundary conditions are

Here Weissenberg parameter We , mixed convection 
parameter �  , ratio of the concentration to the thermal 
buoyancy forces N∗ , thermal Grashof number Gr , mass 
diffusion Grashof number Gc, Magnetic field parameter 
M, Eckert number, Prandtl number Pr, Schmidt num-
ber Sc, chemical reaction parameter Kr , h1 velocity slip 
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parameter and h2 temperature jump parameter are 
defined as follows:

The dimensional parameters of interest, local skin fric-
tion coefficient Cfx , the local Nusselt number Nux and the 
local Sherwood number Shx are defined as the following:

where

With the help of (6) and (11), they can be transmuted 
as

where Rex is defined as Rex =
Uw (x)(x+b)

�

3 � Numerical procedure

Numerical solutions of significantly nonlinear differential 
Eqs. (12)–(14) connected with the boundary conditions 
(15) are achieved with the aid of shooting procedure reli-
ant on R–K fourth-order method.
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Reduce Eqs. (12)–(14) into system of first-order equa-
tions by using sensible replacements described as 
follows:

By using this, we can write

We can use an analogous approach for the bound-
ary conditions stated in (15). After the alteration, we can 
employ the shooting procedure dependent on R–K fourth-
order method to get the reasonable results. The boundary 
conditions f �(0), �(0) and �(0) for � → ∞ are altered into 
finite interval length ( � = 5 ). Insert three primary supposi-
tions to f ��(0), ��(0) and ��(0) for probable solution. Here 
the step size and convergence criteria are chosen to be 
0.001 and 10−6 (in all cases).
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4 � Results and Discussion

The set of (ordinary differential) Eqs.  (12)–(14) with 
respect to the boundary conditions (15) is solved numer-
ically by applying R–K fourth-order-based shooting pro-
cedure. We exhibited the impact of non-dimensional 
parameters, for example We, Ec, h1 on velocity, concen-
tration and temperature, using plots and the impact of 
the same parameters on friction factor, rate of transfer 
(both mass and heat) using tables.

Figure 2 shows the impact of M on velocity profile. 
It is evident from the figure that M lowers the velocity. 
This occurs because of Lorentz force emerging from 
the collaboration of electric and magnetic fields during 
the movement of an electrically conducting fluid. The 
produced Lorentz force controls the fluid movement in 
boundary layer area and thus lessening the thickness 
of the momentum boundary layer. So, velocity dimin-
ishes with the rise in M . Because of the mounting of 
Lorentz force, thickness of the thermal boundary layer 
upsurges. As a consequence, temperature increases 
with the increase in M which can be observed in Fig. 3. 
When we increase We , there is a diminution in the vis-
cosity of the fluid. So, with the rise in We , there is an 
enhancement in the velocity (Fig. 4) and drop in the tem-
perature (Fig. 5). From the Fig. 6, we can observe that 
Ec raises the temperature. Generally, when we increase 
Ec , additional heat will be added to the fluid flow. As 

Fig. 2   Influence of M on velocity profile
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a result, temperature increases. Figure 7 explained the 
fact that �  boosts the velocity profile. This may be due 
to the fact that the increase in �  leads to the diminution 
in the density of the fluid. We know the fact that Sc is 
inversely proportional to the mass diffusion. So, when 
we increase Sc , there is a reduction in the concentration 
profile (Fig. 8). Figure 9 shows the natural behaviour of 
Kr on the concentration. Figures 10 and 11 revealed the 
influence of � on velocity and temperature profiles. From 

these, we can notice that � lessens all profiles. Reasons 
behind this behaviour may be the following: (a) increas-
ing � barricades the flow motion to slow down the flow 
field. Eventually, the boundary layer thickness gets thin-
ner for increasing values of � , and (b) thicker surfaces 
slowly emit the heat into the flow. So, when we increase 
� , there is a reduction in the heat dissipation towards the 

Fig. 3   Influence of M on temperature profile

Fig. 4   Influence of We on velocity profile

Fig. 5   Influence of We on temperature profile

Fig. 6   Influence of Ec on temperature profile
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flow which causes the reduction in temperature. From 
Fig. 12, we can notice that h1 lessens the velocity. When 
we increase h1 , initially velocity gets decreased near the 
surface the sheet and ultimately, in the entire fluid flow, 
velocity decreases. When we increase h2 , thermal accom-
modation coefficient upsurges which lowers the thermal 
diffusion towards the flow. So, temperature decreases 
with the rise in h2 (Fig. 13). Table 1 displays the values 

of local skin friction coefficient and rate of transfers 
(heat and mass) against the aforesaid parameters. We 
and h1 are beneficial to improve the friction factor, rate 
of transfers (heat and mass). M and Ec both lessen the 
heat transfer rate. � and Kr both improve the rate of mass 
transfer. Table 2 displays the assessment of the present 
result with the existing results in the restrictive case. We 
found decent agreement.             

Fig. 7   Influence of � on velocity profile

Fig. 8   Influence of Sc on concentration profile

Fig. 9   Influence of Kr on concentration profile

Fig. 10   Influence of � velocity on profile
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5 � Conclusions

When the plate is cooling or heating, the estimations 
of Joule heating and viscous dissipation are progres-
sively significant. The noticeable reality of heat transport 

typically emerges in the procedures of power genera-
tion systems, cooling of nuclear reactors, cooling of 
electronic chips or metallic sheets and liquid metal 
fluids. Keeping these facts in the mind, the current 
study addresses the convective flow of Carreau fluid 
across a slendering stretching sheet in the presence of 
Joule heating, viscous dissipation and slip parameters. 
Numerical solutions of altered equations are achieved 
via shooting technique. The impacts of various param-
eters including viscous dissipation on the usual profiles 
(velocity, concentration and temperature) deliberated 
and demonstrated by means of plots. The effects of same 
parameters on the friction factor, rate of transfers (heat 
and mass) are conversed via Table 1. We also utilized spe-
cial occurrences of the present model to approve our 
outcomes with past inquiries (Table 2). The subsequent 
deductions can be drawn from the present study.

•	 We improves the velocity and lessen the temperature
•	 All boundary layers are observed to be thinner against 

� . So, it benefits to improve both transfer rates (heat 
and mass).

•	 h1 lowers the velocity and boosts the friction factor.
•	 The concentration boundary layer is observed to be 

thinner during chemical reaction.

Fig. 11   Influence of � temperature on profile

Fig. 12   Influence of h1 on velocity profile

Fig. 13   Influence of h2 on temperature profile
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•	 M and Ec both reduce the local Nusselt number. � and 
Kr both improve the rate of mass transfer.
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